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In this paper, we introduce the notion ofR-partial b-metric spaces and prove some related fixed point results in the context of this
notion. We also discuss an example to validate our result. Finally, as applications, we evince the importance of our work by
discussing some fixed point results on graphical-partial b-metric spaces and on partially-ordered-partial b-metric spaces.

1. Introduction and Preliminaries

Due to the fact that fixed point theory plays a very crucial role
for different mathematical models to obtain their solution
existence and has a wide range of applications in different
fields related to mathematics, this theory has intrigued many
researchers.

By the inception of the Banach fixed point theorem [1],
researchers are continuously trying to get the generalizations
of this classical result through different methodologies. For
instance, Czerwik [2] introduced the notion of b-metric
spaces, with a triangle inequality weaker than that of metric
spaces, in a view to generalize the Banach contraction princi-
ple. Moving on the same sequel, Matthews [3] introduced the
notion of a partial metric space, which was a part of the study
for denotational semantics of dataflow networks and gave a
generalized version of the Banach contraction principle.
The concept of partial metric spaces was further extended
to partial b-metric spaces by Shukla in [4]. A number of

researchers took keen interest in the generalized version of
the metric spaces some work is available in [5–27].

Recently, Gordgi et al. [28] introduced the notion of orthog-
onal sets and gave a new extension for the classical Banach
contraction principle. More details can be found in [29, 30].

After looking into the structure of orthogonal metric
spaces, introduced by [29, 30], and the binary relation used
with a metric, [31, 32], we introduce the notion of R-par-
tial b-metric spaces. We are also improving and generalizing
the concept of orthogonal contractions in the sense of R
-partial b-metric spaces and establish some fixed point theo-
rems for the proposed contractions.

Throughout this paper, we denote byℕ,ℝ,ℤ, and ℝ+ the
set of natural numbers, real numbers, integer numbers, and
nonnegative real numbers, respectively.

Definition 1 (see [2]. Let H be a nonempty set and s ≥ 1: Sup-
pose a mapping d : H ×H ⟶ℝ+ satisfies the following con-
ditions for all h,l,z ∈H :
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ðbM1Þdðh, lÞ = 0 if and only if h = l ;
ðbM2Þdðh, lÞ = dðl, hÞ ;
ðbM3Þdðh, lÞ ≤ s½dðh, zÞ + dðz, lÞ�:
Then d is called a b-metric on H, and ðH, dÞ is called

a b-metric space with coefficient s:

Definition 2 (see [3]. Let H be a nonempty set. Let p : H ×H
⟶ℝ+ satisfy the following for all h,l,z ∈H:

ðpM1Þh = l if and only if pðh, hÞ = pðh, lÞ = pðl, lÞ ;
ðpM2Þpðh, hÞ ≤ pðh, lÞ ;
ðpM3Þpðh, lÞ = pðl, hÞ ;
ðpM4Þpðh, lÞ ≤ pðh, zÞ + pðz, lÞ − pðz, zÞ:
Then ðH, pÞ is called a partial metric space.

Definition 3 [4]. A partial b -metric on H ≠∅ is a function
σ : H ×H ⟶ℝ+ such that for all h,l,z ∈H , and for some s
≥ 1 , we have

ðσ1Þh = l if and only if σðh, hÞ = σðh, lÞ = σðl, lÞ ;
ðσ2Þσðh, hÞ ≤ σðh, lÞ ;
ðσ3Þσðh, lÞ = σðl, hÞ ;
ðσ4Þσðh, lÞ ≤ s½σðh, zÞ + σðz, lÞ� − σðz, zÞ:
A partial b-metric space is denoted with ðH, σ, sÞ: The

number s is called the coefficient of ðH, σ, sÞ:

Remark 4 (see [4]. It is clear that every partial metric space
is a partial b -metric space with coefficient s = 1 and every
b -metric space is a partial b -metric space with the same
coefficient and a zero self-distance. However, the converse
of this fact need not hold.

Example 1 [4]. Let H =ℝ+, p > 1 be a constant and σ : H ×
H ⟶ℝ+ be defined by

σ h, lð Þ = h − lj jp + max h, lf gð Þp for all h, l ∈H: ð1Þ

Then, ðH, σ, sÞ is a partial b-metric space with coefficient
s = 2p > 1, but it is neither a b-metric nor a partial metric space.

Definition 5 [33]. LetH be a nonempty set. A subsetR ofH2 is
called a binary relation on H . Then, for any h, l ∈H , we say
that }h isR -related to l} , that is, hRl , or }h relates to l under
R} if and only if ðh, lÞ ∈R. ðh, lÞ ∉R means that }h is not R
-related to l} or }h is not related to l under R}:

Definition 6 [33]. A binary relationR defined on a nonempty
set H is called ðaÞ reflexive if ðh, hÞ ∈R∀h ∈H ;

ðbÞ irreflexive if ðh, hÞ ∉R for some h ∈H ;
ðcÞ symmetric if ðh, lÞ ∈R implies ðl, hÞ ∈R∀h, l ∈H ;
ðdÞ antisymmetric if ðh, lÞ ∈R and ðl, hÞ ∈R imply h = l

∀h,l ∈H ;
ðeÞ transitive if ðh, lÞ ∈R and ðl, zÞ ∈R imply ðh, zÞ ∈R

∀h,l, z ∈H ;
ð f Þ preorder if R is reflexive and transitive;
ðgÞ partial order if R is reflexive, antisymmetric, and

transitive.

Definition 7 [32]. Let H be a nonempty set and let R be a
binary relation on H.

(a) A sequence fhng is called an R-sequence if

∀n ∈ℕ, hnRhn+1ð Þ: ð2Þ

(b) A map T : H ⟶H is R-preserving if

∀h, l ∈H, hRl implies ThRTl: ð3Þ

Definition 8 [32]. Let ðH, dÞ be a metric space and R be a
binary relation on H . Then, ðH, d,RÞ is called an R -metric
space.

Definition 9 [31]. A mapping T : H ⟶H is R -continuous
at h0 ∈H if for each R -sequence fhngn∈ℕ in H with hn ⟶
h0 , we get TðhnÞ⟶ Tðh0Þ . Thus, T is R -continuous on
H if T is R -continuous at each h0 ∈H.

Definition 10 [31]. A map T : H ⟶H is an R -contraction,
if

d Th, Tlð Þ ≤ kd h, lð Þ, ð4Þ

for all h, l ∈H with hRl, where 0 < k < 1.

Khalehoghli et al. [31] extended the result of Banach in
the following way.

Theorem 11 [31]. If T is anR -preserving andR -continuous
R -contraction on an R -complete R -metric space with h0
∈H such that h0Rl for each l ∈H . Then, T has a unique fixed
point.

2. Main Results

Let us begin this section with the definition of R-partial
b-metric spaces.

Definition 12. Let H ≠∅ and R be a reflexive binary relation
onH , denoted as ðH,RÞ . A map σR : H ×H⟶ℝ+ is called
anR -partial b -metric on the setH , if the following conditions
are satisfied for all h, l, z ∈H with either (hRl or lRh ), either
(hRz or zRh) and either (zRl or lRz ):

ðσR1Þh = l if and only if σRðh, hÞ = σRðh, lÞ = σRðl, lÞ;
ðσR2ÞσRðh, hÞ ≤ σRðh, lÞ;
ðσR3ÞσRðh, lÞ = σRðl, hÞ;
ðσR4ÞσRðh, lÞ ≤ s½σRðh, zÞ + σRðz, lÞ� − σRðz, zÞ, where

s ≥ 1.
Then, ðH,R, σR, sÞ is called R-partial b-metric space

with the coefficient s ≥ 1:

Remark 13. In the above definition, a set H is endowed with a
reflexive binary relation R and σR : H ×H ⟶ℝ+ satisfies
ðσR1Þ - ðσR4Þ only for those elements which are comparable
under the reflexive binary relation R . Hence, the R -partial
b -metric may not be a partial b -metric, but the converse is
true.

The following simplest example shows that theR-partial
b-metric with s ≥ 1 need not to be a partial b-metric with s ≥ 1.
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Example 2. Let H = f−1,−2, 1, 2g and let the binary relation
be defined by hRl if and only if h = l or h, l > 0 . It is easy to
prove that σRðh, lÞ =max f∣h∣,∣l ∣ g is anR -partial b -metric
on H with s ≥ 1 , but σR is not a partial b -metric on H with
s ≥ 1 . Indeed, for h = −2 and l = 2 , we have σRðh, hÞ = σRð
h, lÞ = σRðl, lÞ = 2.

In the coming definitions, let ðH,R, σR, sÞ be an R

-partial b-metric space with the coefficient s ≥ 1.

Definition 14. Let fhng be an R -sequence in ðH,R, σR, sÞ ,
that is, hnRhn+1 or hn+1Rhn for each n ∈ℕ . Then

(i) fhng is a convergent sequence to some h ∈H if
limn→∞σRðhn, hÞ = σRðh, hÞ and hnRh for each n
≥ k

(ii) fhng is Cauchy if limn,m→∞σRðhn, hmÞ exists and is
finite

Definition 15. ðH,R, σR, sÞ is said to be R -complete if for
every Cauchy R -sequence in H , there is h ∈H with
limn,m→∞σRðhn, hmÞ = limn→∞σRðhn, hÞ = σRðh, hÞ and hn
Rh for each n ≥ k.

Definition 16. We say that T : H ⟶H is an R -property map,
if for any iterative R -sequence fhn : hn = Tnh, h ∈Hg in ðH
,R, σR, sÞ with limn→∞σRðhn, hÞ = σRðh, hÞ, hnRh for some
n ≥ k and limn→∞σRðhn, ThÞ ≤ σRðh, hÞ , we have that hRT
h or ThRh.

Definition 17. We say that T : H ⟶H isR -0-continuous at
h ∈H if for each R -sequence fhng in ðH,R, σR, sÞ with
limn→∞σRðhn, hÞ = 0 , we have limn→∞σRðThn, ThÞ = 0 .
Also, T is R -0-continuous on H if T is R -0-continuous for
each h ∈H:

The following results help us to ensure the existence of
fixed points for self maps. Throughout, we assume that R
is a preorder relation.

Theorem 18. Let ðH,R, σR, sÞ be anR -complete R -partial
b -metric space with the coefficient s ≥ 1 and let h0 ∈H be such
that h0Rl for each l ∈H . Let T : H⟶H be an R -preserv-
ing and an R -property map satisfying the following

σR Th, Tlð Þ ≤ kσR h, lð Þ for all h, l ∈H with hRl,
ð5Þ

where k ∈ ½0, 1/sÞ: Then, T has a fixed point h∗ ∈H and
σRðh∗, h∗Þ = 0:

Proof. As h0 ∈H is such that h0Rl for each l ∈H, then by
using the R-preserving nature of T , we construct an R

-sequence fhng such that hn = Thn−1 = Tnh0 and hn−1Rhn
for each n ∈ℕ. We consider hn ≠ hn+1 for each n ∈ℕ ∪ f0g.

Thus, by (5), we get

σR hn, hn+1ð Þ = σR Thn−1, Thnð Þ ≤ kσR hn−1, hnð Þ, ð6Þ

for all n ∈ℕ: This inequality yields

σR hn, hn+1ð Þ ≤ knσR h0, h1ð Þ, ð7Þ

for all n ∈ℕ: To discuss the Cauchy criteria, we will consider
an arbitrary integer n ≥ 1,m ≥ 1withm > n and use σR4

along
(7) in the following way.

σR hn, hmð Þ ≤ s σR hn, hn+1ð Þ + σR hn+1, hmð Þ½ � − σR hn+1, hn+1ð Þ
≤ sσR hn, hn+1ð Þ + s2 σR hn+1, hn+2ð Þ + σR hn+2, hmð Þ½ �

− σR hn+2, hn+2ð Þ ≤ sσR hn, hn+1ð Þ + s2σR hn+1, hn+2ð Þ
+ s3σR hn+2, hn+3ð Þ+⋯+sm−nσR hm−1, hmð Þ

≤ sknσR h0, h1ð Þ + s2kn+1σR h0, h1ð Þ
+ s3kn+2σR h0, h1ð Þ+⋯+sm−nkm−1σR h0, h1ð Þ

≤ skn 1 + sk + skð Þ2+⋯� �
σR h0, h1ð Þ

= skn

1 − sk
σR h0, h1ð Þ:

ð8Þ

As k ∈ ½0, 1/sÞ and s ≥ 1, it follows from the above inequal-
ity that

lim
n,m→∞

σR hn, hmð Þ = 0: ð9Þ

Therefore, fhng is a Cauchy R-sequence. Since H is R
-complete, there exists h∗ ∈H such that limn,m→∞σRðhn, hm
Þ = limn→∞σRðhn, h∗Þ = σRðh∗, h∗Þ and hnRh∗ for each n
≥ k (for some value of k). Thus, from above, we obtain 0 =
limn,m→∞σRðhn, hmÞ = limn→∞σRðhn, h∗Þ = σRðh∗, h∗Þ and
hnRh∗ for each n ≥ k. As hnRh∗ for each n ≥ k, from (5),
we get

σR Thn, Th∗ð Þ ≤ kσR hn, h∗ð Þ: ð10Þ

This inequality and the above findings imply

lim
n→∞

σR hn+1, Th∗ð Þ ≤ σR h∗, h∗ð Þ = 0: ð11Þ

As T is an R-property map, so we get h∗RTh∗ or Th∗

Rh∗. Without any loss of generality, we take h∗RTh∗. Thus,
by using σR4

with (5), we get the following for each n ≥ k

σR h∗, Th∗ð Þ ≤ sσR h∗, hn+1ð Þ + sσR hn+1, Th∗ð Þ
− σR hn+1, hn+1ð Þ ≤ sσR h∗, hn+1ð Þ
+ sσR Thn, Th∗ð Þ ≤ sσR h∗, hn+1ð Þ
+ skσR hn, h∗ð Þ:

ð12Þ

When n tends to infinity, the above inequality yields σR

ðh∗, Th∗Þ = 0. Hence, we get σRðh∗, Th∗Þ = 0, σRðh∗, h∗Þ =
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0 and σRðTh∗, Th∗Þ = 0. Therefore, h∗ = Th∗, that is, h∗ is a
fixed point of T .

Remark 19. Note that the fixed point of T is unique if in the
above theorem we add (I): for each fixed points h∗ and l∗ of
T , we have h∗Rl∗ or l∗Rh∗.

Since h∗ and l∗ are fixed points of T such that h∗Rl∗.
Then, we have Tnh∗ = h∗,Tnl∗ = l∗ for all n ∈ℕ: By the
nature of h0, we obtain

h0Rh∗andh0Rl∗: ð13Þ

Since T is R-preserving, we have

Tnh0RTnh∗andTnh0RTnl∗, ð14Þ

for all n ∈ℕ: Therefore, by the triangle inequality and (5), we
get

σR h∗, l∗ð Þ = σR Tnh∗, Tnl∗ð Þ = s σR Tnh∗, Tnh0ð Þ½
+ σR Tnh0, Tnl∗ð Þ� − σR Tnh0, Tnh0ð Þ

≤ sknσR h∗, h0ð Þ + sknσR h0, l∗ð Þ:
ð15Þ

Taking limit as n⟶∞ in the above inequality, we
obtain

σR h∗, l∗ð Þ = 0, ð16Þ

and so

h∗ = l∗: ð17Þ

Remark 20. Note that the condition “let h0 ∈H be such that
h0Rl for each l ∈H” of Theorem18may be replaced with “let
h0 ∈H be such that h0RTh0 .”

Example 3. Let H =ℝ and define σR : H ×H ⟶ℝ+ by

σR h, lð Þ = h − lj j2  if  h, l ≥ 0,
0 otherwise:

 
ð18Þ

The relation on H is defined by hRl if and only if h = l or
h, l ≥ 0. Clearly, ðH,R, σR, 4Þ is an R-complete partial b
-metric space. Define a map T : H⟶H by

Th =
h
4  if  h ≥ 0,

0 otherwise:

0
@ ð19Þ

Then, it is very simple to verify the following:

(1) If h = l, then Th = Tl. While if h, l ≥ 0, then Th, Tl ≥ 0.
Thus, T is an R-preserving map

(2) Suppose that for any iterative R-sequence fhng in H
with limn→∞σRðhn, hÞ = σRðh, hÞ, hnRh for some n
≥ k, and limn→∞σRðhn, ThÞ ≤ σRðh, hÞ, then we get
hRTh

(3) Consider h0 ≥ 0 any real number, then Th0 ≥ 0. Thus,
we have h0, Th0 ≥ 0, that is, h0RTh0

(4) For each h, l ∈H with hRl, we have

case (a) h = l:

σR Th, Tlð Þ = 0 = 1
16 × 0 = 1

16σR h, lð Þ: ð20Þ

case (b) h, l ≥ 0:

σR Th, Tlð Þ = h
4 −

l
4

����
����
2
= 1
16 h − lj j2 = 1

16σR h, lð Þ: ð21Þ

Hence, by Theorem 18, T must has a fixed point.

Example 4. Let H =ℝ and define σR : H ×H ⟶ℝ+ by

σR h, lð Þ = h − lj j2 + max h, lf gð Þ2  if  h, l ≥ 0,
0 otherwise:

 

ð22Þ

The relation on H is defined by hRl if and only if h = l or
h, l ≥ 0.

Clearly, ðH,R, σR, 4Þ is an R-complete partial b-metric
space. Define a map T : H⟶H by

Th =
h
6  if  h ≥ 0,

−1 otherwise:

0
@ ð23Þ

Then, one can verify the following:

(1) If h = l, then Th = Tl. While if h, l ≥ 0, then Th, Tl ≥ 0
. Thus, T is an R-preserving map

(2) Suppose that for any iterative R-sequence fhng in H
with limn→∞σRðhn, hÞ = σRðh, hÞ, hnRh for some n
≥ k, and limn→∞σRðhn, ThÞ ≤ σRðh, hÞ, then we get
hRTh

(3) If h0 ≥ 0 be some real number, then Th0 ≥ 0. Thus, we
get h0, Th0 ≥ 0, that is, h0RTh0

(4) For each h, l ∈H with hRl, we have

Case (a) If h = l ≥ 0, then Th = Tl ≥ 0. Thus,

σR Th, Tlð Þ = 0 + max h
6 ,

l
6

� �� �2
= 1
36 max h, lf gð Þ2

= 1
36 σR h, lð Þ:

ð24Þ

Case (b) If h = l < 0, then Th = Tl = −1. Thus,

σR Th, Tlð Þ = 0 = σR h, lð Þ: ð25Þ
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Case (c) If h, l ≥ 0, then Th, Tl ≥ 0. Thus,

σR Th, Tlð Þ = h
6 −

l
6

����
����
2
+ max h

6 ,
l
6

� �� �2
= 1
36σR h, lð Þ:

ð26Þ

Hence, by Theorem 18, T must has a fixed point.

Remark 21. Note that the function σR defined in the above
example is neither a metric nor a b -metric nor a partial b -met-
ric on ℝ . Indeed, σRð4, 1Þ = 25, σRð4,−1Þ = 0, σRð−1, 1Þ = 0,
σRð−1,−1Þ = 0 , that is, ðσ4Þ and ðbM3Þ do not exist.

Theorem 22. Let ðH,R, σR, sÞ be anR -complete R -partial
b -metric space with the coefficient s ≥ 1 and let h0 ∈H be such
that h0Rl for each l ∈H . Let T : H⟶H be an R -preserv-
ing and R -0-continuous map satisfying the following

σR Th, Tlð Þ ≤ k max σR h, lð Þ, σR h, Thð Þ, σR l, Tlð Þf g, ð27Þ

for all h, l ∈H with hRl, hRTh, and lRTl, where k ∈ ½0, 1/sÞ:
Also, let for eachR-sequence fhng inH with hnRa and hnRb,
we have either aRb or bRa. Then, T has a fixed point h∗ ∈H
and σRðh∗, h∗Þ = 0:

Proof. As h0 ∈H is such that h0Rl for each l ∈H, then by
using the R-preserving nature of T , we obtain an R

-sequence fhng such that hn = Thn−1 = Tnh0 and hn−1Rhn
for each n ∈ℕ. We take hn ≠ hn+1 for each n ∈ℕ ∪ f0g. Then
by (27), for each n ∈ℕ, we get

σR hn, hn+1ð Þ = σR Thn−1, Thnð Þ
≤ k max σR hn−1, hnð Þ, σR hn−1, Thn−1ð Þ, σR hn, Thnð Þf g
= k max σR hn−1, hnð Þ, σR hn−1, hnð Þ, σR hn, hn+1ð Þf g
= k max σR hn−1, hnð Þ, σR hn, hn+1ð Þf g:

ð28Þ

If max fσRðhn−1, hnÞ, σRðhn, hn+1Þg = σRðhn, hn+1Þ, then
from the above inequality, we obtain that σRðhn, hn+1Þ ≤ k
σRðhn, hn+1Þ < σRðhn, hn+1Þ, which is a contradiction. There-
fore, we must have max fσRðhn−1, hnÞ, σRðhn, hn+1Þg = σRð
hn−1, hnÞ. Again, from the above inequality, we have

σR hn, hn+1ð Þ ≤ kσR hn−1, hnð Þ∀n ∈ℕ: ð29Þ

On repeating this process, we obtain

σR hn, hn+1ð Þ ≤ knσR h0, h1ð Þ∀n ∈ℕ: ð30Þ

For m,n ∈ℕ with m > n, by σR4, we obtain

σR hn, hmð Þ ≤ s σR hn, hn+1ð Þ + σR hn+1, hmð Þ½ � − σR hn+1, hn+1ð Þ
≤ sσR hn, hn+1ð Þ + s2 σR hn+1, hn+2ð Þ½

+ σR hn+2, hmð Þ� − σR hn+2, hn+2ð Þ
≤ sσR hn, hn+1ð Þ + s2σR hn+1, hn+2ð Þ

+ s3σR hn+2, hn+3ð Þ+⋯+sm−nσR hm−1, hmð Þ:
ð31Þ

Using (30) in the above inequality, we obtain

σR hn, hmð Þ ≤ sknσR h0, h1ð Þ + s2kn+1σR h0, h1ð Þ
+ s3kn+2σR h0, h1ð Þ+⋯+sm−nkm−1σR h0, h1ð Þ

≤ skn 1 + sk + skð Þ2+⋯� �
σR h0, h1ð Þ

= skn

1 − sk
σR h0, h1ð Þ:

ð32Þ

As k ∈ ½0, 1/sÞ and s ≥ 1, it follows from the above inequal-
ity that

lim
n,m→∞

σR hn, hmð Þ = 0: ð33Þ

Therefore, fhng is a Cauchy R-sequence. Since H is
R-complete, there exists h∗ ∈H such that limn,m→∞σRðhn,
hmÞ = limn→∞σRðhn, h∗Þ = σRðh∗, h∗Þ and hnRh∗ for each
n ≥ k. Thus, from above, we obtain 0 = limn,m→∞σRðhn, hmÞ
= limn→∞σRðhn, h∗Þ = σRðh∗, h∗Þ and hnRh∗ for each n ≥
k. Since T is R-0-continuous, one gets that limn→∞σRðhn,
h∗Þ = 0, which leads to limn→∞σRðThn, Th∗Þ = 0. Obviously,
we have ThnRTh∗ for each n ≥ k. Thus, hnRTh∗ for each
n > k. Since hnRh∗ and hnRTh∗ for each n > k, we have
either h∗RTh∗ or Th∗Rh∗. By using σR4, we get the fol-
lowing for each n > k:

σR h∗, Th∗ð Þ ≤ sσR h∗, hn+1ð Þ + sσR hn+1, Th∗ð Þ
− σR hn+1, hn+1ð Þ: ð34Þ

When n tends to infinity, the above inequality yields
σRðh∗, Th∗Þ = 0. Hence, we get σRðh∗, Th∗Þ = 0, σRðh∗,
h∗Þ = 0, and σRðTh∗, Th∗Þ = 0. Therefore, we say that
h∗ = Th∗, i.e., h∗ is a fixed point of T.

Remark 23. Note that the fixed point of T is unique if in the
above result, we add the condition: for each fixed points h∗

and l∗ of T , we have h∗Rl∗ or l∗Rh∗.
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Since h∗ = Th∗, we have l∗ = Tl∗ and h∗Rl∗. From (27),
we get

σR h∗, l∗ð Þ = σR Th∗, Tl∗ð Þ
≤ k max σR h∗, l∗ð Þ, σR h∗, Th∗ð Þ, σR l∗, Tl∗ð Þf g
= k max σR h∗, l∗ð Þ, σR h∗, h∗ð Þ, σR l∗, l∗ð Þf g
= kσR h∗, l∗ð Þ < σR h∗, l∗ð Þ:

ð35Þ

It is a contradiction in the case σRðh∗, l∗Þ ≠ 0. Therefore,
we must have σRðh∗, l∗Þ = 0, that is, h∗ = l∗.

3. Applications to Graphical Partial b-Metric
Spaces and Partially-Ordered-Partial b
-Metric Spaces

In this section, we define a directed graphG onH, denoted by
G = ðVðHÞ, EðHÞÞ, with the vertex set VðHÞ =H and the
edge set EðHÞ such that EðHÞ ⊂H ×H and fðh, hÞ: h ∈Hg
⊂ EðHÞ. Also, EðHÞ has no parallel edge. Note that hPl
denotes the path between h and l, that is, there exists a finite
sequence fkigji=0, for some finite j, such that k0 = h, kj = l, and
ðki, ki+1Þ ∈ EðHÞ for i ∈ f0, 1,⋯,j − 1g.

Definition 24. Let H ≠∅ be associated the above-defined G ,
denoted as ðH,GÞ . A map σG : H ×H →ℝ+ is called a G
-partial b -metric on the set H , if the following conditions
are satisfied for all h, l, z ∈H with hPl and z ∈ hPl:

ðσG1Þh = l if and only if σGðh, hÞ = σGðh, lÞ = σGðl, lÞ;
ðσG2ÞσGðh, hÞ ≤ σGðh, lÞ;
ðσG3ÞσGðh, lÞ = σGðl, hÞ;
ðσG4ÞσGðh, lÞ ≤ s½σGðh, zÞ + σGðz, lÞ� − σGðz, zÞ, where

s ≥ 1.
Then, ðH,G, σG, sÞ is called a G -partial b-metric space

with the coefficient s ≥ 1:

Remark 25. If hPl and z ∈ hPl , then we get hPz and zPl . Also
note if hPz and zPl , then we have hPl.

Thus, P is a preorder relation on H. Therefore, ðH,G,
σG, sÞ is also an R-partial b-metric space.

Definition 26. Let fhng be a G -sequence in ðH,G, σG, sÞ , that
is, hnPhn+1 or hn+1Phn for each n . Then, we say that

(i) fhng is a convergent sequence to h ∈H if limn→∞σG
ðhn, hÞ = σGðh, hÞ and hnPh for each n ≥ k

(ii) fhng is Cauchy if limn,m→∞σGðhn, hmÞ exists and is
finite

Definition 27. ðH,G, σG, sÞ is said to be G -complete if for each
Cauchy G -sequence in H there is h ∈H with limn,m→∞σGð
hn, hmÞ = limn→∞σGðhn, hÞ = σGðh, hÞ and hnPh for each n
≥ k.

Note that for a map T : H →H, the G-0-continuity and
G-property are defined in the same way as explained in the
last section.

Theorem 28. Let ðH,G, σG, sÞ be a G -complete G -partial b
-metric space with the coefficient s ≥ 1 and let h0 ∈H be such
that h0Pl for each l ∈H . Let T : H⟶H be an edge
preserving (if ðh, lÞ ∈ EðHÞ , then ðTh, TlÞ ∈ EðHÞ) and a G
-property map satisfying the following

σG Th, Tlð Þ ≤ kσG h, lð Þ for all h, l ∈H with hPl,
ð36Þ

where k ∈ ½0, 1/sÞ: Then, T has a fixed point h∗ ∈H and
σGðh∗, h∗Þ = 0:

By Remark 25, we know that P is a preorder relation on H
and ðH,G, σG, sÞ is anR-partial b-metric space. Also, an edge
preserving map is path preserving. Thus, all the conditions of
Theorem 18 hold. Hence, T has a fixed point.

In the following, we obtain partially-ordered-partial b
-metric spaces from R-partial b-metric spaces, by consid-
ering ° as a partial order on H.

Definition 29. Let H ≠∅ be associated with a partial order ° ,
denoted as ðH°Þ . Given a map σ° : H ×H→ℝ+ . If the fol-
lowing conditions are satisfied for all h, l, z ∈H with h°l and
h°z°l:

ðσ°1Þh = l if and only if σ°ðh, hÞ = σ°ðh, lÞ = σ°ðl, lÞ;
ðσ°2Þσ°ðh, hÞ ≤ σ°ðh, lÞ;
ðσ°3Þσ°ðh, lÞ = σ°ðl, hÞ;
ðσ°4Þσ°ðh, lÞ ≤ s½σ°ðh, zÞ + σ°ðz, lÞ� − σ°ðz, zÞ, where s ≥ 1,
then ðH,G, σ°, sÞ is called a partially-ordered-partial b

-metric space with the coefficient s ≥ 1:

As we discussed in the above, we state the following
result.

Theorem 30. Let ðH,G, σ°, sÞ be an ° -complete partially-
ordered-partial b -metric space with the coefficient s ≥ 1 and
let h0 ∈H be such that h0

°l for each l ∈H . Let T : H ⟶H
be order preserving (if h°l then Th°Tl ), and an ° -property
map satisfying the following:

σ° Th, Tlð Þ ≤ kσ° h, lð Þ for all h, l ∈H with h°l,
ð37Þ

where k ∈ ½0, 1/sÞ: Then, T has a fixed point h∗ ∈H and
σ°ðh∗, h∗Þ = 0:

Remark 31. ≼− completeness is defined in the same way as G
-completeness.

4. Conclusion

By combining the concepts of orthogonality and the binary
relation, we introduced the notion of R-partial b-metric
spaces. We presented some related fixed point results. Some
illustrated examples and an application to graphical partial
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b-metric spaces and partially-ordered-partial b-metric spaces
have been provided. As perspectives, it would be interesting
to consider in this setting more generalized contraction
mappings involving simulation functions or more control
functions.
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