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The problem of counting derangements was initiated by Pierre Rémond de Montmort in 1708. A derangement is a permutation
that has no fixed points, and the derangement number Dn is the number of fixed point free permutations on an n element set.
Furthermore, the derangement polynomials are natural extensions of the derangement numbers. In this paper, we study the
derangement polynomials and numbers, their connections with cosine-derangement polynomials and sine-derangement
polynomials, and their applications to moments of some variants of gamma random variables.

1. Introduction and Preliminaries

The problem of counting derangements was initiated by
Pierre Rémond de Montmort in 1708 (see [1, 2]). A derange-
ment is a permutation of the elements of a set, such that no
element appears in its original position. In other words, a
derangement is a permutation that has no fixed points. The
derangement number Dn is the number of fixed point free
permutations on an nðn ≥ 1Þ element set.

The aim of this paper is to study derangement polyno-
mials and numbers, their connections with cosine-
derangement polynomials and sine-derangement polyno-
mials, and their applications to moments of some variants of
gamma random variables. Here, the derangement polynomials
DnðxÞ are natural extensions of the derangement numbers.

The outline of our main results is as follows. We show a
recurrence relation for derangement polynomials. Then, we
derive identities involving derangement polynomials, Bell
polynomials, and Stirling numbers of both kinds. In addition,
we also have an identity relating Bell polynomials, derange-
ment polynomials, and Euler numbers. Next, we introduce
the two variable polynomials, namely, cosine-derangement
polynomials DðcÞ

n ðx, yÞ and sine-derangement polynomials
DðsÞ
n ðx, yÞ, in a natural manner by means of derangement

polynomials. We obtain, among other things, their explicit
expressions and recurrence relations. Lastly, in the final sec-
tion, we show that if X is the gamma random variable with
parameters 1, 1, then DnðpÞ,DðcÞ

n ðp, qÞ,DðsÞ
n ðp, qÞ are given

by the “moments” of some variants of X.
In the rest of this section, we recall the derangement num-

bers, especially their explicit expressions, generating function,
and recurrence relations. Also, we give the derangement poly-
nomials and give their explicit expressions. Then, we recall the
gamma random variable with parameters α, λ along with their
moments and the Bell polynomials. Finally, we give the defini-
tions of the Stirling numbers of the first and second kinds.

As before, let Dn denote the derangement number for n
≥ 1, and let D0 = 1. Then, the first few derangement numbers
Dn ðn ≥ 0Þ are 1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496,
1334961, ⋯. For n ≥ 0, the derangement numbers are given
by [3–5]

Dn = n!−
n

1

 !
n − 1ð Þ!+

n

2

 !
n − 2ð Þ!−

n

3

 !
n − 3ð Þ!+⋯+ −1ð Þn

n

n

 !
0!

= 〠
n

k=0

n

k

 !
n − kð Þ! −1ð Þk = n!〠

n

k=0

−1ð Þk
k!

:

ð1Þ
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From (1), we note that [1–4, 6, 7]

〠
∞

n=0
Dn

tn

n!
= 1
1 − t

e−t: ð2Þ

By (2), we get

e−t = 1 − tð Þ〠
∞

n=0
Dn

tn

n!
= 1 + 〠

∞

n=1
Dn − nDn−1ð Þ t

n

n!
: ð3Þ

From (3), we can easily derive the following recurrence
relation [5, 8–11]:

−1ð Þn =Dn − nDn−1, n ≥ 1ð Þ: ð4Þ

Now, we consider the derangement polynomials which
are given by [10]

e−t

1 − t
ext = 〠

∞

n=0
Dn xð Þ t

n

n!
: ð5Þ

From (5), we have

〠
∞

n=0
Dn xð Þ t

n

n!
= 1
1 − t

e−text = 〠
∞

n=0
〠
n

l=0

n

l

 !
Dlx

n−l

 !
tn

n!
:

ð6Þ

By comparing the coefficients on both sides of (6), we get
[10]

Dn xð Þ = 〠
n

l=0

n

l

 !
Dlx

n−l , n ≥ 0ð Þ: ð7Þ

On the other hand,

e−t

1 − t
ext = 1

1 − t
e x−1ð Þt = 〠

∞

l=0
tl 〠

∞

m=0
x − 1ð Þm tm

m!

= 〠
∞

n=0
n! 〠

n

m=0

x − 1ð Þm
m!

 !
tn

n!
:

ð8Þ

From (6), (7), and (8), we have

Dn xð Þ = n! 〠
n

m=0

x − 1ð Þm
m!

= 〠
n

l=0

n

l

 !
Dlx

n−l , n ≥ 0ð Þ:

ð9Þ

A continuous random variable X whose density function
is given by [12–14]

f xð Þ = λe−λx
λxð Þα−1
Γ αð Þ , if x ≥ 0,

0, if x < 0,

8><
>: ð10Þ

for some λ > 0 and α > 0 is said to be the gamma random
variable with parameter α, λ which is denoted by X ~ Γðα, λÞ.

For X ~ Γðα, λÞ, the n-th moment of X is given by

E Xn½ � = λ

Γ αð Þ
ð∞
0

xne−λx λxð Þα−1dx

= 1
λnΓ αð Þ

ð∞
0

tn+α−1e−tdt

= Γ α + nð Þ
λnΓ αð Þ = α + nð Þ⋯ α + 1ð Þα

λn
:

ð11Þ

It is well known that the Bell polynomials are defined by
[15]

ex et−1ð Þ = 〠
∞

n=0
Beln xð Þ t

n

n!
: ð12Þ

When x = 1, Beln = Belnð1Þðn ≥ 0Þ are called the Bell
numbers.

The Stirling numbers of the first kind are defined as [16,
17]

xð Þn = 〠
n

l=0
S1 n, lð Þxl, n ≥ 0ð Þ, ð13Þ

where ðxÞ0 = 1, ðxÞn = xðx − 1Þ⋯ ðx − n + 1Þðn ≥ 1Þ.
As an inversion formula of (13), the Stirling numbers of

the second kind are defined by [16–18]

xn = 〠
n

l=0
S2 n, lð Þ xð Þl n ≥ 0ð Þ: ð14Þ

2. Derangement Polynomials and Numbers

From (5), we have

e x−1ð Þt = 〠
∞

n=0
Dn xð Þ t

n

n!

 !
1 − tð Þ = 1 + 〠

∞

n=1
Dn xð Þ − nDn−1 xð Þð Þ t

n

n!
:

ð15Þ

On the other hand,

e x−1ð Þt = 〠
∞

n=0

x − 1ð Þn
n!

tn = 1 + 〠
∞

n=1

x − 1ð Þn
n!

tn: ð16Þ

Therefore, by (15) and (16), we obtain the following
lemma.

Lemma 1. For n ≥ 1, we have

Dn xð Þ − nDn−1 xð Þ = x − 1ð Þn: ð17Þ

2 Journal of Function Spaces



Replacing t by 1 − et in (5), we get

e 1−xð Þ et−1ð Þ = et 〠
∞

l=0
Dl xð Þ 1

l!
1 − et
� �l

= 〠
∞

m=0

tm

m!
〠
∞

l=0
−1ð ÞlDl xð Þ〠

∞

j=l
S2 j, lð Þ t

j

j!

= 〠
∞

m=0

tm

m!
〠
∞

j=0
〠
j

l=0
−1ð ÞlDl xð ÞS2 j, lð Þ t

j

j!

 

= 〠
∞

n=0
〠
n

j=0
〠
j

l=0

n

j

 !
−1ð ÞlDl xð ÞS2 j, lð Þ

 !
tn

n!
:

ð18Þ

From (18), we have

Beln 1 − xð Þ = 〠
n

j=0
〠
j

l=0

n

j

 !
−1ð ÞlDl xð ÞS2 j, lð Þ, n ≥ 0ð Þ:

ð19Þ

It is easy to show that

1
et
e 1−xð Þ et−1ð Þ = 〠

∞

l=0

−1ð Þl
l!

tl 〠
∞

m=0
Belm 1 − xð Þ t

m

m!

= 〠
∞

n=0
〠
n

m=0

n

m

 !
Belm 1 − xð Þ −1ð Þn−m

 !
tn

n!
:

ð20Þ

Replacing t by log ð1 − tÞ in (20), we get

1
1 − t

e−text = 〠
∞

l=0
〠
l

m=0

l

m

 !
Belm 1 − xð Þ −1ð Þl−m 1

l!
log 1 − tð Þð Þl

= 〠
∞

l=0
〠
l

m=0

l

m

 !
Belm 1 − xð Þ −1ð Þl−m 〠

∞

n=l
−1ð ÞnS1 n, lð Þ t

n

n!

= 〠
∞

n=0
〠
n

l=0
〠
l

m=0

l

m

 !
Belm 1 − xð Þ −1ð Þn−l−mS1 n, lð Þ

 !
tn

n!
:

ð21Þ

From (5) and (21), we have

Dn xð Þ = 〠
n

l=0
〠
l

m=0

l

m

 !
Belm 1 − xð Þ −1ð Þn−m−lS1 n, lð Þ, n ≥ 0ð Þ:

ð22Þ

Therefore, by (19) and (22), we obtain the following
theorem.

Theorem 2. For n ≥ 0, we have

Beln 1 − xð Þ = 〠
n

j=0
〠
j

l=0

n

j

 !
−1ð ÞlDl xð ÞS2 j, lð Þ,

Dn xð Þ = 〠
n

l=0
〠
l

m=0

l

m

 !
Belm 1 − xð Þ −1ð Þn−m−lS1 n, lð Þ:

ð23Þ

Corollary 3. For n ≥ 0, we have

Beln = 〠
n

j=0
〠
j

l=0

n

j

 !
−1ð ÞlDlS2 j, lð Þ,

Dn = 〠
n

l=0
〠
l

m=0

l

m

 !
Belm −1ð Þn−m−lS1 n, lð Þ:

ð24Þ

Replacing t by −et in (5), we get

1
et + 1 e

1−xð Þet = 〠
∞

m=0
Dm xð Þ −1ð Þm

m!
emt

= 〠
∞

m=0

Dm xð Þ −1ð Þm
m!

〠
∞

n=0
mn t

n

n!

= 〠
∞

n=0
〠
∞

m=0

−1ð ÞmDm xð Þ
m!

mn

 !
tn

n!
:

ð25Þ

On the other hand, we have

1
et + 1 e

1−xð Þet = e1−x

2
2

et + 1 e
1−xð Þ et−1ð Þ

= e1−x

2 〠
∞

l=0
El
tl

l!
〠
∞

m=0
Belm 1 − xð Þ t

m

m!

= e1−x

2 〠
∞

n=0
〠
n

m=0
Belm 1 − xð ÞEn−m

n

m

 ! !
tn

n!
,

ð26Þ

where En are the ordinary Euler numbers.
Therefore, by (25) and (26), we obtain the following

theorem.

Theorem 4. For n ≥ 0, we have

〠
n

m=0
Belm 1 − xð ÞEn−m

n

m

 !
= 2ex−1 〠

∞

m=0
−1ð Þm Dm xð Þ

m!
mn:

ð27Þ
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Now, we observe that

1
1 − t

� �r

= 1
1 − t

� �r

e−rtert = 1
1 − t

e−t
� �r−1 e−t

1 − t
ert

= 〠
∞

k=0
〠

l1+⋯+lr−1=k

k

l1,⋯, lr−1

 !
Dl1

Dl2
⋯Dlr−1

� t
k

k!
〠
∞

m=0
Dm rð Þ t

m

m!

= 〠
∞

n=0
〠
n

k=0
〠

l1+⋯+lr−1=k

k

l1,⋯, lr−1

 ! 

�
n

k

 !
Dl1

Dl2
⋯Dlr−1

Dn−k rð Þ
!
tn

n!
,

ð28Þ

where r is a positive integer.
On the other hand,

1
1 − t

� �r

= 〠
∞

n=0

−r

n

 !
−1ð Þntn = 〠

∞

n=0
n!

r + n − 1
n

 !
tn

n!
:

ð29Þ

Therefore, by (28) and (29), we obtain the following
proposition.

Proposition 5. For r ∈ℕ, we have

r + n − 1

n

 !
= 1
n!

〠
n

k=0
〠

l1+⋯+lr−1=k

k

l1,⋯, lr−1

 !
n

k

 !
Dl1

⋯Dlr−1
Dn−k rð Þ:

ð30Þ

It is well known that [16, 18, 19]

eix = cos x + i sin x, i =
ffiffiffiffiffiffi
−1

p
: ð31Þ

From (5), we note that

e−t

1 − t
e x+iyð Þt = 〠

∞

n=0
Dn x + iyð Þ t

n

n!
, x, y ∈ℝð Þ, ð32Þ

e−t

1 − t
e x−iyð Þt = 〠

∞

n=0
Dn x − iyð Þ t

n

n!
: ð33Þ

By (9), (32), and (33), we get

Dn x + iyð Þ = n! 〠
n

m=0

x − 1 + iyð Þm
m!

, ð34Þ

Dn x − iyð Þ = n! 〠
n

m=0

x − 1 − iyð Þm
m!

, n ≥ 0ð Þ: ð35Þ

From (34) and (35), we can derive the following
equations:

e−t

1 − t
ext cos ytð Þ = 〠

∞

n=0

Dn x + iyð Þ +Dn x − iyð Þ
2

� �
tn

n!
,

ð36Þ

e−t

1 − t
ext sin ytð Þ = 〠

∞

n=0

Dn x + iyð Þ −Dn x − iyð Þ
2i

� �
tn

n!
:

ð37Þ
We define cosine-derangement polynomials and sine-

derangement polynomials, respectively, by

e−t

1 − t
ext cos yt = 〠

∞

n=0
D cð Þ
n x, yð Þ t

n

n!
, ð38Þ

e−t

1 − t
ext sin yt = 〠

∞

n=0
D sð Þ

n x, yð Þ t
n

n!
: ð39Þ

Thus, we have

D cð Þ
n x, yð Þ = Dn x + iyð Þ +Dn x − iyð Þ

2 ,

D sð Þ
n x, yð Þ = Dn x + iyð Þ −Dn x − iyð Þ

2i , n ≥ 0ð Þ:
ð40Þ

Therefore, we obtain the following theorem.

Theorem 6. For n ≥ 0, we have

D cð Þ
n x, yð Þ = n!

2
〠
n

m=0

1
m!

x − 1 + iyð Þm + x − 1 − iyð Þmð Þ,

D sð Þ
n x, yð Þ = n!

2i
〠
n

m=0

1
m!

x − 1 + iyð Þm − x − 1 − iyð Þmð Þ:

ð41Þ

Before proceeding further, we recall that

cos yt = 〠
∞

n=0

−1ð Þn
2nð Þ! y

2nt2n: ð42Þ

From (38)and (42), we note that

〠
∞

n=0
D cð Þ
n x, yð Þ t

n

n!
= e−t

1 − t
ext cos ytð Þ

= 〠
∞

l=0

Dl

l!
tl 〠

∞

k=0
〠
k/2½ �

m=0

k

2m

 !
−1ð Þmy2mxk−2m tk

k!

= 〠
∞

n=0
〠
n

k=0

n

k

 !
Dn−k 〠

k/2½ �

m=0

k

2m

 !
−1ð Þmy2mxk−2m

 !
tn

n!
:

ð43Þ

Therefore, by comparing the coefficients on both sides of
(43), we obtain the following theorem.
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Theorem 7. For n ≥ 0, we have

D cð Þ
n x, yð Þ = 〠

n/2½ �

m=0
〠
n

k=2m

n

k

 !
k

2m

 !
Dn−k −1ð Þmy2mxk−2m:

ð44Þ

Corollary 8. For n ≥ 0, we have

n!
2
〠
n

m=0

1
m!

x − 1 + iyð Þm + x − 1 − iyð Þmð Þ

= 〠
n/2½ �

m=0
〠
n

k=2m

n

k

 !
k

2m

 !
Dn−k −1ð Þmy2mxk−2m:

ð45Þ

By (38), we get

e x−1ð Þt cos yt = 1 − tð Þ〠
∞

n=0
D cð Þ
n x, yð Þ t

n

n!

= 1 + 〠
∞

n=1
D cð Þ
n x, yð Þ − nD cð Þ

n−1 x, yð Þ
� � tn

n!
:

ð46Þ

Thus, we have

cos yt = e 1−xð Þt + e 1−xð Þt 〠
∞

m=1
D cð Þ

m x, yð Þ −mD cð Þ
m−1 x, yð Þ

� � tm

m!

= 〠
∞

n=0
1 − xð Þn t

n

n!
+ 〠

∞

l=0
1 − xð Þl t

l

l!
〠
∞

m=1

� D cð Þ
m x, yð Þ −mD cð Þ

m−1 x, yð Þ
� � tm

m!

= 1 + 〠
∞

n=1
1 − xð Þn + 〠

n

m=1

n

m

 !
1 − xð Þn−m

 

� D cð Þ
m x, yð Þ −mD cð Þ

m−1 x, yð Þ
� �� tn

n!
:

ð47Þ

Therefore, by (47) and (42), we obtain the following
theorem.

Theorem 9. For k ∈ℕ, we have

1 − xð Þn + 〠
n

m=1

n

m

 !
1 − xð Þn−m D cð Þ

m x, yð Þ −mD cð Þ
m−1 x, yð Þ

� �

=
−1ð Þky2k, if n = 2k,

0, if n = 2k − 1:

8<
:

ð48Þ

By (38), we get

e x−1ð Þt cos yt = 〠
∞

n=0
D cð Þ
n x, yð Þ t

n

n!
1 − tð Þ

= 〠
∞

n=1
D cð Þ
n x, yð Þ − nD cð Þ

n−1 x, yð Þ
� � tn

n!
+ 1:

ð49Þ

On the other hand,

e x−1ð Þt cos yt = 〠
∞

l=0
x − 1ð Þl t

l

l!
〠
∞

m=0
y2m −1ð Þm t2m

2mð Þ!

= 1 + 〠
∞

n=1
〠
n/2½ �

m=0

n

2m

 !
−1ð Þm x − 1ð Þn−2my2m

 !
tn

n!
:

ð50Þ

Therefore, by (49) and (50), we obtain the following
theorem.

Theorem 10. For n ≥ 1, we have

D cð Þ
n x, yð Þ − nD cð Þ

n−1 x, yð Þ = 〠
n/2½ �

m=0

n

2m

 !
−1ð Þm x − 1ð Þn−2my2m:

ð51Þ

It is not difficult to show that

〠
∞

n=0
D cð Þ
n x + r, yð Þ t

n

n!
= 〠

∞

n=0
〠
n

l=0

n

l

 !
D cð Þ
l x, yð Þrn−l

 !
tn

n!
,

ð52Þ

where r is a positive integer.
By comparing the coefficients on both sides of (47), we

get

D cð Þ
n x + r, yð Þ = 〠

n

l=0

n

l

 !
D cð Þ

l x, yð Þrn−l: ð53Þ

Now, we observe that

〠
∞

n=1

∂
∂x

D cð Þ
n x, yð Þ t

n

n!
= ∂
∂x

e−t

1 − t
ext cos yt

� �

= t
e−t

1 − t
ext cos yt = t 〠

∞

n=0
D cð Þ
n x, yð Þ t

n

n!

= 〠
∞

n=1
nD cð Þ

n−1 x, yð Þ t
n

n!
:

ð54Þ
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Form (54), we note that

D cð Þ
0 x, yð Þ = 1, ∂

∂x
D cð Þ
n x, yð Þ = nD cð Þ

n−1 x, yð Þ, n ≥ 1ð Þ: ð55Þ

Therefore, we obtain the following theorem.

Theorem 11. For n ≥ 0, we have

D cð Þ
0 x, yð Þ = 1, ∂

∂x
D cð Þ

n x, yð Þ = nD cð Þ
n−1 x, yð Þ, n ≥ 1ð Þ: ð56Þ

In particular,

d
dx

Dn xð Þ = ∂
∂x

D cð Þ
n x, 0ð Þ = nD cð Þ

n−1 x, 0ð Þ = nD cð Þ
n−1 xð Þ, n ≥ 1ð Þ:

ð57Þ

Corollary 12. DðcÞ
n ðx, yÞ as a polynomial in x, for each fixed y,

and DnðxÞ are Appell sequences.
Before proceeding further, we recall that

sin yt = 〠
∞

n=1

−1ð Þn−1
2n − 1ð Þ! y

2n−1t2n−1: ð58Þ

From (39)and (58), we note that

〠
∞

n=0
D sð Þ
n x, yð Þ t

n

n!
= 1
1 − t

e−text sin yt

= 〠
∞

k=0

Dk

k!
tk 〠

∞

j=1
〠
j−1ð Þ/2½ �

m=0

�
j

2m + 1

 !
xj−2m−1y2m+1 t

j

j!

= 〠
∞

n=1
〠
n

j=1
〠
j−1ð Þ/2½ �

m=0

j

2m + 1

 ! 

�
n

j

 !
xj−2m−1y2m+1Dn−j

!
tn

n!
:

ð59Þ

Therefore, by (59), we obtain the following theorem.

Theorem 13. For n ≥ 0, we have

D sð Þ
0 x, yð Þ = 0,D sð Þ

n x, yð Þ

= 〠
n

j=1
〠
j−1ð Þ/2½ �

m=0

j

2m + 1

 !
n

j

 !
xj−2m−1y2m+1Dn−j:

ð60Þ

By (35) and (37) and Theorem 13, we obtain the
following corollary.

Corollary 14. For n ≥ 1, we have

Dn x + iyð Þ −Dn x − iyð Þ
2i

= 〠
n

j=1
〠
j−1ð Þ/2½ �

m=1

j

2m + 1

 !

�
n

j

 !
xj−2m−1y2m+1Dn−j:

ð61Þ

By (59), we see that

sin yt = e 1−xð Þt 〠
∞

k=1
D sð Þ
k x, yð Þ − kD sð Þ

k−1 x, yð Þ
� � tk

k!

= 〠
∞

m=0
1 − xð Þm tm

m!
〠
∞

k=1
D sð Þ
k x, yð Þ − kD sð Þ

k−1 x, yð Þ
� � tk

k!

= 〠
∞

n=1
〠
n

k=1

n

k

 ! 

� D sð Þ
k x, yð Þ − kD sð Þ

k−1 x, yð Þ
� �

1 − xð Þn−k
� tn
n!
:

ð62Þ

Therefore, by (62) and (58), we obtain the following
theorem.

Theorem 15. For m ∈ℕ, we have

〠
n

k=1

n

k

 !
D sð Þ

k x, yð Þ − kD sð Þ
k−1 x, yð Þ

� �
1 − xð Þn−k

=
−1ð Þm−1y2m−1, if n = 2m − 1,

0, if n = 2m:

( ð63Þ

It is easy to show that ð∂/∂xÞDðsÞ
n ðx, yÞ = nDðsÞ

n−1ðx, yÞ.
However, DðsÞ

n ðx, yÞ is not an Appell sequence, since DðsÞ
0 ðx,

yÞ = 0.
We observe that

〠
∞

n=0
D sð Þ
n x, yð Þ t

n

n!
= e−t

1 − t
ext sin yt

= 〠
∞

l=0
Dl xð Þ t

l

l!
〠
∞

m=0
−1ð Þmy2m+1 t2m+1

2m + 1ð Þ!

= 〠
∞

n=1
〠
n−1ð Þ/2½ �

m=0

n

2m + 1

 ! 

� −1ð Þmy2m+1Dn−2m−1 xð Þ� tn
n!
:

ð64Þ

Comparing the coefficients on both sides of (64), we have
the following theorem.
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Theorem 16. For n ≥ 1, we have

D sð Þ
n x, yð Þ = 〠

n−1ð Þ/2½ �

m=0

n

2m + 1

 !
−1ð Þmy2m+1Dn−2m−1 xð Þ:

ð65Þ

For r ∈ℕ, we have

〠
∞

n=0
D sð Þ
n x + r, yð Þ = e−t

1 − t
e x+rð Þt sin yt = e−t

1 − t
ext sin ytert

= 〠
∞

l=0
D sð Þ
l x, yð Þ t

l

l!
〠
∞

m=0
rm

tm

m!

= 〠
∞

n=0
〠
n

l=0

n

l

 !
D sð Þ
l x, yð Þrn−l

 !
tn

n!
:

ð66Þ

Thus, we obtain

D sð Þ
n x + r, yð Þ = 〠

n

l=0

n

l

 !
D sð Þ
l x, yð Þrn−l , n ≥ 0ð Þ: ð67Þ

3. Further Remarks

As applications, we want to show that if X is the gamma ran-
dom variable with parameters 1, 1, then DnðpÞ,DðcÞ

n ðp, qÞ,
DðsÞ
n ðp, qÞ are given by the “moments” of some variants of X

. We let the reader refer to the papers [20–22] for some recent
papers related to this section.

Let X be a gamma random variable with parameters 1, 1
which is denoted by X ~ Γð1, 1Þ. Then, we observe that

E e X−1+pð Þt
h i

=
ð∞
0

e x−1+pð Þt f xð Þdx, ð68Þ

where f ðxÞ is the density function of X and p ∈ℝ.
From (10) and (68), we can derive the following equation:

E e X−1+pð Þt
h i

=
ð∞
0

e x−1+pð Þte−xdx = e−t+pt ·
ð∞
0

e−x 1−tð Þdx

= e−t

1 − t
ept = 〠

∞

n=0
Dn pð Þ t

n

n!
:

ð69Þ

On the other hand, by Taylor expansion, we get

E e X−1+pð Þt
h i

= 〠
∞

n=0
E X − 1 + pð Þn½ � t

n

n!
: ð70Þ

Therefore, by (69) and (70), we obtain the following
theorem.

Theorem 17. For n ≥ 0, X ~ Γð1, 1Þ, the moment of X − 1 + p
is given by

E X − 1 + pð Þn½ � =Dn pð Þ: ð71Þ

When p = 0, Dn =Dnð0Þ = E½ðX − 1Þn�, ðn ≥ 0Þ.
Thus, we note that

Dn = 〠
n

l=0

n

l

 !
−1ð Þn−lE Xl

h i
: ð72Þ

For X ~ Γð1, 1Þ, we note that the moment of X is given by
E½Xn� = n!, ðn ≥ 0Þ.

Therefore, by (72), we obtain the following corollary.

Corollary 18. For n ≥ 0, X ~ Γð1, 1Þ, we have

Dn = 〠
n

l=0

n

l

 !
−1ð Þn−l l!,

Dn pð Þ = 〠
n

l=0

n

l

 !
p − 1ð Þn−l l!:

ð73Þ

For X ~ Γð1, 1Þ, we have

E e X−1+p+iqð Þt
h i

= e−t

1 − t
e p+iqð Þt , ð74Þ

where p, q ∈ℝ.
From (74), we note that

E e X−1+p−iqð Þt
h i

= e−t

1 − t
e p−iqð Þt: ð75Þ

By (74) and (75), we get

E e X−1+p+iqð Þt
h i

+ E e X−1+p−iqð Þt
h i

= 2e−t
1 − t

ept cos qt

= 〠
∞

n=0
2D cð Þ

n p, qð Þ t
n

n!
:

ð76Þ

On the other hand, by Taylor expansion, we get

E e X−1+p+iqð Þt
h i

+ E e X−1+p−iqð Þt
h i

= 〠
∞

n=0
E X − 1 + p + iqð Þn½

+ X − 1 + p − iqð Þn� t
n

n!
:

ð77Þ

Therefore, by (76) and (77), we obtain the following
theorem.
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Theorem 19. For n ≥ 0, X ~ Γð1, 1Þ, we have

E
X − 1 + p + iqð Þn + X − 1 + p − iqð Þn

2

	 

=D cð Þ

n p, qð Þ: ð78Þ

It is easy to show that

E e X−1+p+iqð Þt
h i

− E e X−1+p−iqð Þt
h i

= 2i e−t

1 − t
ept sin qt

= 2ið Þ〠
∞

n=1
D sð Þ
n p, qð Þ t

n

n!
,

ð79Þ

where X ~ Γð1, 1Þ.
Thus, we have

E
X − 1 + p + iqð Þn − X − 1 + p − iqð Þn

2i

	 

=D sð Þ

n p, qð Þ, n ≥ 0ð Þ,

ð80Þ

where X ~ Γð1, 1Þ.

4. Conclusion

The introduction of derangement numbers Dn goes back to
as early as 1708 when Pierre Rémond de Montmort consid-
ered some counting problem on derangements. In this paper,
we dealt with derangement polynomials DnðxÞ which are
natural extensions of the derangement numbers. We showed
a recurrence relation for derangement polynomials. We
derived identities involving derangement polynomials, Bell
polynomials, and Stirling numbers of both kinds. In addition,
we also obtained an identity relating Bell polynomials,
derangement polynomials, and Euler numbers. Next, we
introduced the cosine-derangement polynomials DðcÞ

n ðx, yÞ
and sine-derangement polynomials DðsÞ

n ðx, yÞ, by means of
derangement polynomials. Then, we derived, among other
things, their explicit expressions and recurrence relations.
Lastly, as applications, we showed that if X is the gamma ran-
dom variable with parameters 1, 1, then DnðpÞ,DðcÞ

n ðp, qÞ,
DðsÞ
n ðp, qÞ are given by the “moments” of some variants of X.
We have witnessed that the study of some special num-

bers and polynomials was done intensively by using several
different means, which include generating functions, combi-
natorial methods, umbral calculus, p-adic analysis, probabil-
ity theory, special functions, and differential equations.
Moreover, the same has been done for various degenerate
versions of quite a few special numbers and polynomials in
recent years with their interests not only in combinatorial
and arithmetical properties but also in their applications to
symmetric identities, differential equations, and probability
theories. It would have been nicer if we were able to find
abundant applications in other disciplines.

It is one of our future projects to continue to investigate
many ordinary and degenerate special numbers and polyno-
mials by various means and find their applications in physics,
science, engineering, and mathematics.
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