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This study is aimed at developing new criteria of the iterative nature to test the oscillation of neutral delay differential equations of
third order. First, we obtain a new criterion for the nonexistence of the so-called Kneser solutions, using an iterative technique.
Further, we use several methods to obtain different criteria, so that a larger area of the models can be covered. The examples
provided strongly support the importance of the new results.
1. Introduction

This study is concerned with developing new iterative criteria
to test the oscillation of solutions of neutral delay differential
equations NDDE of third order:

d
dl r lð Þ d2

dl2
z lð Þ

 !α !
+ q lð Þxα σ lð Þð Þ = 0, ð1Þ

where l ≥ l0, zðlÞ≔ xðlÞ + pðlÞxðτðlÞÞ is a corresponding func-
tion of x, α is a quotient of odd positive integers, r ∈ C1ðΤl0

,
ð0,∞ÞÞ, Ð∞l0 r−1/αðsÞds⟶∞ as l⟶∞, p ∈ CðΤl0

, ½0, p0�Þ,
p0 < 1 is a positive real number, q ∈ CðΤl0

, ½0,∞ÞÞ, τ, σ ∈ C1

ðΤl0
,ℝÞ, τðlÞ < l, σðlÞ < l, liml→∞τðlÞ = liml→∞σðlÞ =∞,

and Τl0
≔ ½l0,∞Þ.

By a solution of (1), we mean a nontrivial real function
x ∈ CðΤlx

,ℝÞ for all lx ≥ l0, which has the properties z, r1z′,
and r2ðr1z′Þ′ ∈ C1ðΤlx

,ℝÞ, and satisfies (1) on Τlx
. We only

consider those solutions of (1) which exist on some half-
line Τlx

and satisfy the condition sup fjxðlÞj: l ≥ l∗g > 0 for
any l∗ ∈ Τlx

.

If the solution x is either ultimately positive or ultimately
negative, then x is called nonoscillatory; otherwise, it is called
an oscillatory solution. The equation itself is termed oscilla-
tory if all its solutions oscillate. Solutions x whose corre-
sponding function z satisfies zðlÞz′ðlÞ < 0 are called Kneser
solutions. We denote the class of all Kneser solutions of (1)
with the symbol XK . Otherwise, XN denote to the class of
all positive solutions of (1) whose z satisfies zðlÞz′ðlÞ > 0.

Delay differential equations as a subclass of functional
differential equations take into account the dependence on
the system’s past history, which results in predicting the
future in a more reliable and efficient way. Neutral delay dif-
ferential equations arise in various phenomena including
problems concerning electric networks containing lossless
transmission lines (as in high-speed computers where such
lines are used to interconnect switching circuits), in the study
of vibrating masses attached to an elastic bar or in the solu-
tion of variational problems with time delays, or in the theory
of automatic control and in neuromechanical systems in
which inertia plays a major role, see [1–6].

For interesting methods, techniques, and results which are
concerned with the study of oscillation of third-order NDDEs,
we refer the reader to the works [7–16]. Furthermore, the
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studies [17–20] are concerned with the study of odd-order
DDEs.

At the beginning of any study of the oscillatory properties
of solutions of differential equations, it is easy to notice the
importance of classifying signs of derivatives of nonoscilla-
tory solutions. For the positive solutions, based on the canon-
ical condition

Ð∞
l0
r−1/αðsÞds⟶∞ as l⟶∞, it follows

from ([21], Lemma 1) that ðr1z′Þ′ > 0 and there are two pos-
sible cases for z′ðlÞ: either z′ðlÞ > 0 or z′ðlÞ < 0. By creating
conditions that ensure XN and XK are empty sets, we can
directly set the criteria for oscillation.

There are numerous results interested in finding condi-
tions that ensure class XN is empty, which include Hille
and Nehari types and Philos type. Baculikova and Dzurina
[7] established a condition of Hille and Nehari type and
proved that if
limsup
l→∞

ðl
l0

1
2α−1 ρ sð ÞQ sð Þ − 1 + pα0/τ0ð

α + 1ð Þα+

0
B@
liminf
l→∞

ð∞
l
q sð Þ σ

2α sð Þ
sα

ds > 2αð Þα
α + 1ð Þα+1 1 − p0ð Þα , ð2Þ

where p0 < 1 and r′ðlÞ > 0, then XN =∅. By comparison
principles, Baculikova and Dzurina [8] proved that if the
first-order DDE

y′ lð Þ + q lð Þ σ lð Þ − l0ð Þ2 1 − p σ lð Þð Þð Þ
2r1/α lð Þ

 !α

y σ lð Þð Þ = 0, ð3Þ

is oscillatory, then XN =∅. We can easily notice that the
delay argument τðlÞ has been neglected in (2) and (3). Other-
wise, by using the Riccati transformation, Thandapani and Li
[16] guaranteed that class XN is empty if
Þ
1

ρ′ sð Þ
� �α+1

ρ sð Þβ1 σ sð Þ, l0ð Þσ′ sð Þ
� �α

1
CA =∞, ð4Þ
where σ′ðlÞ > 0, τ′ðlÞ ≥ τ0 > 0,QðlÞ≔min fqðlÞ, qðτðlÞÞg,
and ρ ∈ Cð½l0,∞Þ, ð0,∞ÞÞ. All previous results focused on
the class XN only and proved that every solution that belongs
to XK tends to zero.

On the other hand, by establishing conditions for the
nonexistence of Kneser solutions (XK =∅), Dzurina et al.
[12] attained the oscillation of all solutions of (1) in the linear
case α = 1. They proved that if (4) and

liminf
l→∞

ðl
τ−1 ρ lð Þð Þ

Q hð Þ
ðρ hð Þ

σ hð Þ

ðρ hð Þ

s

1
r uð Þ duds

 !
dh > τ0 + p0

τ0e
, ð5Þ

hold, then equation (1) is oscillatory, where ρ ∈ Cð½l0,∞Þ, ð0
,∞ÞÞ satisfying σ < ρ < τ.

One purpose of this study is to further complement and
improve the well-known results reported in the literature.
In Section 2, by using an iterative technique, we get analo-
gous iterative estimates for Kneser solutions of (1). These
iterative estimates enable us to establish new criteria that
ensure the nonexistence of Kneser solutions. Further, criteria
of an iterative nature help check the oscillation, even when
the other criteria fail to apply. In Section 3, we use the Riccati
transformation method and comparison principles to obtain
different criteria which guarantee that XN =∅. Examples
illustrating the new results are also given.

For the sake of ease and assistance in presenting the main
results, we provide the following notations and lemmas:

θ v, uð Þ≔
ðv
u
r−1/α hð Þdh, for u < v,

δ≔ ll1for 0 < α ≤ 1 ; 21−α for α > 1:
� ð6Þ
Lemma 1 (see [7], Lemma 1). All eventually positive solutions
x of (1) have the following properties:

ðPÞz and z″ are positive, z′is of fixed sign, and rðlÞ
ðz″ðlÞÞα is nonincreasing, for l large enough.

Lemma 2 (see [16]). Let ϕ, φ∈½0,∞Þ. Then, δðϕ + φÞα ≤ ðϕα
+ φαÞ for all α ≥ 0.

2. Main Results 1: Iterative Technique

Lemma 3.Assume that x belongs to XK and there is a function
ρ ∈ CðΤl0

, ð0,∞ÞÞ with the property

σ lð Þ < ρ lð Þ < τ lð Þ: ð7Þ

If τ−1ðuÞ ≤ v, then

z uð Þ ≥Θn v, uð Þr1/α vð Þz″ vð Þ, ð8Þ

for n = 0, 1,⋯, where Θ0ðv, uÞ≔
Ð v
uθðv, hÞdh,QðlÞ≔min

fqðτðlÞÞ, qðlÞg, and

Θn+1 v, uð Þ≔
ðv
u

ðv
u2

 
1

r u1ð Þ exp
 

δτ0
τ0 + pα0

ðv
τ−1 u1ð Þ

� Q hð ÞΘα
n ρ hð Þ, σ hð Þð Þdh0

!1/α

du1du2:
ð9Þ

Proof. Suppose x belongs to XK . Thus, there is a l1 ≥ l0 sat-
isfying xðlÞ, and xðσðlÞÞ and xðτðlÞÞ are positive for l ≥ l1.
As a direct result of Lemma 1, x achieves property ðPÞ.



3Journal of Function Spaces
Using induction, we will prove the iterative relationship
(8).

At n = 0, since ðrðlÞðz″ðlÞÞαÞ′ ≤ 0, we obtain
ðv
u
r−1/α hð Þ r hð Þ z″ hð Þ

� �α� �1/α
dh

≥ r1/α vð Þz″ vð Þθ v, uð Þ, for u < v,
ð10Þ

which in turn leads to

−z′ uð Þ ≥ z′ vð Þ − z′ uð Þ ≥ r1/α vð Þz″ vð Þθ v, uð Þ, for u < v: ð11Þ

As a result of integrating (11) over ½u, vÞ, we get

z uð Þ ≥ z uð Þ − z vð Þ ≥ r1/α vð Þz″ vð Þ
ðv
u
θ v, hð Þdh

≥Θ0 v, uð Þr1/α vð Þz″ vð Þ:
ð12Þ

Next, we will prove (8) at n + 1 based on the assumption
that it is correct at n, that is,

z uð Þ ≥Θn v, uð Þr1/α vð Þz″ vð Þ: ð13Þ

First, we have from (1) that

q τ lð Þð Þpα0xα τ σ lð Þð Þð Þ = q τ lð Þð Þpα0xα σ τ lð Þð Þð Þ
= −

pα0
τ′ lð Þ

r τ lð Þð Þ z″ τ lð Þð Þ
� �α� �

′

≤ −
pα0
τ0

r τ lð Þð Þ z″ τ lð Þð Þ
� �α� �

′:

ð14Þ

By exploiting Lemma 2 with ϕ = xðlÞ and φ = p0xðτðlÞÞ,
we obtain

δzα lð Þ ≤ δ x lð Þ + p0x τ lð Þð Þð Þα ≤ xα lð Þ + pα0x
α τ lð Þð Þ, ð15Þ

which, with (1) and (14), gives

δQ lð Þzα σ lð Þð Þ ≤ q lð Þxα σ lð Þð Þ + q τ lð Þð Þpα0xα τ σ lð Þð Þð Þ
≤ − r lð Þ z″ lð Þ

� �α� �
′ − pα0

τ0

� r τ lð Þð Þ z″ τ lð Þð Þ
� �α� �

′:

ð16Þ

Bringing (13) with u = σ and v = ρ, and combining it with
(16), we get

r z″
� �α

+ pα0
τ0

r τð Þ z″ τð Þ
� �α� �

′ lð Þ

≤ −δQ lð ÞΘα
n ρ lð Þ, σ lð Þð Þr ρ lð Þð Þ z″ ρ lð Þð Þ

� �α
:

ð17Þ
Secondly, we define H as

H ≔ r z″
� �α

+ pα0
τ0

r τð Þ z″ τð Þ
� �α

: ð18Þ

Since ðrðlÞðz″ðlÞÞαÞ ≤ 0, we see that

1 + pα0
τ0

� �
r z″
� �α� �

lð Þ

≤H lð Þ ≤ 1 + pα0
τ0

� �
r τð Þ z″ τð Þ

� �α� �
lð Þ:

ð19Þ

Therefore,

τ0
τ0 + pα0

H τ−1 ρ lð Þð Þ� �
≤ r ρ lð Þð Þ z″ ρ lð Þð Þ

� �α
: ð20Þ

From (17) and (20), it follows that

H ′ lð Þ + δτ0
τ0 + pα0

Q lð ÞΘα
n ρ lð Þ, σ lð Þð ÞH τ−1 ρ lð Þð Þ� �

≤ 0: ð21Þ

It is easy to note from (17) that H ′ðlÞ ≤ 0 and hence
Hðτ−1ðρðlÞÞÞ ≥HðlÞ. Thus, (21) becomes

H ′ lð Þ + δτ0
τ0 + pα0

Q lð ÞΘα
n ρ lð Þ, σ lð Þð ÞH lð Þ ≤ 0: ð22Þ

Using the Grönwall inequality, (22) becomes

H τ−1 uð Þ� �
≥H vð Þ exp

 
δτ0

τ0 + pα0

ðv
τ−1 uð Þ

� Q hð ÞΘα
n ρ hð Þ, σ hð Þð Þdh

!
, for τ1 uð Þ < v:

ð23Þ

From (19), we have

z″ uð Þ ≥ r1/α vð Þz″ vð Þ
 

1
r uð Þ exp

 
δτ0

τ0 + pα0

ðv
τ−1 uð Þ

� Q hð ÞΘα
n ρ hð Þ, σ hð Þð Þdh

!!1/α

:

ð24Þ
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Integrating (24) twice over ½u, vÞ, we get

−z′ uð Þ ≥ r1/α vð Þz″ vð Þ
ðv
u

 
1

r u1ð Þ exp
 

δτ0
τ0 + pα0

ðv
τ−1 u1ð Þ

� Q hð ÞΘα
n ρ hð Þ, σ hð Þð Þdh

!!1/α

du1,

z uð Þ ≥Θn+1 v, uð Þr1/α vð Þz″ vð Þ:
ð25Þ

This completes the proof.

Theorem 4. Assume that there exists a function ρ ∈ CðΤl0
,

ð0,∞ÞÞ with the properties σðlÞ < ρðlÞ < τðlÞ and σðlÞ ≤ τ
ðρðlÞÞ. If

liminf
l→∞

ðl
τ−1 ρ lð Þð Þ

Q hð ÞΘα
n ρ hð Þ, σ hð Þð Þdh > τ0 + pα0

δτ0e
, ð26Þ

then XK =∅.

Proof. Suppose x belongs to XK . As a direct result of Lemma
2, we get that (8) holds. By following the same approach as in
proof of Lemma 2, we get the relationships from (14) to (21).
Now, assumeH is defined as in (18). From Lemma 1, we have
that z″ðlÞ > 0, and hence,HðlÞ > 0, for l ∈ Τl1

. Then, the delay
inequality (21) has a positive solution. From Theorem 1 in
[22], the associated equation of (21) is

H ′ lð Þ + δτ0
τ0 + pα0

Q lð ÞΘα
n ρ lð Þ, σ lð Þð ÞH τ−1 ρ lð Þð Þ� �

= 0, ð27Þ

has also a positive solution. However, it is well known from
([23], Theorem 2) that (34) implies oscillation of (27), a con-
tradiction. This completes the proof.

Example 1. Assume the following NDDE of third order:

x lð Þ + p0x alð Þð Þ″ + q0
l3
x blð Þ = 0, ð28Þ

where l ≥ 1,a, b ∈ ð0, 1Þ, and p0 and q0 are positive. First, we
need to calculate θ, Q, and Θn. Some careful calculations
shows that QðlÞ = q0/l3, θðu1, u2Þ = u1 − u2,

Θ0 u1, u2ð Þ = 1
2 u1 − u2ð Þ2,

Θk u1, u2ð Þ = 1
1 − μk

aμkuμk1

� 1 − μk
2 − μk

u2−μk1

− u1−μk1 u2 −
1

2 − μk
u2−μk2

� ��
,

ð29Þ
for k = 1, 2,⋯, where c≔ ða + bÞ/2, λ0 ≔ ðc − bÞ2/2,

μk ≔
aq0λk
a + p

,

λk+1 =
aμk

μk − 1 c
μk

1
μk − 2 b

2−μk −
μk − 1
μk − 2 c

2−μk + bc1−μk
� �

:

ð30Þ

Next, if we set ρðlÞ = ðða + bÞ/2Þl, then applying Theorem
4 requires that

b <min a, a2

2 − a

	 

= a2

2 − a
: ð31Þ

Then, it is easy to verify that

Θ0 cl, blð Þ = 1
2 c − bð Þ2l2 = λ0l

2,

Θn cl, blð Þ = aμn−1

μn−1 − 1 c
μn−1

� 1
μn−1 − 2 b

2−μn−1

−
μn−1 − 1
μn−1 − 2 c

2−μn−1 + bc1−μn−1
�
= λnl

2:

ð32Þ

Now, we set

Hn ≔ liminf
l→∞

ðl
τ−1 ρ lð Þð Þ

Q hð ÞΘα
n ρ hð Þ, σ hð Þð Þdh = q0λn ln

a
c
:

ð33Þ

In the following particular case,

x lð Þ + 1
10 x

9
10 l
� �� �

″ + 811
10l3

x
1
2 l
� �

= 0, ð34Þ

we note that H0 = 0:40864, H1 = 0:40982, and

a + p0
ae = 0:9 + 0:1

0:9ð Þe = 0:40875: ð35Þ

Therefore, condition (26) is not satisfied when n = 0, but
satisfies when n = 1. Thus, (34) has no Kneser solutions.

Remark 5. Very recently, Dzurina et al. ([12], Example 1)
proved that (28) is oscillatory if

q0 > max 8 a + p0ð Þ
ae a − bð Þ2 ln 2a/ a + bð Þð Þ

, a + p0
ab2

( )
: ð36Þ

In the particular case (34), condition (36) reduces to
81:1 > max f81:323,4:4444g = 81:323 (not fulfilled). How-
ever, by using our results, the oscillation condition is 81:1
> 80:889 (fulfilled). Thus, equation (34) is oscillatory.
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3. Main Results 2: An Improved Approach

Lemma 6. Assume that x belongs to XN on ½l1,∞Þ, and r′ðlÞ
> 0. Then, zðlÞ ≥ ð1/2Þðl − l1Þz′ðlÞ for all l ≥ l1.

Proof. Assume that x belongs to XN on ½l1,∞Þ. Then, it fol-
lows from Lemma 1 that there is a l1 ≥ l0, such that zðlÞ,
z′ðlÞ, and z″ðlÞ are positive and z″ is nonpositive, for all
l ≥ l1. It is easy to conclude that

ðl
l1

ð l
l1

z″ sð Þds = z lð Þ − z l1ð Þ − z′ l1ð Þ l − l1ð Þ, ð37Þ

which, with the fact that z″ ≤ 0, gives

1
2 l − l1ð Þ2z″ lð Þ ≤ z lð Þ − z l1ð Þ − z′ l1ð Þ l − l1ð Þ, ð38Þ

z lð Þ ≥ z l1ð Þ + l − l1ð Þz′ l1ð Þ + 1
2 l − l2ð Þz″ lð Þ: ð39Þ

Now, we define

F lð Þ≔ l − l1ð Þz lð Þ − 1
2 l − l1ð Þ2z′ lð Þ: ð40Þ

From (39), we get

F ′ lð Þ = z lð Þ − 1
2 l − l1ð Þ2z″ lð Þ ≥ z l1ð Þ + l − l1ð Þz′ l1ð Þ > 0:

ð41Þ

Thus, we have that F is an increasing function with
Fðl1Þ = 0, and so, FðlÞ > 0 for all l ≥ l1. Therefore, from
the definition of F, we get the required directly.

Lemma 7. Assume that x belongs to XN on ½l1,∞Þ, r′ðlÞ > 0,
and pðlÞ ≡ p (constant). Then,

x lð Þ ≥ 1 − pð Þz lð Þ 〠
n−1ð Þ/2

κ=0
p2κ

τ 2κ+1½ � lð Þ − l1
l − l1

� �2

, ð42Þ

for any odd positive integer n and for all l ≥ l2, where l2 large
enough and

τ 0½ � ≔ t, τ κ½ � ≔ τ τ κ−1½ � tð Þ
� �

, for κ = 1, 2,⋯: ð43Þ

Proof. Assume that x belongs to XN on ½l1,∞Þ. From the def-
inition of z, we obtain

x lð Þ = z lð Þ − px τ lð Þð Þ = z lð Þ − pz τ lð Þð Þ + p2x τ 2½ � lð Þ
� �

: ð44Þ

Resuming this procedure, we get, for any n odd positive
integers,
x lð Þ = 〠
n

κ=0
−1ð Þκpκz τ κ½ � lð Þ

� �
+ pn+1x τ n+1½ � lð Þ

� �

≥ 〠
n−1ð Þ/2

κ=0
p2κz τ 2κ½ � lð Þ

� �
− p2κ+1z τ 2κ+1½ � lð Þ

� �� �
,

ð45Þ

for l ≥ l1 ≥ l0, where l1 is sufficiently large. Since z′ðlÞ > 0 and
τ½2k+1�ðlÞ ≤ τ½2k�ðlÞ for all k = 0, 1,⋯, (45) becomes

x lð Þ ≥ 1 − pð Þ 〠
n−1ð Þ/2

κ=0
p2κz τ 2κ+1½ � lð Þ

� �
: ð46Þ

From Lemma 6, we get z′ðlÞ/zðlÞ ≤ 2/ðl − l1Þ for all l ≥ l1.
By integrating this inequality from τ½2κ+1�ðlÞ→ l, we arrive at

z τ 2κ+1½ � lð Þ
� �

≥
τ 2κ+1½ � lð Þ − l1

l − l1

� �2
z lð Þ, ð47Þ

for all l ≥ l2 ≥ l1, which with (46) gives

x lð Þ ≥ 1 − pð Þz lð Þ 〠
n−1ð Þ/2

κ=0
p2κ

τ 2κ+1½ � lð Þ − l1
l − l1

� �2
: ð48Þ

This completes the proof.

By replacing the commonly used relationship x > ð1 − pÞz
with the new relationship (42), we directly get the following
results.

Theorem 8. Assume that r′ðlÞ > 0 and pðlÞ ≡ p (constant). If

liminf
l→∞

lα

r lð Þ
ð∞
l
q sð Þ σ2 sð Þ

s

� �α

ds > 2αð Þα
α + 1ð Þα+1pα∗

, ð49Þ

then XN =∅, where

p∗ ≔ 1 − pð Þ 〠
n−1ð Þ/2

κ=0
p2κ

τ 2κ+1½ � lð Þ − l1
l − l1

� �2

: ð50Þ

Proof. The proof of this theorem is similar to that of ([7],
Corollary 1), and hence, we omit it.

Theorem 9. Assume that r′ðlÞ > 0,pðlÞ ≡ p (constant) and p∗
is defined as (50). If

limsup
l→∞

ð l
l0

pα∗ρ sð Þq sð Þ σ sð Þ − l2
s − l2

� �2α

0
B@

−
1

α + 1ð Þα+1
ρ+′ sð Þ
� �α+1
ρα sð Þθα s, l2ð Þ

1
CAds =∞,

ð51Þ

then XN =∅.
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Proof. Assume the contrary that x belongs to XN on ½l1,∞Þ.
From Lemma 7, we get that (42) holds. Combining (1) and
(42), we find

r lð Þ z″ lð Þ
� �α� �

′ ≤ −pα∗q lð Þzα σ lð Þð Þ, ð52Þ

for l ≥ l2 ≥ l1. Now, we define

w lð Þ≔ ρ lð Þ
r lð Þ z″ lð Þ
� �α
zα lð Þ : ð53Þ

Then, wðlÞ > 0 for all l ≥ l1, and

w′ lð Þ = ρ′ lð Þ
ρ lð Þ w lð Þ + ρ lð Þ

r lð Þ z″ lð Þ
� �α� �

′
zα lð Þ

− αρ lð Þ
r lð Þ z″ lð Þ
� �α
zα+1 lð Þ z′ lð Þ:

ð54Þ

From Lemma 6, we get z′ðlÞ/zðlÞ ≤ 2/ðl − l2Þ for all l ≥ l2.
By integrating this inequality from σðlÞ→ l, we arrive at

z σ lð Þð Þ ≥ σ lð Þ − l2
l − l2

� �2
z lð Þ, ð55Þ

for l ≥ l3 ≥ l2. Since ðrðz″Þ
αÞ′ ≤ 0, we have

z′ lð Þ ≥
ðl
l2

1
r1/α sð Þ r

1/α sð Þz″ sð Þds ≥ r1/α lð Þz″ lð Þθ l, l2ð Þ: ð56Þ

From (52)–(56), we obtain

w′ lð Þ ≤ ρ+′ lð Þ
ρ lð Þ w lð Þ − pα∗ρ lð Þq lð Þ σ lð Þ − l2

l − l2

� �2α

− α
θ l, l2ð Þ
ρ1/α lð Þw

1+1/α lð Þ:
ð57Þ

Next, we define

Φ wð Þ = ρ+′
ρ
w − α

θ

ρ1/α
w1+1/α: ð58Þ

Then,Φ′ðwÞ = ρ+′/ρ − ðα + 1Þρ−1/αθw1/α, and soΦ attains
its maximum value on ℝ at w∗ = ρðρ+′/ððα + 1ÞρθÞÞα and

Φ sð Þ ≤max
w∈ℝ

Φ sð Þ = 1
α + 1ð Þα+1

ρ+′
� �α+1
ραθα

: ð59Þ
Combining (57) and (59), we find

w′ lð Þ ≤ −pα∗ρ lð Þq lð Þ σ lð Þ − l2
l − l2

� �2α
+ 1

α + 1ð Þα+1
ρ+′ lð Þ
� �α+1
ρα lð Þθα l, l2ð Þ :

ð60Þ

By integrating this inequality from l3 → l, we arrive at

ð l
l3

pα∗ρ sð Þq sð Þ σ sð Þ − l2
s − l2

� �2α
−

1
α + 1ð Þα+1

ρ+′ sð Þ
� �α+1
ρα sð Þθα s, l2ð Þ

0
B@

1
CAds

≤w l1ð Þ,
ð61Þ

which contradicts (51). This contradiction completes the
proof.

Theorem 10. Assume that r′ðlÞ > 0, pðlÞ ≡ p (constant), and
p∗ is defined as (50). If

Y ′ lð Þ + q lð Þ p∗

ðσ lð Þ

l2

θ s, l2ð Þds
 !α

Y σ lð Þð Þ = 0, ð62Þ

is oscillatory, then XN =∅.

Proof. Assume the contrary that x belongs to XN on ½l1,∞Þ.
Proceeding as in the proof of Theorem 9, we obtain (52)
and (56) hold for l ≥ l2 ≥ l1. Integrating (56) from l2 → l and
taking into account the fact that ðrðlÞðz″ðlÞÞαÞ′ ≤ 0, we get

z lð Þ ≥ r1/α lð Þz″ lð Þ
ðl
l2

θ s, l2ð Þds, ð63Þ

which with (52) gives

r lð Þ z″ lð Þ
� �α� �

′ + q lð Þ p∗

ðσ lð Þ

l2

θ s, l2ð Þds
 !α

r σ lð Þð Þ

� z″ σ lð Þð Þ
� �α

≤ 0:
ð64Þ

Thus, if we set Y ≔ rðz″Þα > 0, then we note that Y is a
positive solution of the differential inequality

Y ′ lð Þ + q lð Þ p∗

ðσ lð Þ

l2

θ s, l2ð Þds
 !α

Y σ lð Þð Þ ≤ 0: ð65Þ

Thus, it follows from ([22], Theorem 1) that the corre-
sponding equation (62) also has a positive solution, which
is a contradiction. This contradiction completes the proof.



Table 1: Criteria that ensure that XN =∅ for (66).

Hille and Nehari type criterion

C1 Corollary 1 in [7] q0 > 6912:0
C2 Condition (68) q0 > 3266:8

Using comparison theorems with 1sl-order DDE

C3 Theorem 2.4 in [8] q0 > 1491:0
C4 Condition (70) q0 > 704:69
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Example 2. Consider the third-order NDDE,

l x lð Þ + 3
4 x

9
10 l
� �� �

″
� �3 !

′ + q0
l6
x3

1
2 l
� �

= 0, ð66Þ

where l > 0 and q0 > 0. Then, it is easy to verify that

τ 2κ+1½ � lð Þ = 9
10

� �2κ+1
l,

p∗ ≔
1
4 〠

n−1ð Þ/2

κ=0

3
4

� �2κ 9
10

� �4κ+2
:

ð67Þ

To apply Theorem 8, condition (49) reduces to

liminf
l→∞

lα

r lð Þ
ð∞
l
q sð Þ σ2 sð Þ

s

� �α

ds

= liminf
l→∞

l2
ð∞
l

q0
s6

1
4 s
� �3

ds = q0
1
2

1
4

� �3
> 63
28p3∗

:

ð68Þ

On the other hand, using Theorem 10, the class XN of
(66) is empty if the first-order DDE

Y ′ lð Þ + 2q0
l

9
40 p∗
� �3

Y
1
2 l
� �

= 0, ð69Þ

is oscillatory. Based on Theorem 2.1 in [24], the first-order
DDE (69) is oscillatory if

liminf
l→∞

ðl
l/2
2q0

9
40 p∗
� �3 1

s
ds = 2q0

9
40 p∗
� �3

ln 2 > 1
e : ð70Þ

Remark 11. In order to ensure that the class XN of (66) is
empty, Table 1 compares between our criteria and the previ-
ous related one:

It is easy to notice that Theorem 10 supports the most
efficient condition. Thus, our results improve the results in
[7, 8].

4. Conclusion

Most studies investigating the asymptotic behavior of solu-
tions of DDEs provided only sufficient criteria. This was a
major motivation for the multiplicity of methods and tech-
niques used in the study, so that a larger area of models could
be covered. The aim of this study is to develop new criteria
that have an iterative nature, so that we can apply them when
the other criteria fail. First, we established a criterion to
ensure that there are no Kneser solutions of (1) based on
the comparison with a first-order DDE. Further, we obtained
various criteria ensuring that XN is empty. By combining the
results in Sections 2 and 3, we can obtain new conditions for
the oscillation of all solutions of (1). It would be interesting to
extend our results to the NDDE

r2 lð Þ r1 lð Þ z′ lð Þ
� �α1� �

′
� �α2� �

′ + q lð Þf x σ lð Þð Þð Þ = 0: ð71Þ

It is also interesting to eliminate some restrictions that
are usually imposed on the coefficients of the NDDEs
studied.
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