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In this article, we inspect the sufficient conditions on the Orlicz generalized difference sequence space to be premodular Banach
(sss). We look at some topological and geometrical structures of the multiplication operators described on Orlicz generalized

difference prequasi normed (sss).

1. Introduction

The multiplication operators have a large subject of mathe-
matics in functional analysis, namely, in eigenvalue distribu-
tion theorem, geometric structure of Banach spaces, and
theory of fixed point. For more technicalities (see [1-6]), by
CN, ¢, ¢, ¢, and c,, we mean the spaces of each, convergent,
bounded, r-absolutely summable and convergent to zero
sequences of complex numbers. IN displays the set of non-
negative integers. Tripathy et al. [7] popularized and mea-
sured the forward and backward generalized difference
sequence spaces:

( ) {woee™: (A( i) €6 (1)

)= {(wy) €CN : (ATw,) € G},

where m,n e N, G=4_,, ¢, or ¢,, with

Agm)wk = Z (_1)vczlwk+vn’ andA:lnwk = z (_I)VCT Wi_yn>
v=0 v=0

(2)

successively. When # = 1, the generalized difference sequence
spaces concentrated to G(A"™)) defined and examined by Et

and Colak [8]. If m = 1, the generalized difference sequence
spaces diminished to G(4,) constructed and studied by
Tripathy and Esi [9]. While if n=1 and m = 1, the general-
ized difference sequence spaces reduced to G(A) defined
and investigated by Kizmaz [10].

An Orlicz function [11] is a function v : [0,00) — [0,00),
which is convex, continuous, and nondecreasing with v
(0)=0, y(u)>0, for u>0 and yw(u) > oo, as u— co.
In [12], an Orlicz function y is called to satisty the &,
-condition for each values of x > 0, if there is k > 0, such that
y(2x) < ky(x). The 8,-condition is equivalent to y/(lx) <kl
y(x), for every values of x and I>1. Lindentrauss and
Tzafriri [13] used the idea of an Olicz function to construct
the Orlicz sequence space:

e, = {ueCN : p(Bu)<co, forsome >0}, where p(u)

- kfw(luk B
)

(€, [I-I1) is a Banach space with the Luxemburg norm:

||u||=inf{[3>0:p<%>£l}. (4)
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Every Orlicz sequence space includes a subspace that is
isomorphic to ¢, or ¢4, for some 1 < g < co.

Recently, different classes of sequences have been exam-
ined the usage of Orlicz functions via Et et al. [14], Mursaleen
et al. [15-17], and Alotaibi et al. [18].

Let r=(r;) € RN, where R™™ denotes the space of

sequences with positive reals, and we define the Orlicz back-
ward generalized difference sequence space as follows:

(fW(ATH))T = {w = (wj) e CN : 3o > 0 with T(ow)<oo},

()

where 7(w) =Y 5y (A7, [w)l), w;=0, for j<0, Ay,

n+11%j
-1 -1 0 :
| w; | =A" | w; | A" ij_ll, and A w;=w;, for all j, n,

m € N. It is a Banach space, with
Jwll =inf {o>0:7(2) <1}. (6)

When y(w) =w', then €,(47,) =¢,(4},,) investigated
via many authors (see [19-21]). By B(W, Z), we will denote
the set of every operators which are linear and bounded
between Banach spaces W and Z, and if W = Z, we write B
(W). On sequence spaces, Basarir and Kara examined the
compact operators on some Euler B(m)-difference sequence
spaces [22], some difference sequence spaces of weighted
means [23], the Riesz B(m)-difference sequence space [24],
the B-difference sequence space derived by weighted mean
[25], and the m"™ order difference sequence space of general-
ized weighted mean [26]. Mursaleen and Noman [27, 28]
investigated the compact operators on some difference
sequence spaces. The multiplication operators on (ces(r), ||.||)
with the Luxemburg norm ||.|| elaborated by Komal et al.
[29]. Ilkhan et al. [30] studied the multiplication operators
on Cesiro second order function spaces. Bakery et al. [31]
examined the multiplication operators on weighted Nakano
(sss). The aim of this article is to explain some results of
(¢, (A%41)), equipped with the prequasi norm 7. Firstly, we
accord the sufficient conditions on the Orlicz generalized dif-
ference sequence space to become premodular Banach (sss).
Secondly, we provide with the necessity and sufficient condi-
tions on the Orlicz generalized difference sequence space
provided with the prequasi norm so that the multiplication
operator defined on it is bounded, approximable, invertible,
Fredholm, and closed range operator.

2. Preliminaries and Definitions

Definition 1 [32]. An operator V € B(W) is known as
approximable if there are D, € F(W), for every r € N and
hmr~>00HV - Dr” =0.

By Y (W, Z), we will denote the space of all approximable
operators from W to Z.
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Theorem 2 [32]. Let W be a Banach space with dim (W
then,

) =00

Definition 3 [33]. An operator V € B(W) is named Fredholm
if dim (R(V))‘ < 0o, dim (kerV) < co, and R(V) are closed,
where (R(V)) indicates the complement of range V.

The sequence e;=(0,0,...,1,0,0, ) with 1 in the jh
coordinate, for all j € IN, will be used in the sequel.

Definition 4 [34]. The space of linear sequence spaces Y is
called (sss) if

(1) e, € YwithreN

(2) Let u=(u,)eC™, v=(v,) €V, and |u,|<|v,|, for
every r € IN, then u € Y. This means Y be solid

(3) If (u,),, €Y, then (uy,5)) € Y, wherever [r/2] indi-

cates the integral part of r/2

Definition 5 [35]. A subspace of the (sss) Y, is named a pre-
modular (sss) if there is a function 7 : Y — [0,00) confirming
the conditions:

(i) 7(y) =0 for each y € Y and 7(y) =0 & y =0, where
0 is the zero element of Y

(ii) There exists a > 1 such that 7(yy) < a|y|t(y), for all
yeY,andneC

(iii) For some b>1, 7(y +z) <b(r(y) + 7(2)), for every
y,z€Y

(i) Iy, | <[z, with r € N implies ((,)) < 7((z,))
(v) For some by = 1, 7((y,)) £ 7((y,5)) < bor((3,)

(vi) If y=(y,):2, € Y and d > 0, then there is 7, € N with
() ) <d

(vii) There is t >0 with 7(v,0,0,0, --) >t | v | 7(1,0,0,0,
--+), foranyve C

The (sss) Y, is known as prequasi normed (sss) if 7
administers the parts (i)-(iii) of Definition 5 and when the
space Y is complete under 7, then Y, is named a prequasi
Banach (sss).

Theorem 6 [35]. A prequasi norm (sss) Y, if it is premodular
(sss).

The inequality [36], |a; + b;|" < H(|a,|" + |b;|"), where
;>0 for all i € N, H=max {1,2"'} and h = sup,q,, will be
used in the sequel.
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3. Main Results

3.1. Prequasi Norm on €, (A", ). In this section, we explain
the conditions on the Orhcz backward generalized difference
sequence space to form premodular Banach (sss).

Definition 7. The backward generalized difference A, is
named an absolute nondecreasing, if |x; | < |y, |, forall i € N,
then |An+1|x ||<|An+1 |ylH

Theorem 8. Let y be an Orlicz function fulfilling the &, -con-
dition and A}, be an absolute nondecreasing, then the space

(¢,(A%;)), can be a premodular Banach (sss), where

0
Z n+1

Proof. (1-i) Assume v, w € €, (A7,

n+1

y(Ara)- (8)

). Since ¥ can be nonde-

creasing, convex, agreeable 8 -condition, and A, can be
an absolute nondecreasing, then there is b > 0 such that

(vw) = Y y(|Ar v+ wi)

i=0
< 2 V(AL + 147w
©)
1 00 (o)

= 5 le/ 2|An+1|v || + ZV/ 2|An+1|w H

i=0 i=0
< g(‘r(v) +7(w)) <B(7(v) + 7(w)) < 00,

for some B=max {1, (b/2)}. Then, v+w € ¢, (A7)

(1) (1-ii) Suppose A € C and v € €, (A}.). Since y is ful-
filling the §,-condition, we obtam

ZV’ |An+1|Aer <d|MZV/ |An+l|vr||)

< D[A|7(v) < o0,

(10)

where D =max {1,d}. Then, Ave¢,(A},). So, from parts
(1-i) and (1-ii), the space ¢ (Am ) is linear. Since e, € e

n+1

e, ce, (A7), forevery r e ]N and g > 1, hence, e, € £ (An+1)

for each r € N.
(2) Let |x;[<|y;|, for every ieN and yet, ar.

Since y is nondecreasing and A}, is an absolute non-
decreasing, therefore, we get

[ee]

T(x) = ZV/ n+1|xt||

i=0

2w Arlyill) =7(y) < o0, (11)
i=0

hence x € ¢, (47.))

(3) Suppose (v,) € £, (A},), one has

()= (1

)<sz AT 7, 1) =27 (v),
(12)

n+1

then (vi,;) €, (A7)

(i) Evidently, 7(w) >0 and 7(w) =0 w=0

(ii) There is D> 1 where 7(qw) <D |# | 7(w), for every
wee,(4),)andneC

(iii) For some B>1, we obtain 7(v+w)<B(r(v)+7
(w)), for all v,wee, (A7)

(iv) Plainly from (2).
(v) From (3), we have that by=2>1
(vi) It is apparent that F = ¢, (A7)

(vii) Since y is verifying the §,-condition, there is {
with 0<¢<y(lnl)/In] such that 7(#,0,0,0, )
>{|n]7(1,0,0,0,---), for each ##0 and >0, if

n=0

Therefore, the space (£,(A}};)) is premodular (sss).
To show that (€,(A};)) is a premodular Banach (sss),
Suppose x' = (x{),°, is a Cauchy sequence in (€, (A%1))

0
then for all € € (0, 1), there is i, € N such that for all 4, j > i,
we get

x—x] Zl//(

=) <ve.  (13)

n+1

Since v is nondecreasing; hence, for i, j > i, and k € N, we
obtain

x/H<8 (14)

n+1 }xk| n+1

Hence, (A7, Ix’ | ) is a Cauchy sequence in C for fixed
keN, so hm]HOOAon] A X} for fixed k € N. Therefore,

7(x' = x") < y(e), for each i>i,. Finally, to explain that x°
€¢,(Ay,,), we have

T(x%) =7 (x" - x" +x") < B(r(x" - x°) + 7(x")) <00.

(15)

So, x” € £, (Ay,,). This implies that (€, (A nv1))_ is a pre-
modular Banach (sss).
Taking into consideration (Theorem 6), we be over the

following theorem.



Theorem 9. If y is an Orlicz function satisfying the §, -condi-
tion and A, is an absolute nondecreasing, then the space
(€,(A%,)), is prequasi Banach (sss), where

[ee]

7(x) = Z (14071

=0

), forallx € €, (A, ). (16)

Corollary 10. If 0< p < oo and A}, is an absolute nonde-
creasing, then (€,(A},))_is a premodular Banach (sss), where

( )‘Zi: n+1|pr foralle(’,( n+1>

4. Bounded Multiplication Operator on ¢, (A7) ))

Here and after, we explain some geometric and topological
structures of the multiplication operator reserve on ¢ ( U

Definition 11. Let k € CN N ¢, and W be a prequasi normed
(sss). An operator V,: W_— W_ is named multiplication
operator if V, w=xw = (k,w, ), € W, for everywe W.If V,
€ B(W), we call it a multiplication operator generated by .

Theorem 12. If k € CN, y is an Orlicz function verifying the
0,-condition, and A, is an absolute nondecreasing, then x
€ty if and only if, V., € B(E, (A2,,).), where T(x) = Y2y

(145 1|, 11), for each x € € (AZ'L)

Proof. Assume the conditions can be satisfied. Let x € £_,. So,

there is € > 0 with |«, | <e, for each r € N, for x € (¢, (A;"H)

Since A7, is an absolute nondecreasing and y is nondecreas-
ing verifying the &,-condition, then

T(ka) = T(Kx) ZV/ |An+1 |Kr|‘xr|)|)
< D WA (elx,) <d£Zw (147 %,1]) < Dz(x),
r=0

(17)

where D=max {1,de}. This implies V, €3B(¢,(4},),).
Inversely, suppose that V, € B(¢, (4}},),). Let us suppose k
¢ £, hence, forall j € N, there is i; € N so as to K;, > j. Since

A7, is an absolute nondecreasing and v is nondecreasing,
one has

(Vi) =r(e,) =((5() )"
= S vl (1 (o) )) = (|2} )

> (1 lil) = v (A5 bl (e )-

(18)

This proves that V, ¢ B(¢,(A7.,),). Therefore, « € £,.
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Theorem 13. Let k€ CN and (€ v(A541)), be a prequasi
normed (sss), with T(x):zr_ol//(|An+1|xr||), for all xet,
(A7 ). Then, |k, | =1, for every reN, if and only if,

V. is an isometry.

Proof. Presume |k, | =1, for each r € N, we have

T(Vx)=r1

—~

Kx) = 7((K,%,)2)

RZAR ) (19)

v([Analx ) = 7(x),

I
Mg

-
Il

I
Mg

0

<
Il

for each xe(t,(Ay,)) . Therefore, V
Inversely, suppose that |1c | <1, for some i=i,, given that
A}, is an absolute nondecreasing and y is nondecreasing,
we get

« 18 an 1sometry.

= 21//( A:‘+1<|Kr| (eio)r )D (20)
< 21//( AT | (&), ) =7(e;)

While [«; | > 1, we can show that 7(Vie; ) > 7(e; ). As a
result, in both cases, we obtain a contradiction. Therefore,
|x,| =1, for all re N.

5. Approximable Multiplication Operator

on ¢ (Azqﬂ)

In this section, we investigate the sufficient conditions
on the Orlicz backward generalized difference sequence
space equipped with prequasi norm 7 so that the multi-
plication operator acting on ¢, (A7) is an approximable

n+1
and compact.
By card(A), we denote the cardinality of the set A.

Theorem 14. If x € CN and (¢ y(A541))_ is a prequasi normed

(s5), where 7(x) = S w405 ), for all x€e,(aT,),
then V€ Y((¢,(47%,)).) if and only if (x,)%%, € ¢,

Proof. Let V, € Y'((£,(4}%1)) )- So, V. € B.((£,(4};)) ) to

n+1
show that (k, )72, € ¢o- Assume (k,)12p ¢ co» therefore there is
8>0 so that Ag={reN: |x,|>} has card(A;) = co. Sup-
pose a; € Ag, for each i € N, then {e, : a; € A} is an infinite
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bounded set in (€, (4}},))_. Suppose

(raa=re) el o) e (el ()
, w( % (@), = () )]])
v(janalo((e), = () )]])

8ea, - 6eaj>,

/N

Am

n+1

I
D18

0

Am

n+1

Y
18

i
o

T

/N

(21)

: a; € By} € £, which
cannot have a convergent subsequence under V. This gives
that V, ¢ B.((€,(4}})),)- Then, V, ¢ Y'((¢ (A’” )),), and

n+1
isooki = 0. Contrarily,
assume lim, ,x; =0, then for all >0, the set A;={ieN
: |x;]=0} has card (Ag) < 00. So, for all & > 0, the space

((ew(ATH))T)Aa ={x=(x)€

is finite dimensional. Then, V| (£, (4},

n+1

for every a;, a; € As. This proves {e,

this gives a contradlctlon So, lim;

ch) (22)

) )A is a finite
S

rank operator. For all i € N, illustrate x; € CN by

Kj’ jGAl_
(Ki)j: Y . (23)
0, otherwise.
Evidently, V. has rank (V. ) < coas dim ((¢€,(47},)) )A _

< 00, for all i € N. Hence, since A}, is an absolute nondecreas-
ing and v is convex and nondecreasing, we obtain

(V= V) = T(((Kj - (Ki)j)xj)zo)

X CA(CRONE])
PRI CA(CRONE])
e 2 w(jana(](s=0,)5)])
= S w(an ) < %f (1475
J0.j¢Ay j= 0,]$A%
<1 Zw (A2 ) = 2o,
(24)

This gives that ||V, - V, || < 1/i, and that V is a limit of
finite rank operators. So, V, is an approximable operator.

Theorem 15. Pick up x € CN and (¢ v(A%11)), be a prequasi

normed (sss), where T(x) = 0 01//(|An+1|x,|\), for every x €

5
e, (4,). Therefore, V, €B.((¢,(4%,)) ), if and only if,
(k)i € <o

Proof. Clearly, since every approximable operator is compact.

Corollary 16. If k € CN, v is an Orlicz function satisfying the
0,-condition, and A, is an absolute nondecreasing, then

B,((8,(47,)), )< B((e, (A7), ). where 7(x) = X2y (147,
b 1), for all x € €, (A7 ).

Proof. In view of I that is a multiplication operator on
(€,(4%1)), generated by x=(1,1,). So, I¢ B.((€,(4%)),)
and T < B((¢, (A7) ).

6. Fredholm Multiplication Operator
on £, (Al)

In this section, we introduce the sufficient conditions on the
sequence space ¢, (A},,) equipped with prequasi norm 7 so

n+1
that the multiplicatlon operator acting on it has closed range,
invertible, and Fredholm.

Theorem 17. Let x € CY, (¢, (4%41)) » be prequasi Banach

r= 01//(|An+1|x H) fOT all xet ( n+1)
and V, € B((¢,(4}},)) )- Then, k be bounded awayfrom zero

on (ker (x))", if and only if, R(V

(sss), where 7(x)=

) is closed.

Proof. Suppose the sufficient condition be satisfied, so, there is
€ >0 with |x;| > &, for every i € (ker (x))", to prove that R(V,)
is closed. Let d be a limit point of R(V, ). Hence, there is V x;
in (¢, (A7,,)) » for each i € N'so thatlim;_,V,x; = d. Clearly,
(Vex;) is a Cauchy sequence. As A}, is an absolute nonde-
creasing and vy is nondecreasing, we  have

(VX - VKxj) = Ozo:t//(

Il
|
Mg
<
~

[\
Mg ¢
"<
~—

:1"+1(|Kr|

0=, 1))

1]
Mg ]
<

(25)
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where

(x;),, 1€ (ker (k))°

i), = ' . (26)
0, r¢ (ker (x))
This gives that (y;) is a Cauchy sequence in (£, (A7) -

As (€,(47;)), is complete, there is x € (EW(AZ’H))T s0 that
lim,_, .y, = x. As V., is continuous, then lim; , V., y;, =
Although lim; ,  V x; =lim; , V. y, =d, therefore, V. .x =d.
So, d € R(V,). This 1mphes that R(V,) is closed. Inversely,

assume R(V,) be closed, hence, V, be bounded away

m .
from zero on ((¢,(4,)) )(ker W So, there is €>0 so

that 7(V, x) >er(x), for every x e ((QV,(A,[’”H))T)O(er )

Let B={re (ker (x))" : |x,|<e} as A", is an absolute
nondecreasing and y is nondecreasing verifying the §,-con-
dition, if B # ¢; then for i, € B, one has

(@),)7) = 2 v(]a
”0>rH) <det(e, ),

(en,),

)

n+1

(27)

for some d > 1. This implies a contradiction. Therefore, B = ¢
so that |k,| > ¢, for each r € (ker (x))“. This completes the
proof of the theorem.

Theorem 18. Let x € CN and (¢,(A%,,)), be a prequasi
Banach (sss), with T(w) =2 01//(|An+1|w [|), for every we
€, (Ay, ). There are b>0 and B>0 so that b<x, <B, for
every r €N, if and only if, V., € B((€,(4};)) ) be invertible.

n+1

Proof. Assume the conditions be established, define y € CN
by y,=1/x,, from Theorem 12, we obtain V,,V, €B
((e,(4%1)),) and V.V, =V, .V, =1 Therefore, V, is the
inverse of V Conversely, let V. be invertible. Hence, R(V,)

= ((&,(4741)),) - This gives R(V
Theorem 17, there is b>0 so that |k, |>b, for each re
(ker (x))". Now, ker (k) =g, else x, =0, for several r, €N,
we have e, €ker (V,). This implies a contradiction, as
ker (V) is trivial. Therefore, |x,|>a, for every reIN.
Because V, is bounded, so from Theorem 12, there is B

>0 so that |k, | <B, for each r € N. Hence, we have proved
that b<|x, | <B, for every r e N.

) which is closed. From

Theorem 19. Pick up x € CN and (£ v(A%41)), be a prequasi
Banach (sss), where T(w) = Y12, 0w(|A L), for every w e
e, (A%). Then, V€ B((€,(4}.,))_) be the Fredholm opera-

n+1

tor, if and only if, (i) card (ker (k)) < 0o and (ii) |x, | ¢, for
each r € (ker (x))".
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Proof. Assume V,_ be Fredholm, Let card (ker (x)) = co.
Therefore, e, € ker (V,), for every n € ker (k). As e,’s is line-
arly independent, this implies card (ker (V) = co. This gives
a contradiction. Hence, card (ker (x)) < co. From Theorem
17, condition (ii) is verified. Next, if the necessary conditions
are satisfied, to prove that V_ is Fredholm, from Theorem 17,
condition (ii) implies that R(V, ) is closed. Condition (i) gives
that dim (ker (V,)) < 0o and dim ((R(V,))‘) < 00. So, V, is
Fredholm.
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