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In this paper, a nonlinear integral equation related to infectious diseases is investigated. Namely, we first study the existence and
uniqueness of solutions and provide numerical algorithms that converge to the unique solution. Next, we study the lower and
upper subsolutions, as well as the data dependence of the solution.

1. Introduction

We consider the nonlinear integral equation

x tð Þ =
Yn
i=1

f i t, x tð Þð Þ +
ðt
t−τi

gi s, x sð Þð Þds
 !

, t ∈ℝ, ð1Þ

where n ≥ 2 is an integer and τi > 0, i = 1, 2,⋯, n. In the case
n = 1 and f1 ≡ 0, (1) reduces to

x tð Þ =
ðt
t−τ1

g1 s, x sð Þð Þds t ∈ℝ: ð2Þ

The integral equation (2) models the spread of certain
infectious diseases with periodic contact rate that varies sea-
sonally (see [1]). Several results related to certain mathemat-
ical aspects of (2) have been obtained by many authors (see,
e.g., [1–9] and the references therein). In particular, in [3],
using the Picard operator technique, the integral equation
(2) was investigated regarding the existence and uniqueness
of solutions and periodic solutions, lower and upper subsolu-
tions, the data dependence, and the differentiability of solu-
tions with respect to a parameter.

In this paper, we are concerned with the integral equation
(1). We first investigate the existence and uniqueness of solu-
tions and provide numerical algorithms that converge to the
unique solution. Next, we study the lower and upper subsolu-
tions, as well as the data dependence of the solution.

The next section is devoted to the main results of this
paper. Namely, in Subsection 2.1, we fix some notations that
will be used throughout this paper. In Subsection 2.2, we pro-
vide some lemmas that will be used in the proofs of our main
results. In Subsection 2.3, the existence and uniqueness of
solutions and periodic solutions are derived using the Banach
contraction principle. Moreover, an iterative algorithm based
on Picard iteration for approximating the unique solution is
provided. In Subsection 2.4, a Prešic′-type iterative algorithm
that converges to the unique solution is provided. Lower and
upper subsolutions type results are obtained in Subsection
2.5. Finally, in Subsection 2.6, the data dependence of solu-
tions is studied.

2. Results

We first fix some notations.

2.1. Notations. Let I = ½α, β� and J = ½m,M�, where 0 < α < β
and 0 <m <M. Let

C ℝ × I, Jð Þ = f : ℝ × I ⟶ J , f is continuousf g,
X = C ℝ, Ið Þ = f : ℝ⟶ I, f is continuousf g:

ð3Þ

The functional space X is equipped with the norm ∥·∥X ,
where
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xk kX = sup
t∈ℝ

x tð Þj j, x ∈ X: ð4Þ

Notice that ðX, k·kXÞ is a Banach space.

2.2. Preliminaries. The following lemma will be useful later. It
can be easily proved by induction.

Lemma 1. Let fang and fbng be two real sequences. Then, for
all n ≥ 2,

a1a2 ⋯ an − b1b2 ⋯ bnj j ≤ a2a3 ⋯ anj j a1 − b1j j
+ b1j j a3a4 ⋯ anj j a2 − b2j j
+ b1b2j j a4a5 ⋯ anj j a3 − b3j j+⋯+ anj j b1b2 ⋯ bn−2j j
� an−1 − bn−1j j + b1b2 ⋯ bn−1j j an − bnj j:

ð5Þ

We recall the following result due to Prešic′ [10].

Lemma 2. Let ðX, dÞ be a complete metric space, k a positive
integer and φ : Xk ⟶ X a mapping satisfying the following
condition:

d φ x1, x2,⋯,xkð Þ, φ x2, x3,⋯,xk+1ð Þð Þ
≤ q1d x1, x2ð Þ + q2d x2, x3ð Þ+⋯+qkd xk, xk+1ð Þ, ð6Þ

for all x1,⋯, xk+1 ∈ X, where q1, q2,⋯, qk are nonnegative
constants such that q1 + q2 +⋯+qk < 1. Then,

(i) There exists a unique x∗ ∈ X such that

x∗ = φ x∗, x∗,⋯,x∗ð Þ: ð7Þ

(ii) For all x1, x2,⋯, xk ∈ X, the sequence fxpg ⊂ X
defined by

xp+k = φ xp, xp+1,⋯,xp+k−1
� �

, p ≥ 1 ð8Þ

is convergent to x∗.

For more details about the above result, we refer to [11–15].

2.3. Existence and Uniqueness Result. Problem (1) is investi-
gated under the following conditions:

(C1) f i, gi ∈ Cðℝ × I, JÞ, i = 1, 2,⋯, n.
(C2) For all i = 1, 2,⋯, n, there exists a constant Lf i

> 0
such that for all t ∈ℝ,

f i t, uð Þ − f i t, vð Þj j ≤ Lf i
u − vj j, u, v ∈ I: ð9Þ

(C3) For all i = 1, 2,⋯, n, there exists a constant Lgi > 0
such that for all t ∈ℝ,

gi t, uð Þ − gi t, vð Þj j ≤ Lgi u − vj j, u, v ∈ I: ð10Þ

(C4) Mn−1ðQn−1
i=1 ðτi + 1ÞÞ∑n

k=1ðLf k
+ LgkτkÞ < 1.

(C5) α/mn ≤
Qn

i=1ðτi + 1Þ ≤ β/Mn.
We have the following existence and uniqueness result.

Theorem 3. Under conditions (C1)–(C5), problem (1) admits
one and only one solution x∗ ∈ X. Moreover, for all x0 ∈ X, the
sequence fxpg ⊂ X defined by

xp+1 tð Þ =
Yn
i=1

f i t, xp tð Þ� �
+
ðt
t−τi

gi s, xp sð Þ� �
ds

 !
, t ∈ℝ

ð11Þ

converges uniformly to x∗.

Proof. Let us define the operator T : X⟶ Cðℝ,ℝÞ by

T xð Þ tð Þ =
Yn
i=1

Ti xð Þ tð Þ, x ∈ X, t ∈ℝ, ð12Þ

where

Ti xð Þ tð Þ = f i t, x tð Þð Þ +
ðt
t−τi

gi s, x sð Þð Þ ds, i = 1, 2,⋯, n:

ð13Þ

By (C 1), for all i = 1, 2,⋯, n and t ∈ℝ, one has

Ti xð Þ tð Þ ≤M +
ðt
t−τi

M ds = τi + 1ð ÞM, ð14Þ

which yields

T xð Þ tð Þ ≤Mn
Yn
i=1

τi + 1ð Þ: ð15Þ

Then, using (C5), one deduces that

T xð Þ tð Þ ≤ β, t ∈ℝ: ð16Þ

Similarly, by (C 1), one has

Ti xð Þ tð Þ ≥m +
ðt
t−τi

m ds = τi + 1ð Þm, ð17Þ

which yields

T xð Þ tð Þ ≥mn
Yn
i=1

τi + 1ð Þ: ð18Þ

Hence, using (C5), one obtains

T xð Þ tð Þ ≥ α, t ∈ℝ: ð19Þ
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Therefore, it follows from (16) and (19) that

TX ⊂ X: ð20Þ

Moreover, the set of solutions to the integral equation (1)
coincides with the set of fixed points of the operator T . Next,
by Lemma 1, for all x, y ∈ X and t ∈ℝ, one has

T xð Þ tð Þ − T yð Þ tð Þj j =
Yn
i=1

Ti xð Þ tð Þ −
Yn
i=1

Ti yð Þ tð Þ
�����

�����
≤ T2 xð Þ tð ÞT3 xð Þ tð Þ⋯ Tn xð Þ tð Þ T1 xð Þ tð Þ − T1 yð Þ tð Þj j

+ T3 xð Þ tð ÞT4 xð Þ tð Þ⋯ Tn xð Þ tð ÞT1 yð Þ tð Þ T2 xð Þ tð Þ − T2 yð Þ tð Þj j
+ T4 xð Þ tð ÞT5 xð Þ tð Þ⋯ Tn xð Þ tð ÞT1 yð Þ tð ÞT2 yð Þ tð Þ
� T3 xð Þ tð Þ − T3 yð Þ tð Þj j+⋯+T1 yð Þ tð ÞT2 yð Þ tð Þ⋯ Tn−1 yð Þ tð Þ
� Tn xð Þ tð Þ − Tn yð Þ tð Þj j:

ð21Þ

On the other hand, by (C2) and (C3), for all i = 1, 2,⋯, n,
one has

Ti xð Þ tð Þ − Ti yð Þ tð Þj j ≤ f i t, x tð Þð Þ − f i t, y tð Þð Þj j
+
ðt
t−τi

gi s, x sð Þð Þ − gi s, y sð Þð Þj jds ≤ Lf i
x tð Þ − y tð Þj j

+ Lgi

ðt
t−τi

x sð Þ − y sð Þj jds ≤ Lf i
+ Lgiτi

� �
x − yk kX :

ð22Þ

Therefore, using (14), (21), and (22), one obtains

∣T xð Þ tð Þ − T yð Þ tð Þ∣ ≤Mn−1 Yn−1
i=1

τi + 1ð Þ
 !

〠
n

k=1
Lf k

+ Lgkτk
� �

x − yk kX ,

ð23Þ

which yields

∥Tx − Ty∥X ≤Mn−1 Yn−1
i=1

τi + 1ð Þ
 !

〠
n

k=1
Lf k

+ Lgkτk
� �

∥x − y∥X , x, y ∈ X:

ð24Þ

Finally, using (C 4), (20) and (24), the conclusion of the
theorem follows from the Banach contraction principle.

Now, we consider problem (1) under the additional
condition:

(C6) There exists ω > 0 such that for all i = 1, 2,⋯, n,

f i t + ω, uð Þ = f i t, uð Þ, gi t + ω, uð Þ = gi t, uð Þ, t ∈ℝ, u ∈ I:
ð25Þ

Theorem 4. Under conditions (C 1)–(C 6), problem (1) admits
one and only one ω-periodic solution x∗ ∈ X. Moreover, for
any ω-periodic function x0 ∈ X, the sequence fxpg defined by
(11) converges uniformly to x∗.

Proof. Let T : X ⟶ X be the operator defined by (12).
Notice that from the proof of Theorem 3, we know that
under conditions (C 1)–(C5), one has TX ⊂ X. Let V be the
closed subset of X (with respect to the norm k·kX) defined by

V = x ∈ X : x t + ωð Þ = x tð Þ, t ∈ℝf g: ð26Þ

For all x ∈ V and t ∈ℝ, using (C6), one obtains

T xð Þ t + ωð Þ =
Yn
i=1

f i t + ω, x t + ωð Þð Þ +
ðt+ω
t+ω−τi

gi s, x sð Þð Þ ds
 !

=
Yn
i=1

f i t, x tð Þð Þ +
ðt
t−τi

gi σ + ω, x σ + ωð Þdσð Þ
 !

=
Yn
i=1

f i t, x tð Þð Þ +
ðt
t−τi

gi σ, x σð Þð Þdσ
 !

= T xð Þ tð Þ:

ð27Þ

Hence, one has TV ⊂V . On the other hand, since V ⊂ X,
it follows from (24) that

∥Tx − Ty∥X ≤Mn−1 Yn−1
i=1

τi + 1ð Þ
 !

〠
n

k=1
Lf k

+ Lgkτk
� �

∥x − y∥X , x, y ∈ V :

ð28Þ

Then, the conclusion of the theorem follows from the
Banach contraction principle.

2.4. Prešic′-Type Approximation of the Unique Solution. Let
us consider the integral equation (1) under conditions (C 1
)–(C 5). Notice that by Theorem 3, (1) admits one and only
one solution x∗ ∈ X.

Theorem 5. Under conditions (C 1)–(C 5), for any x1, x2,⋯,
xn ∈ X, the sequence fxpg defined by

xp+n tð Þ = f1 t, xp tð Þ� �
+
ðt
t−τ1

g1 s, xp sð Þ� �
ds

 !

� f2 t, xp+1 tð Þ� �
+
ðt
t−τ2

g2 s, xp+1 sð Þ� �
ds

 !
⋯

� f n t, xp+n−1 tð Þ� �
+
ðt
t−τn

g2 s, xp+n−1 sð Þ� �
ds

 !
,

p ≥ 1, t ∈ℝ
ð29Þ

converges uniformly to x∗.

Proof. Consider the function φ : Xn ⟶ X defined by

φ x1, x2,⋯,xnð Þ tð Þ =
Yn
i=1

f i t, xi tð Þð Þ +
ðt
t−τi

g1 s, xi sð Þð Þds
 !

, t ∈ℝ,

ð30Þ
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that is,

φ x1, x2,⋯,xnð Þ tð Þ =
Yn
i=1

Ti xið Þ tð Þ, ð31Þ

where for all i = 1, 2,⋯, n, the operator Ti is defined by (13).
Notice that from the considered assumptions, one has φðXnÞ
⊂ X, so φ is well-defined. On the other hand, using Lemma
1, for all x1, x2,⋯, xn, xn+1 ∈ X and t ∈ℝ, on has

φ x1, x2,⋯,xnð Þ tð Þ − φ x2, x3,⋯,xn+1ð Þ tð Þj j

=
Yn
i=1

Ti xið Þ tð Þ −
Yn
i=1

Ti xi+1ð Þ tð Þ
�����

�����
≤ T2 x2ð Þ tð Þ⋯ Tn xnð Þ tð Þ T1 x1ð Þ tð Þ − T1 x2ð Þ tð Þj j

+ T1 x2ð Þ tð ÞT3 x3ð Þ tð Þ⋯ Tn xnð Þ tð Þ T2 x2ð Þ tð Þ − T2 x3ð Þ tð Þj j
+⋯+T1 x2ð Þ tð Þ⋯ Tn−1 xnð Þ tð Þ Tn xnð Þ tð Þ − Tn xn+1 tð Þðj j:

ð32Þ

Next, using (14), it holds that

φ x1, x2,⋯,xnð Þ tð Þ − φ x2, x3,⋯,xn+1ð Þ tð Þj j

≤Mn−1 Yn−1
i=1

τi + 1ð Þ
 !

〠
n

k=1
Tk xkð Þ tð Þ − Tk xk+1 tð Þðj j: ð33Þ

On the other hand, under the considered assumptions, for
all k = 1, 2,⋯, n, one has

Tk xkð Þ tð Þ − Tk xk+1 tð Þðj j ≤ Lf k
+ τkLgk

� �
xk − xk+1k kX : ð34Þ

Hence, one deduces that

φ x1, x2,⋯,xnð Þ − φ x2, x3,⋯,xn+1ð Þk kX
≤Mn−1 Yn−1

i=1
τi + 1ð Þ

 !
〠
n

k=1
Lf k

+ τkLgk

� �
xk − xk+1k kX :

ð35Þ

Finally, using (C4) and Lemma 2, the desired result
follows.

2.5. Lower and Upper Subsolutions.We consider problem (1)
under conditions (C1)–(C5). We recall that by Theorem 3,
problem (1) admits one and only one solution x∗ ∈ X. We
suppose also that

For all i = 1, 2,⋯, n and t ∈ℝ, the functions

f i t, ·ð Þ: I ⟶ J and gi t, ·ð Þ: I ⟶ J ð36Þ

are nondecreasing.

Theorem 6. Suppose that conditions (C 1)–(C 5) and (C6′) are
satisfied. If x ∈ Cðℝ, IÞ satisfies

x tð Þ ≤
Yn
i=1

f i t, x tð Þð Þ +
ðt
t−τi

gi s, x sð Þð Þds
 !

, t ∈ℝ, ð37Þ

then

x tð Þ ≤ x∗ tð Þ, t ∈ℝ: ð38Þ

Proof. Let T : X⟶ X be the operator defined by (12). Then,
(39) is equivalent to

x tð Þ ≤ T xð Þ tð Þ, t ∈ℝ: ð39Þ

We shall prove that T is a nondecreasing operator, that is,

u, v ∈ X, u tð Þ ≤ v tð Þ, t ∈ℝ⟹ T uð Þ tð Þ ≤ T vð Þ tð Þ, t ∈ℝ:

ð40Þ

Let u, v ∈ X be such that

u tð Þ ≤ v tð Þ, t ∈ℝ: ð41Þ

By (C6′), for all i = 1, 2,⋯, n and t ∈ℝ, one obtains

0 ≤ f i t, u tð Þð Þ +
ðt
t−τi

gi s, u sð Þð Þds ≤ f i t, v tð Þð Þ +
ðt
t−τi

gi s, v sð Þð Þds,

ð42Þ

which yields

Yn
i=1

f i t, u tð Þð Þ +
ðt
t−τi

gi s, u sð Þð Þds
 !

≤
Yn
i=1

f i t, v tð Þð Þ +
ðt
t−τi

gi s, v sð Þð Þds
 !

,
ð43Þ

that is,

T uð Þ tð Þ ≤ T vð Þ tð Þ: ð44Þ

This proves (40). Next, by (39), it holds that

x tð Þ ≤ T xð Þ tð Þ ≤ T2 xð Þ tð Þ ≤⋯ ≤ Tp xð Þ tð Þ, ð45Þ

for all nonnegative integer p and t ∈ℝ, where

T0 xð Þ tð Þ = x tð Þ andTp+1 xð Þ tð Þ = T Tp xð Þð Þ tð Þ: ð46Þ

Hence, it holds that

x tð Þ ≤ xp tð Þ, t ∈ℝ, ð47Þ

where fxpg is the sequence defined by (11) with x0 = x.
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On the other hand, by Theorem 3, one has

lim
p→∞

xp tð Þ = x∗ tð Þ, t ∈ℝ: ð48Þ

Therefore, passing to the limit as p⟶∞ in (47), (38)
follows.

(A1) For j = 1, 2, 3 and i = 1, 2,⋯, n, let f ðjÞi , gðjÞ
i ∈ Cðℝ

× I, JÞ. We suppose that
(A2) For all i = 1, 2,⋯, n and j = 1, 2, 3, there exists a

constant Lf ð jÞi
> 0 such that for all t ∈ℝ,

f jð Þ
i t, uð Þ − f jð Þ

i t, vð Þ
��� ��� ≤ L

f jð Þ
i
u − vj j, u, v ∈ I: ð49Þ

For all i = 1, 2,⋯, n and j = 1, 2, 3, there exists a constant
L
gð jÞÞi

> 0 such that for all t ∈ℝ,

g jð Þ
i t, uð Þ − g jð Þ

i t, vð Þ
��� ��� ≤ L

g jð Þ
i
u − vj j, u, v ∈ I: ð50Þ

(A3) Mn−1ðQn−1
i=1 ðτi + 1ÞÞ∑n

k=1ðLf ð jÞk
+ L

gð jÞk
τkÞ < 1, j = 1, 2

, 3.
(A4) α/mn ≤

Qn
i=1ðτi + 1Þ ≤ β/Mn.

(A5) For all i = 1, 2,⋯, n and t ∈ℝ, the functions

f 2ð Þ
i t, ·ð Þ: I ⟶ J and g 2ð Þ

i t, ·ð Þ: I ⟶ J , ð51Þ

are nondecreasing.
(A6) For all i = 1, 2,⋯, n, t ∈ℝ and u ∈ I,

f 1ð Þ
i t, uð Þ ≤ f 2ð Þ

i t, uð Þ ≤ f 3ð Þ
i t, uð Þ and g 1ð Þ

i t, uð Þ ≤ g 2ð Þ
i t, uð Þ ≤ g 3ð Þ

i t, uð Þ:
ð52Þ

Notice that by (A 1)–(A 4), it follows from Theorem 3 that
for all j = 1, 2, 3, the integral equation

x tð Þ =
Yn
i=1

f jð Þ
i t, x tð Þð Þ +

ðt
t−τi

g jð Þ
i s, x sð Þð Þds

 !
, t ∈ℝ, ð53Þ

admits one and only one solution xðjÞ ∈ X. Moreover, for all

j = 1, 2, 3 and xðjÞ0 ∈ X, the sequence fxðjÞp g ⊂ X defined by

x jð Þ
p+1 tð Þ =

Yn
i=1

f jð Þ
i t, x jð Þ

p tð Þ
� �

+
ðt
t−τi

g jð Þ
i s, x jð Þ

p sð Þ
� �

ds

 !
, t ∈ℝ

ð54Þ

converges uniformly to xðjÞ.

Theorem 7. Under conditions (A1)–(A6), one has

x 1ð Þ tð Þ ≤ x 2ð Þ tð Þ ≤ x 3ð Þ tð Þ, t ∈ℝ: ð55Þ

Proof. For all j = 1, 2, 3, let TðjÞ : X⟶ X be the operator
defined by

T jð Þ xð Þ tð Þ =
Yn
i=1

f jð Þ
i t, x tð Þð Þ +

ðt
t−τi

g jð Þ
i s, x sð Þð Þds

 !
, x ∈ X, t ∈ℝ:

ð56Þ

From condition (A 5), the operator T
ð2Þ is nondecreasing,

that is,

u, v ∈ X, u tð Þ ≤ v tð Þ, t ∈ℝ⟹ T 2ð Þ uð Þ tð Þ ≤ T 2ð Þ vð Þ tð Þ, t ∈ℝ:

ð57Þ

Moreover, by (A6), one has

T 1ð Þ uð Þ tð Þ ≤ T 2ð Þ uð Þ tð Þ ≤ T 3ð Þ uð Þ tð Þ, u ∈ X, t ∈ℝ: ð58Þ

Let xð1Þ0 , xð2Þ0 , xð3Þ0 ∈ X be such that

x 1ð Þ
0 tð Þ ≤ x 2ð Þ

0 tð Þ ≤ x 3ð Þ
0 tð Þ, t ∈ℝ: ð59Þ

Hence, by (57), one obtains

T 2ð Þ x 1ð Þ
0

� �
tð Þ ≤ T 2ð Þ x 2ð Þ

0
� �

tð Þ ≤ T 2ð Þ x 3ð Þ
0

� �
tð Þ, t ∈ℝ: ð60Þ

On the other hand, by (58), one has

T 1ð Þ x 1ð Þ
0

� �
tð Þ ≤ T 2ð Þ x 1ð Þ

0
� �

tð Þ, t ∈ℝ, ð61Þ

T 2ð Þ x 3ð Þ
0

� �
tð Þ ≤ T 3ð Þ x 3ð Þ

0
� �

tð Þ, t ∈ℝ: ð62Þ

Therefore, using (60), (61), and (62), one deduces that

T 1ð Þ x 1ð Þ
0

� �
tð Þ ≤ T 2ð Þ x 2ð Þ

0

� �
tð Þ ≤ T 3ð Þ x 3ð Þ

0

� �
tð Þ, t ∈ℝ, ð63Þ

that is,

x 1ð Þ
1 tð Þ ≤ x 2ð Þ

1 tð Þ ≤ x 3ð Þ
1 tð Þ, t ∈ℝ: ð64Þ

Repeating the same argument, by induction, one deduces
that for all nonnegative integer p and t ∈ℝ,

x 1ð Þ
p tð Þ ≤ x 2ð Þ

p tð Þ ≤ x 3ð Þ
p tð Þ, ð65Þ

where fxðjÞp g, j = 1, 2, 3, is the sequence defined by (54).
Finally, passing to the limit as p⟶∞ in (65), the desired
result follows.

2.6. Data Dependence of Solutions. Suppose that conditions
(C1)–(C5) are satisfied. Then, by Theorem 3, the integral
equation admits one and only one solution x∗ ∈ X. Consider
now the perturbed problem

y tð Þ =
Yn
i=1

Fi t, y tð Þð Þ +
ðt
t−τi

Gi s, y sð Þð Þds
 !

, t ∈ℝ, ð66Þ
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where Fi,Gi ∈ Cðℝ × I, JÞ, i = 1, 2,⋯, n. Suppose that y∗ ∈ X
is a solution to the integral equation (66).

We have the following data dependence result.

Theorem 8. Suppose that for all i = 1, 2,⋯, n, there exist σi,
ηi > 0 such that

f i t, uð Þ − Fi t, uð Þj j ≤ σi, gi t, uð Þ −Gi t, uð Þj j ≤ ηi, t ∈ℝ, u ∈ I:
ð67Þ

Then,

x∗ − y∗k kX ≤
Mn−1 Qn−1

i=1 τi + 1ð Þ� �
∑n

k=1 σk + τkηkð Þ
1 −Mn−1 Qn−1

i=1 τi + 1ð Þ� �
∑n

k=1 Lf k
+ Lgkτk

� �h i :
ð68Þ

Proof. Let

S yð Þ tð Þ =
Yn
i=1

Si yð Þ tð Þ, t ∈ℝ, ð69Þ

where

Si yð Þ tð Þ = Fi t, y tð Þð Þ +
ðt
t−τi

Gi s, y sð Þð Þ ds, i = 1, 2,⋯, n:

ð70Þ

Then, for all t ∈ℝ, one has

x∗ tð Þ − y∗ tð Þj j = T x∗ð Þ tð Þ − S y∗ð Þ tð Þj j =
Yn
i=1

Ti x
∗ð Þ tð Þ −

Yn
i=1

Si y
∗ð Þ tð Þ

�����
�����,

ð71Þ

where the operator T is defined by (12). Next, by Lemma 1
and (14), one obtains

∣x∗ tð Þ − y∗ tð Þ∣ ≤ T2 x∗ð Þ tð Þ⋯ Tn x∗ð Þ tð Þ∣T1 x∗ð Þ tð Þ − S1 y∗ð Þ tð Þ∣
+ S1 y∗ð Þ tð ÞT3 x∗ð Þ tð Þ⋯ Tn x∗ð Þ tð Þ∣T2 x∗ð Þ tð Þ − S2 y∗ð Þ tð Þ∣
+⋯+S1 y∗ð Þ tð Þ⋯ Sn−1 y∗ð Þ tð Þ∣Tn x∗ð Þ tð Þ − Sn y∗ð Þ tð Þ∣

≤Mn−1 Yn−1
i=1

τi + 1ð Þ
 !

〠
n

k=1
Tk x∗ð Þ tð Þ − Sk y∗ð Þ tð Þj j:

ð72Þ

On the other hand, using (C2) and (C3) and (67), for all
k = 1, 2,⋯, n, one has

Tk x∗ð Þ tð Þ − Sk y∗ð Þ tð Þj j ≤ f k t, x∗ tð Þð Þ − Fk t, y∗ tð Þð Þj j
+
ðt
t−τk

gk s, x∗ sð Þð Þ −Gk s, y∗ sð Þð Þj jds

≤ f k t, x∗ tð Þð Þ − f k t, y∗ tð Þð Þj j + f k t, y∗ tð Þð Þ − Fk t, y∗ tð Þð Þj j
+
ðt
t−τk

gk s, x∗ sð Þð Þ − gk s, y∗ sð Þð Þj jds

+
ðt
t−τk

gk s, y∗ sð Þð Þ − Gk s, y∗ sð Þð Þj jds ≤ Lf k
x∗ − y∗k kX

+ σk + Lgkτk x∗ − y∗k kX + τkηk = Lf k
+ Lgkτk

� �
x∗ − y∗k kX

+ σk + τkηk:

ð73Þ

Hence, by (72), it holds that

x∗ − y∗k kX ≤Mn−1 Yn−1
i=1

τi + 1ð Þ
 !

� 〠
n

k=1
Lf k

+ Lgkτk
� �

x∗ − y∗k kX + σk + τkηk

h i
,

ð74Þ

which yields

1 −Mn−1 Yn−1
i=1

τi + 1ð Þ
 !

〠
n

k=1
Lf k

+ Lgkτk
� �" #

x∗ − y∗k kX

≤Mn−1 Yn−1
i=1

τi + 1ð Þ
 !

〠
n

k=1
σk + τkηkð Þ:

ð75Þ

Finally, by (C4), the desired result follows.
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