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In this paper, a generalized algorithm to develop a class of approximating binary subdivision schemes is presented. The proposed
algorithm is based on three-point approximating binary and four-point interpolating binary subdivision schemes. It contains a
parameter which classifies members of the new class of subdivision schemes. A set of efficient properties, for instance,
polynomial generation and reproduction, support, continuity, and Hölder continuity, is discussed. Moreover, applications of the
proposed subdivision schemes are given in order to demonstrate their variety, flexibility, and visual performance.

1. Introduction

Subdivision is a competent way of producing smooth curves
or surfaces in geometric modeling and computer graphics. It
repeatedly refines the initial polygonal shape. After each split
average step, we get closer to the limit curve, which is the
limit of an infinite series. A nice property of subdivision
schemes is that they are simple and local, which means that
local change in initial data will only have a local effect in
the resulting object. Subdivision schemes have become cele-
brated because of their simplicity and efficiency. There are
generally two main categories of subdivision schemes: inter-
polatory and approximating. For interpolating subdivision
schemes, limit curve always passes through initial control
points while for approximating subdivision schemes it may

or may not. Subdivision schemes play an integral role in
computer graphics due to their wide range of applications
in many fields such as engineering, medical science, space
science, graphic visualization, and image processing. Differ-
ential equations are used for mathematical modeling of many
phenomena. Different techniques are being used to solve
boundary value problems [1] and nonlinear problems [2].
Nowadays, subdivision schemes are also becoming a popular
tool to numerically solve boundary value problems [3]. Sub-
division algorithms are also a major field in many multiscale
techniques applied in data compression. In some applica-
tions, the given data need not be reproduced at each step of
the subdivision process, which needs the applications of sub-
division schemes. Several researchers in the area of continu-
ous geometry have been established classical subdivision
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schemes for various kinds of initial control data. In geometric
modeling and engineering, practical applications of subdivi-
sion curves are restricted due to their shortcomings, and to
overcome these shortcomings, a lot of work has been carried
out [4–17].

Deslauriers and Dubuc [18] presented a family of inter-
polating binary subdivision schemes. They used Lagrange
interpolating polynomial for construction of schemes. Hor-
man and Sabin (HS) [19] proposed a family of binary subdi-
vision schemes having cubic precision. Some members of the
HS family are interpolating and some are approximating.
Mustafa et al. [20] offered a family of binary subdivision
schemes which has alternating primal and dual symbols.
Ashraf et al. [21] discussed a family of binary subdivision
schemes based on Lane-Riesenfeld algorithm. Members of
the proposed family have quintic precision. Mustafa and Bari
[22] developed a family of univariate subdivision schemes for
curve generation and data fitting. Asghar and Mustafa [23]
presented a unified framework of stationary and nonstation-
ary subdivision schemes. Keeping in view this practice, we
present a generalized algorithm to develop a new class of
approximating binary subdivision schemes. Ghaffar et al.
[24–29] constructed geometric continuity conditions for the
construction of free-form generalized subdivision curves
with single shape parameter. These free-form complex shape
adjustable generalized curves can be obtained by using
shape-adjustable generalized subdivision schemes. These
newly proposed approaches not only take over the benefits
of classical subdivision curve and surface schemes but also
resolve the issue of shape adjustability of subdivision curves
and surfaces with the help of tension control shape parame-
ters. They modeled some complex curves and surfaces using
higher continuity conditions. The proposed masks of the
schemes provide an alternative approach to generate the
complex curves using higher continuity conditions with sim-
ple and straightforward calculation for the proposed algo-
rithm because they are blended with linear polynomials
rather than trigonometric functions. In 2020, Ashraf et al.
[17, 30, 31] proposed a new approach using the generalized
hybrid subdivision curve with shape parameters to solve the
problem in construction of some symmetric curves and sur-
faces. These curves are easily modified by the changing the
values of shape parameters.

In this paper, we offer a Lane-Riesenfeld-like algorithm
to derive a class of binary approximating subdivision
schemes. Our algorithm is based on the well-known four-
point interpolating binary subdivision scheme [18], which
is C1 continuous, and three-point approximating binary
subdivision scheme [32], which has C3 continuity. Consider-
ing ϕ smoothing stages as in the Lane-Riesenfeld algorithm,
our proposed algorithm allows us to derive a class of univar-
iate subdivision schemes. In fact, each member of the pro-
posed class is enumerated by ϕ, and higher values of ϕ give
schemes with wider masks and support, higher continuity,
higher Holder regularity, and higher degree of polynomial
generation. The first member of the proposed class (corre-
sponding to ϕ = 0) coincides with the three-point approxi-
mating binary subdivision scheme [32]. The proposed class
of schemes generates schemes of higher continuities and

visually more smooth limit curves as compared to existing
families of schemes. The content of the paper is structured
as follows. In Section 2, fundamental definitions and con-
cepts are given. Section 3 presents a generalized algorithm
for construction of new class of subdivision schemes. Section
4 is devoted for properties of proposed schemes, such as
continuity, Hölder continuity, and support of basic limit
function. Geometrical analysis and some beautiful examples
of limit curve are given in Section 5. Section 6 presents a
summary of the paper.

2. Preliminaries

Let the initial data be given by a set of control points
G0 = fg0i ∈ℝ, i ∈ℤg, and the set of control points at
refinement level hðh ≥ 0, h ∈ℕÞ is given by Gh = fgh

i ∈ℝ,
i ∈ℤg. Define Gh+1 = fgh+1i ∈ℝ, i ∈ℤg recursively by the
following binary refinement rules:

gh+1
i = 〠

k∈ℤ
bi−2kg

h
i ,  i ∈ℤ, ð1Þ

where the finite set B = fbi, i ∈ℤg is called mask. The
recursive algorithm associated with the repeated applica-
tion of (1) is called subdivision scheme and denoted by
S. The Laurent polynomial or symbol of the scheme S is
defined as

B zð Þ =〠
l∈ℤ

blz
l: ð2Þ

Theorem 1 (see [33]). If a binary scheme S is convergent,
then the mask B = fbi, i ∈ℤg satisfies

〠
l∈ℤ

b2l =〠
l∈ℤ

b2l+1 = 1: ð3Þ

The symbol of a convergent scheme can be also be writ-
ten as

B zð Þ = Beven z2
� �

+ zBodd z2
� �

, ð4Þ

with BevenðzÞ =∑l∈ℤb2lz
l and BoddðzÞ =∑l∈ℤb2l+1z

l.

Theorem 2 (see [33]). A binary scheme S associated with the
symbol

B zð Þ = z + 1ð Þm+1

2m
L zð Þ ð5Þ

is said to be Cm continuous if the subdivision scheme associ-
ated with the symbol LðzÞ is contractive.

Proposition 3 (see [34]). A binary scheme S generates polyno-
mials of degree m if and only if

B 1ð Þ = 2, B −1ð Þ = 0 and B jð Þ −1ð Þ = 0, j = 1, 2,⋯,m: ð6Þ
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Proposition 4 (see [34]). A binary scheme S reproduces poly-
nomials of degree n with respect to parametrization
fehj = ðj + τÞ/2hg

j∈ℤ
with τ = BðjÞð1Þ/2, if and only if it gener-

ates polynomials of degree n and

B jð Þ 1ð Þ = 2
Yj−1
i=0

τ − ið Þ, j = 1, 2,⋯, n: ð7Þ

3. Algorithm for Construction of Schemes

The well-known four-point interpolating binary subdivision
scheme [18] is given by

gh+12i = ghi ,

gh+12i+1 = −
1
16g

h
i−1 +

9
16 g

h
i +

9
16g

h
i+1 −

1
16 g

h
i+2:

8<
: ð8Þ

By considering (4), the symbol of the even part of scheme
(8) is as follows:

Peven zð Þ = z + 1
2

� �
−z2 + 10z − 1

8

� �
: ð9Þ

Now, consider the three-point approximating binary
subdivision scheme [32]

gh+12i = 1
16 g

h
i−1 +

10
16g

h
i +

5
16 g

h
i+1,

gh+12i+1 =
5
16g

h
i−1 +

10
16 g

h
i +

1
16g

h
i+1:

8>><
>>: ð10Þ

The symbol of scheme (10) is given by

T zð Þ = 2 z + 1
2

� �5
: ð11Þ

Let us now present the class of subdivision schemes,
namely, R = fRφ : φ ≥ 0, φ ∈ℕg. The symbol of the scheme
Rφ is obtained by applying symbol of the even part of scheme
(8) φ-times on symbol of scheme (10) and given by

Rφ zð Þ = Peven zð Þð ÞφT zð Þ: ð12Þ

So by (9), (11), and (12), we have

Rφ zð Þ = 2 z + 1
2

� �φ+5 −z2 + 10z − 1
8

� �φ

, ð13Þ

where fφ ≥ 0, φ ∈ℕg. The members of the class R of subdi-
vision schemes can be categorized by varying φ = 0, 1, 2,⋯,
in (13). By taking φ = 0 in (13), we get three-point approxi-
mating binary scheme [32]. Table 1 presents mask of some
members of the proposed class.

4. Properties of the Proposed Schemes

In this section, we present some desirable properties of class
R of subdivision schemes, comprising of polynomial genera-
tion and reproduction, support, continuity, and Hölder
continuity.

4.1. Polynomial Generation and Reproduction. If a subdivi-
sion scheme generates polynomials of degree up to dG, then
the polynomial generation degree of the scheme is dG. Also,
if the initial data G0 = fg0i , i ∈ℤg is sampled from a polyno-
mial P̂ of degree dR and the scheme yields precisely the same
polynomial in the limit, then the reproduction degree dR is
the maximal degree of polynomials that can be reproduced
by the scheme. Clearly, the reproduction degree is always less
than or equal to the generation degree. Now, we establish few
results about polynomial generation and polynomial repro-
duction of the proposed subdivision schemes.

Proposition 5. Rφ -scheme generates space of polynomials up
to degree φ + 4.

Proof. Since symbol of Rφ -scheme satisfies the conditions

Rφ 1ð Þ = 2, Rφ −1ð Þ = 0 andRj
φ −1ð Þ = 0, j = 1, 2,⋯, φ + 4, ð14Þ

so by Proposition 3, Rφ-scheme has φ + 4 polynomial gener-
ation degree.

In the view of Conti and Hormann [35], the standard
parametrization ehj = j/2h at level h ∈ℕ is not appropriate
to analyze a subdivision scheme to reproduce space of
polynomials, and the relative shift τh = ðeh0 − eh+10 Þ/2h+1

Table 1: Mask of the Rφ schemes corresponding to different values of parameter φ.

φ Scheme Mask

0 3-point
1
16 1, 5, 10,10,5, 1½ �

1 5-point
1
256 −1, 4, 44,124,170,124,44,4,−1½ �

2 6-point
1

4096 1,−13,−17,309,1338,2478,2478,1338,309,−17,−13, 1½ �

3 8-point
1

65536 −1, 22,−91,−580,1303,12362,31557,41928,31557,12362, 1303,−580,−91, 22,−1½ �
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between the parameterizations at iteration level h and h
+ 1 is important for polynomial reproduction of degree
dR ≥ 1. By applying a more suitable parametrization ehj =
ðj + τφÞ/2h with shift parameter τφ = Rð1Þ

φ ð1Þ/2 = ð3φ + 5Þ/2,
we have the following result.

Proposition 6. Rφ-scheme reproduces linear polynomial with

respect to parametrization fehj = ðj + τφÞ/2hgj∈ℤ with shift τφ
= ð3φ + 5Þ/2.

Proof. It can be easily verified that

R 1ð Þ
φ 1ð Þ = 2τφ = 3φ + 5,

R jð Þ
φ 1ð Þ = 2

Yj−1
i=0

τφ − j
� �

, j = 0, 1:
ð15Þ

Thus, by Propositions 4 and 5, Rφ-scheme reproduces
polynomial of degree one.

Table 2 presents the degree of polynomial generation and
reproduction of some of the proposed Rφ-schemes. It is
observed that the degree of polynomial generation is increas-
ing linearly with the value of parameter φ.

4.2. Support. The support of a subdivision scheme quantifies
how much one vertex brought change in its neighboring ver-
tices, and its measure represents local support of the limit
curve. Basic limit function (BLF) of a convergent subdivision
scheme is a limit function of the initial data G0 = fg0i , i ∈ℤg
which is of the form

g0i =
1, i = 0,
0, i ≠ 0:

(
ð16Þ

By following [36], we determine that support of BLF of
Rφ-scheme is 3φ + 5. BLF generated by the proposed R0 and
R1 schemes are demonstrated in Figure 1.

4.3. Continuity Analysis. Continuity of a subdivision scheme
is an essential parameter on which efficiency of a scheme

depends. To investigate continuity of our proposed class,
we follow the approach as given in [33] and use the symbol
of Rφ-scheme.

Theorem 7. The Rφ -scheme has Cφ+3−vφ continuity, where φ
= 1, 2, 3,⋯, and vφ = bðφ − 1Þ/2c (floor function).

Proof. The symbol of Rφ -scheme (13) can be simplified as

Rφ zð Þ = z + 1ð Þφ+4−vφ
2φ+3−vφ

rφ zð Þ, ð17Þ

with

rφ zð Þ = z + 1
2

� �1+vφ −z2 + 10z − 1
8

� �φ

, φ = 1, 2, 3,⋯,

ð18Þ

where vφ = bðφ − 1Þ/2c:
Let Srφ be the subdivision scheme associated with the

symbol rφðzÞ. The scheme Srφ is contractive provided that

kSrφk∞ =max f∑l∈ℤjr2lj,∑l∈ℤjr2l+1jg < 1. So, by Theorem 2,

Rφ-scheme has Cφ+3−Vφ continuity.
In Theorem 7, we discuss continuity of Rφ-scheme for

φ = 1, 2, 3,⋯. It is to be noted that R0-scheme has C3 con-
tinuity which is analyzed in [32].

Corollary 8. The R1-scheme has C4 continuity.

Proof. By letting φ = 1, the symbol of R1-scheme from (17)
and (18) is given by

R1 zð Þ = z + 1ð Þ5
24 r1 zð Þ, ð19Þ

with

r1 zð Þ = 1
16 −z3 + 9z2 + 9z − 1
� �

: ð20Þ

Let Sr1 be the scheme corresponding to the symbol r1ðzÞ.
The scheme Sr1 is contractive, as kSr1k∞ =max f10/16, 10/
16g = ð10/16Þ < 1. So, by Theorem 7, R1-scheme has C4

continuity.

Similarly, for different values of parameter φ, continuity
of Rφ-scheme can be easily computed by using Theorem 7.

4.4. Hölder Continuity Analysis. Continuity of a subdivision
scheme is related to the existence of derivative of subdivision
curve. For example, subdivision curve is said to be Cm contin-
uous if the mth derivative of the curve exists and is continu-
ous everywhere in the given interval. On the other hand,

Table 2: Support, degree of polynomial generation (dG), degree of
polynomial reproduction (dR), continuity (C), and HC of Rφ

-scheme for φ = 0, 1, 2, and 3.

φ Support dG dR C
Hölder

continuity
LB UB

0 5 4 1 3 4 4

1 8 5 1 4 4.678 4.678

2 11 6 1 5 5.299 5.332

3 14 7 1 5 5.871 5.968
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Hölder continuity (HC) of a subdivision scheme tells how
continuous the highest continuous derivative is. Therefore,
it is also important to find HC of subdivision schemes along
with continuity. Lower bound (LB) on HC of the proposed
class is calculated by using an interesting property of symbol
of Rφ-scheme, i.e., odd coefficients in RφðzÞ are nonnegative
and even coefficients are nonpositive.

Theorem 9. LB on the HC of Rφ-scheme is φ + 5 − log2
ðð3/2Þφ + 1Þ, where φ = 0, 1, 2,⋯.

Proof. By (13), symbol of Rφ -scheme can be expressed as

Rφ zð Þ = z + 1
2

� �φ+5
Uφ zð Þ, ð21Þ

where UφðzÞ = ðaðzÞÞφbðzÞ, aðzÞ = ð−z2 + 10z − 1Þ/8, and b
ðzÞ = 2. So LB on HC of Rφ-scheme is given by φ + 5 −
log2kUφk. As we know kUφk =max ðu⋄, u⋄Þ, where u⋄ is
the sum of odd and u⋄ is the sum of even coefficients of
UφðzÞ. We can write coefficients of UφðzÞ in the following
manner:

u⋄

u⋄

 !
=

a⋄ a⋄

a⋄ a⋄

 !φ
b⋄

b⋄

 !
: ð22Þ

Thus, we have

u⋄

u⋄

 !
=

5
4 −

1
4

−
1
4

5
4

0
BB@

1
CCA

φ

0
2

 !
: ð23Þ

By eigenvalue decomposition, we have

u⋄

u⋄

 !
= 1
2

−1 1
1 1

 ! 3
2 0

0 1

0
@

1
A

φ
−1 1
1 1

 !
0
2

 !
, ð24Þ

which implies that

u⋄

u⋄

 !
=

−
3
2

� �φ

+1

3
2

� �φ

+1

0
BBB@

1
CCCA

φ

: ð25Þ

Thus, we have

Uφ

�� �� = 3
2

� �φ

+ 1: ð26Þ

Consequently, LB on HC of Rφ-scheme is φ + 5 − log2
ðð3/2Þφ + 1Þ, where φ = 0, 1,⋯.

Upper bound (UB) on HC of Rφ-scheme is as follows.

Theorem 10. UB on HC of Rφ-scheme is φ + 5 − log2ðζφÞ,
where φ = 0, 1,⋯, and ζφ be the joint spectral radius of the
matrices Q0 and Q1 which are obtained by using symbol of
Rφ -scheme.

Proof. By (13), symbol of Rφ -scheme can be expressed as

Rφ zð Þ = z + 1
2

� �φ+5
Qφ zð Þ, ð27Þ

where QφðzÞ = 2ðð−z2 + 10z − 1Þ/8Þφ. Let q0, q1,⋯, qd be the
nonzero real coefficients of QφðzÞ. Also, Q0 and Q1 are the
matrices of order d × d defined by

–3 –2 –1 0 1 2 3

0.2

0.4

0.6

0.8

1

(a)

–3 –2 –1 0 1 2 3

0.2

0.4

0.6

0.8

1

(b)

Figure 1: (a, b) Basic limit functions generated by the proposed schemes R0 and R1, respectively.
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Original
�e scheme R0 (C3)
�e scheme R1 (C4)
�e scheme R2 (C5)

Figure 2: Behavior of the proposed R0, R1, and R2 schemes after
three iterations.

Q0ð Þmn = qd+m−2n, and Q1ð Þmn = qd+m−2n+1, ð28Þ

where m, n = 1, 2,⋯, d:
Let us denote joint spectral radius of both matrices Q0

and Q1 by ζφ. Then, by Rioul [37] and Dyn [33], UB on
HC of Rφ-scheme is given by φ + 5 − log2ðζφÞ.

For different values of parameter φ, upper and lower
bounds on the HC of Rφ-schemes can be straightforwardly
computed by using Theorems 9 and 10. Table 2 summarizes
the continuity and HC of the proposed class of subdivision
schemes. It clearly indicates that as we go up for higher values
of parameter φ, continuity and HC of Rφ-schemes also
increase. Moreover, newly generated Rφ-schemes have higher
order of continuity and HC as compared to their parent sub-
division schemes.

5. Geometrical Analysis of Proposed Schemes

The shape of an object is generally controlled by a control
polygon. The purpose of applying a subdivision scheme on
the control polygon is to generate visually smooth curves.
Figure 2 presents the behavior of some of the proposed
schemes. R0, R1, and R2 schemes are applied on the same ini-
tial polygon, and limit curves are obtained after three itera-
tions. It is evident that the proposed class offers more
choices to meet different designing needs.

5.1. Subdivision Rules for Endpoints. For closed curves, the
subdivision rules of R0, R1, R2, and R3 schemes can be defined
by their corresponding Laurent polynomial from (13). The
limit curves generated by these schemes are C3, C4, C5, and
C5 continuous, respectively. In case of dealing with open
polygons, these rules can be used to improve the interior of
the curve, while it is quite troublesome to improve the first
and last edges with the help of subdivision rules of the origi-
nal proposed schemes. So to handle the endpoints of an open
polygon, we need to supply additional points which are not
usually required in case of a closed polygon. Let gh

0g
h
1 be the

first edge of the open polygon fGh = gh
k : k = 0,⋯, 2hmg.

Now, we define an additional control point gh−1, as an extrapo-
latory rule in the nonrefined polygon Gh, and then we can
compute the point gh+11 through the proposed schemes by
applying subdivision to the subpolygon fgh−1, gh0, gh1, gh

2g. We
select the point as gh

−1 = 2gh0 − gh1. The first edge of an open
control polygon fGh = ghk : k = 0, 1,⋯, 2hmg can be refined
by using the following rules.

(i) Refinement rules of the proposed three-point
scheme R0 are given by

gh+10 = 5
4g

h
0 −

1
4g

h
1,

gh+1
1 = 3

4g
h
0 +

1
4g

h
1:

ð29Þ

(ii) Refinement rules of the proposed five-point scheme
R1 are given by

gh+1
0 = 380

256g
h
0 −

120
256g

h
1 −

4
256 g

h
2,

gh+1
1 = 255

256g
h
0 +

2
256g

h
1 −

1
256 g

h
2,

gh+12 = 132
256g

h
0 +

120
256g

h
1 +

4
256g

h
2,

gh+13 = 42
256g

h
0 +

171
256 g

h
1 +

44
256g

h
2 −

1
256g

h
3:

ð30Þ

(iii) Refinement rules of the proposed six-point scheme
R2 are given by

gh+1
0 = 3070

4096 g
h
0 +

1029
4096g

h
1 −

4
4096g

h
2 +

1
4096 g

h
3,

gh+1
1 = 1306

4096 g
h
0 +

2495
4096g

h
1 +

308
4096g

h
2 −

13
4096 g

h
3,

gh+12 = 283
4096 g

h
0 +

2491
4096 g

h
1 +

1338
4096 g

h
2 −

17
4096 g

h
3 +

1
4096 g

h
4,

gh+13 = −
15
4096 g

h
0 +

1337
4096 g

h
1 +

2478
4096 g

h
2 +

309
4096 g

h
3 −

13
4096g

h
4:

ð31Þ
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(a) (b)

Figure 3: Application of R0-scheme: (a) initial polygon and (b) the limit curve generated by R0-scheme at the third subdivision level.

(a) (b)

Figure 4: Application of R0 -scheme: (a) initial polygon and (b) the limit curve generated by R0-scheme at the third subdivision level.

(a) (b)

Figure 5: Application of R1-scheme: (a) initial polygon and (b) the limit curve generated by R1-scheme at the third subdivision level.
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(a) (b)

Figure 6: Application of R1 -scheme: (a) initial polygon and (b) the limit curve generated by R1 -scheme at the third subdivision level.

(a) (b)

Figure 7: Application of R2-scheme: (a) initial polygon and (b) the limit curve generated by R2-scheme at the third subdivision level.

(a) (b)

Figure 8: Application of R3 -scheme: (a) initial polygon and (b) the limit curve generated by R3 -scheme at the third subdivision level.
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Original curve
Limit curve

(a)

Original curve
Limit curve

(b)

Figure 9: Application of R3 -scheme: (a, b) the initial polygon along with sharp features of limit curve generated by R3-scheme at the third
subdivision level.

(a) 3-point scheme [38] (b) 4-point scheme [18] (c) 5-point scheme [19]

(d) R0-scheme (e) R1-scheme (f) R2-scheme

Figure 10: Comparison of the existing and proposed subdivision schemes at the third subdivision level.
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(iv) Refinement rules of the proposed eight-point
scheme R3 are given by

gh+1
0 = 65066

65536 g
h
0 +

1028
65536 g

h
1 −

580
65536 g

h
2 +

22
65536 g

h
3,

gh+11 = 33976
65536 g

h
0 +

30254
65536 g

h
1 +

1394
65536 g

h
2 −

90
65536 g

h
3

−
1

65536 g
h
4,

gh+12 = 11246
65536 g

h
0 −

42508
65536 g

h
1 +

12340
65536 g

h
2 −

580
65536 g

h
3

+ 22
65536 g

h
4,

gh+13 = 1119
65536 g

h
0 +

31648
65536 g

h
1 +

31558
65536 g

h
2 +
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Similarly, we can refine the final edges of the open
polygon.

5.2. Applications and Comparison. Geometrical performance
of R0, R1, R2, and R3 schemes is depicted through several
examples. The proposed schemes have good continuity and
present smooth limit curves. Figures 3(a) and 4(a) present
initial control polygons of cap and elephant, respectively,
while Figures 3(b) and 4(b) are the limit curves obtained by
applying three iterations of R0-scheme on these initial poly-
gons. Figures 5(a) and 6(a) present initial control polygons
of flower and bird, respectively, while Figures 5(b) and 6(b)
are the limit curves obtained by applying three iterations of
R1-scheme on these initial polygons. Figures 7(a) and 8(a)
present initial control polygons of face of girls, while
Figures 7(b) and 8(b) are the limit curves obtained by apply-
ing three iterations of R2-scheme on these initial polygons,
respectively.

Figure 9 represents the initial polygon along with sharp
features of limit curve generated by R3-scheme at the third
subdivision level. Figures 10 and 11 present comparison of
some existing subdivision schemes (3-point scheme [38], 4-
point scheme [18], and 5-point scheme [19]) with the pro-
posed subdivision schemes (R0, R1, and R2 schemes). We have
chosen two different initial polygons, and limit curves are gen-
erated after three subdivision levels. It is clear from the figures
that the proposed schemes generate smooth limit curves.

6. Conclusion

Subdivision is an efficient way of constructing smooth curves
or surfaces in geometric modeling and computer graphics. In

(a) 3-point scheme [38] (b) 4-point scheme [18] (c) 5-point scheme [19]

(d) R0-scheme (e) R1-scheme (f) R2-scheme

Figure 11: Comparison of the existing and proposed subdivision schemes at the third subdivision level.
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this paper, we have presented an elegant way of constructing
a class of approximating binary subdivision schemes by using
two well-known binary subdivision schemes. Several exam-
ples are provided to illustrate that the proposed schemes give
wide choice to geometric designers for generation of smooth
geometric models as per their own needs. Comparison with
some existing schemes is also given. Moreover, several
important properties like polynomial reproduction and gen-
eration, support of BLF, continuity, and HC of the proposed
scheme are discussed. Geometrical analysis of the limit curve
is also carried out.
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