Hindawi

Journal of Function Spaces

Volume 2020, Article ID 6679101, 11 pages
https://doi.org/10.1155/2020/6679101

Research Article

Hindawi

Infinite Existence Solutions of Fractional Systems with

Lipschitz Nonlinearity

Rafik Guefaifia,' Salah Mahmoud Boulaaras(),>> Bahri Cherif,” and Taha Radwan ©>*

"Laboratory of Mathematics, Informatics and System (LAMIS), Larbi Tebessi University, Tebessa, Algeria

Department of Mathematics, College of Sciences and Arts, Qassim University, Ar Rass, Saudi Arabia

*Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1 Ahmed Ben Bella, Algeria
*Department of Mathematics and Statistics, Faculty of Management Technology and Information Systems, Port Said University,

Port Said, Egypt

Correspondence should be addressed to Taha Radwan; t.radwan@qu.edu.sa

Received 2 November 2020; Revised 6 December 2020; Accepted 8 December 2020; Published 17 December 2020

Academic Editor: Maria Alessandra Ragusa

Copyright © 2020 Rafik Guefaifia et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The paper deals with the existence of infinitely many solutions of a class of perturbed nonlinear fractional p-Laplacian differential
systems using one control parameter combined with the variational method.

1. Introduction

Fractional differential equations (FDEs) involve fractional
derivatives of the form (d*/dx“)(a > 0), where is not neces-
sarily an integer. They are generalizations of the ordinary dif-
ferential equations to a random (noninteger) order. FDEs
have attracted considerable interest due to their ability to
model complex phenomena in several fields of science, engi-
neering, physics, biology, and economics (see [1-7]). In sum-
mary, many improvements have been made in the theory of
partial calculus and partial differential equations and partial
and ordinary differential equations (see [8-18], [2, 5]).
Numerous studies have explored the existence and solutions
of different nonlinear elementary and boundary value prob-
lems through the use of various nonlinear analysis tools
and techniques (see, for example, [7, 19-38]). Some of these
ways are the fixed point theorems, critical point theory,
monotone iterative methods, coincidence degree theory,
and variational methods (see [30]).

Motivated by the above, the interest of this paper is
the infinite existence solutions of the following fractional
system

D5 (D, (4D0u(t))) = AE, (tu(t), v(t)) + hy (1), a.et€[0,T],

DS (@1, <0va(¢))) = AF,(t, u(t), v(t)) + hy(u,), a.ete0,T),
u(0)=u(T)=0, v(0)=v(T)=0,

(1)

where A is a positive real parameter, a, Be(0;1], and (DY,
(D% and OD;B , tDl; are the left and right Riemann-Liouville
fractional derivatives of order a, 3, respectively, @,(s)=
IsP2s,p>1, (Hy)F:[0,T]xR> - R, where F(-u,v) is
continuous in [0, T] for any (u,v) € R?, F(t,-, -) is a C'
function in R?, and F, is the partial derivative of F with
respect to s, and h; : R — R are two Lipschitz continuous
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functions of order (p-1) with Lipschitzian constants
L;>0 for 1<i<2, ie,

|i(x1) = hy(x,)| < Lijo, = 5, P (2)

2. Preliminaries

We give some basic lemmas and notations and construct a vari-
ational framework in order to apply critical point theory to prove
the existence of an infinite number of solutions to the system (1).

Let X be a real Banach space, and in addition, let Yy
denote the class of all functionals

p=X—>R,, (3)

that possess the following property:

If {w,} is a sequence in X converge weakly to w € X with
lim inf ¢(w,) < ¢(w); thus, {w,} has a subsequence con-
n—o00

verge strongly to w.

For offer, if X is uniformly convex and S : [0,+00) — R
is a continuous strictly increasing function, then the func-
tional w — S(||w||) belongs toY y.

Definition 1 (see Kilbas et al. [4] chapter 2, p. 87). Let u be a
function defined on [a, b]. The right and left Riemann-
Liouville fractional derivatives of order > 0 for a function u
are defined by

dn

_1\" dn b .
WDE() = (1 D () = [ (e s

I(n—a)dt"
(5)

for all t € [a, b], provided the right-hand sides are pointwise
defined on [a, b], where n—1<a<nand n e N.
Here, I'(«) is the standard gamma function given by

a

%" e *dx. (6)

Set AC" ([a, b], R) the functions space u: [a,b] — R
such that

ueC" ' (a, b, R), (7)
with
u" e AC" (|a, b], R). (8)
As usual, C"'([a, b], R) denotes the mapping set having
(n — 1) times continuously differentiable on [a, b]. In particu-

larly, we have

AC([a,b], R) == AC" (], b], R). 9)
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Definition 2 (see [31]). Let 0 < a < 1, for 1 < p < 0o the deriv-
ative fractional space

B = {u(t) e I7([0, T}, R),Dfu(t) € LP([0, T], R), u(0) = u(T) = 0}.
(10)
Thus, for all u € Ef, we de ne the norm for EF, as follows:
1p

||u||a=(j:w(t)Pdt+j0T|onu<t>Pdt) S

Lemma 3 (see [3]). Let 0<a <1 and 1< p <oo. For any u
€ Ef, we have

[0

[[ullp < WHOD?u”U" (12)
Also, ifa>p and 1/p + 1/q = 1, then
a-1/p
ul| < Diul|.,. 13
o Frartia =g gy lo Pl 09
Under the result of Lemma 3, we note that
a—1/p
< WHOD(:”HU” (14)
for0<a<1, and
T(X—I/p
4]l oo < (15)

I(a)((a—1)g+1)" oDzl
fora> pand 1/p+1/q=1.

Under (14), we can see that (11) is equivalent to the follow-
ing norm:

T 1lp
full= ([ lorucopar) e o)
0

For 0< <1, 1<p<oo. Analogous to the space Ef, we
define the fractional derivative space EF, as

{v(t) €22 (10, T, R),Dfv(e) € L7((0, T), R), v(0) = W(T) = 0.
(17)

Then, for any v € E‘E, the norm ofE‘f3 is defined by

Wl - (J:v<t>|f’dt+ J o

Vv eED.

, A\
va(t)‘ dt> , ’
(18)
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Similar with (14) and (15), we get

T
VIl < 7 oDy Vil s (19)

r(B+1)
for0< B<1, and

TB-1lp
1Vlloo < 773 oDVl -
rB)((B-1)g+1)

(20)

Moreover, if 0< B<1and 1/p + 1/q = 1, then, based upon
(19), the weighted norm

wm=(ﬂﬁbﬂaﬁm)ww (21)

is equivalent to (18), for every v € Eg.
In the following discussion, for any u € Ef, v € E% denote
the space of X = Ef, x Ej; with the norm

1/p
16 9) e = (lull+ I015) > YwveX,  (22)

where ||lull, and |ull; are defined in (16) and (21),

respectively.
Clearly, X is embedded compactly on

C’([0, T}, R) x C°([0, T], R). (23)

Lemma 4 (see [33]). For 0<a, <1 and 1<p<oco. The
derivative fractional space X is a reflexive separable Banach
space.

Lemma 5. Assume that 1/p<a <1 and the sequence {u,}
converge weakly to u in EF, i.e., u, — u. Then, {u, } converges
strongly to u in C([0, T|,R), i.e., ||u, —u||., — 0, as n —
+00.

Definition 6 (see [3]). We point out to a weak solution to the
system (1), for all (4, v) € X such that

T

Jo D, (oD u(t))oDfx(t)dt + JO ch(ODf‘v(t))Ony(t)dt

| )i | mw)yd

0

for all (x,y) € X.

We define for all x € R:

T

mwaﬁ@W@whjmmmﬁ

0 0

forall i=1,2,
(25)
for every t € [0, T].

Lemma 7. Let h;, h, : R — R satisfy (2) and H,(x), ®,(x),
i=1,2, defined by (25). Thus, ®(u,v): X — R defined by

T T

Hl(u(t))dt+J H,(v(t))dt,

O(1) =6, (1) + ©s(v) = | 0

(26)

is a Gdteaux function weakly sequentially differentiable
over X with

@'(u, v)(x,y) = J hy(u(t))x(t)dt + J hy(v(t))y(t)dt,  forall (x,y) € X.

(27)
Proof. Assume that

{(u,,v,)} <X, (u,,v,) = (4,v)inX, (28)

as n — +00. According to Lemma 5 that (u,,v,) converges

uniformly to (u,v) on [0, T]. Then, there exists ¢;,¢c, >0

such that [|u,||, <¢, and ||v,||, <¢, for any neN.
Then,

u, ()
|mwm%mwmuuj s ds

) (29)
< %Uun(t)\l’ + |u()) < %(le +Hu(IR)>
W
|H2(Vn(t)) _Hz(v(t>)| SLZ J ‘5|P* ds
v(t) (30)

<2 (O + POF) < 2 (& + O,

for any n €N and t € [0, T]. Furthermore, H,(u,(t)) —
H,(u(t)) and H,(v,(¢)) — H,(v(¢)) at every t € [0, T}, and
by the Lebesgue Convergence Theorem

T T T
HMNWHJ&M@W—%HM@W

0 0

Ol )= |

0

+ J H,(v(t))dt =0O(u,v).

0

(31)

Now we prove the Gateaux differentiability of ®. Assume



that u, x € Ef and s # 06; thus,

‘@1(u+sx)—®l(u) _JT

hl(u(t))x(t)dt’

H(u+sx)-H,(u)

T
< — hy (u(t))x(t)|dt
| S C)sode
T
= J [y (u(t)) +C(1)x(t) = hy (u(t))[|x(1)|d2
0
< Lyl*[1%Isls
where
0<{(t)<1, tel0,T]. (33)
Thus
O, : B —R, (34)
is a Gateaux differentiable for all u € EE.
Likewise, we have
®, E;—R, (35)
which is a Gateaux differentiable for all v € EP.
Therefore,
O:X—R, (36)

is a Gateaux differentiable for all (u, v) € X with its derivative

T T

By (u(t))x(t)dt + J h,(v(t))y(t)dt, (x,y) € X.

0

o' (1 9)(x9) == |

0

(37)

For any three elements (1, v,), (1, v, ), and (x, y) of X, it
is easy to see that

T
(®l(”1) Vi) — ®’(”2’ Vz)) ()= J (hy(uy) = hy(uy)x(t))dt
T ’ T
+j (ha(vy) - hy () () dt < L1j0 uty — 0, P (1)t

0

T B LTV
o1y b o) < -
: I(@)((@-1)q+1)
LZT‘B_UP

Al = w1851l +

L(B)((B-1)q+1)"
v = vl
(38)

which implies

H®,(”1>V1) —GI(”sz)HX <T*([Ju; - [+ [y = V2||€<;1)’

(39)
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where

T L1 Tocfl/p L2 Tﬁfl/p
o {rox)((a— Da+ )" T(B)((B-1)g+ 1)“‘1}'
(40)

Hence, ®' : X — X* is a compact operator.
Similarly to the proof of Theorem 5.1 of [4], we have

Lemma 8 (see [36]). Let I/p < a, < 1, and (u,v) € X. If (u, v)
is a nontrivial weak solution of problem (1), then (u, v) is also
a nontrivial solution of problem (1).

Our analysis is mainly based on the following critical
points theorem of Bonanno and Molica Bisci [36], which is
a more precise result of Ricceri ([37], Theorem 2.5).

Lemma 9 (see [[36], Theorem 2.1]). Let X be a reflexive real
Banach space. Let ¢,V : X — R be two Gateaux differentia-
ble functionals such that ¢ is sequentially weakly lower semicon-
tinuous, strongly continuous, and coercive and ¥ is sequentially
weakly upper semicontinuous. For every r > inf y ¢, put

Supveqﬁ” (]—oo,r])'}/(v) - l}/(u)

ueg™ (]-oco,r]) r— ¢(u>
y= lim inf g, 0= lim nfe(). ()

r—(infx¢)*
Then,

(1) If y < +00 and A €]0, 1/y[, the following alternative
holds: either the functional ¢ — A¥ has a global min-
imum or there exists a sequence {u, } of local minima
¢ — AV such that lim (u,) =+00

ﬂ*?+00¢

(2) If y <+00 and A €]0, 1/8], the following alternative
holds: either there exists a global minimum of ¢ or
the following alternative holds: either there exists a
global minimum of ¢ — AW or there exists a sequence
{u,,} of pairwise distinct local minima of ¢ — A¥, with
lim,_,,,¢(u,) = inf ¢, which weakly converges to a
global minimum of ¢

3. Main Results
Here, we prove our main results.
Setting
LT L, TP
k:=min {1 - —1 S — , (43)
(Fla+1)P" (L(B+1))

L,TPP
g 1))1’}’ )

L7
p=max ¢ 1+ ,
(T(a+ 1))




Journal of Function Spaces

v TPa-1 TPB-1
o {(F(a))"((a— g+ )P (TR (B- 1)+ 1)”}'
(45)

For a given constant 6 € (1/p, 0), set

— 1 o p(l-a) T - _ 1y 1-a\P
PO {L ¢ dt+LT (8170 = (£ - OT)1"*)
+J [0““—0—0TY*)—U—«l—@T”“ﬂp}
(1-6)T
(46)
1 or a-or N
Q(,B,G):p(eT)p {JO 2 ﬁ>dt+LT <t F—(t-0T1) ﬁ)pdt
T
B r—or ) = (b= ((1—oyT) |7 L
o] (- om ) ey}
(47)
For any d > 0, we denote by ((d) the set
{(x,y)EJR2:l|x|}’+l|y|p£d}. (48)
p p

Theorem 10. Suppose that k > 0 and (HO) hold. In addition,
(H) 1lp<a, <1
(H2) F(t,x,y) = 0 for any (t,x, ) [0, T] € [0,+00)[0,+00)
(H3) there exists 0 € (0, 1/p) where if we set

T
A= lim_inf 30 Pmpice P %)t (49)
ot £P
(OTR(t, [(2—- @)E, T(2- B)E)dt
B~ lim sup o T8 TR fE)dr
E—+00 EP
(50)
one has
A< LBOO, (51)
2pMpA
where
A=max {P(a,0),Q(,0)}, (52)
and M is given in (45).
Then, for every
A
elpA k| (53)
B, 2pMA_

(1) has an unbounded sequence in X (weak solutions).

Proof. Our goal is to apply a portion (1) of Lemma 9 to prob-
lem (1). First, by taking

X =Ef x E%, (54)

endowed with || (u, v) || similar to what is considered in (22).
We define the following functional

Li(u,v)=¢(u,v) - A¥ (u, v), (55)

for all (u,v) € X, where

1 1
wv) = —|ull? + = ||v||% — O(u, v), 56
¢(u,v) p””a pH”ﬁ (u,v) (56)

Y(u,v)= JTF(t, u(t), v(t))dt. (57)

0

Since X is embedded compact in
C’([0, T), R) x C°([0, T], R), (58)

it is well known that is a well-defined Géteaux differentiable
functional whose Gateaux derivative at the point (u,v) € X
is the functional ¥’ (1, v) € X #, given by

T
W (1,7)(x,y) J (F, (1 u(t), v(1)))x(1)dt

L. (59)
+ j (B, (6 u(t), v(0)))y (1)t

0

for every (x,y) e X.

We claim that the functional ¥ is a sequentially weakly
upper semicontinuous functional on X. Indeed, for fixed (u,
v) € X, suppose that {(u,,v,)} c X, (u,,v,) = (4,v) in X as
n —> +00. Then, (u,,v,) converges uniformly to (u,v) on
[0, T]. Hence,

T
lim sup ¥(u,,v,) < J lim sup F(t,u,(t),v

n—+0o 0 n—+00

(£))dt

n

T
_ J E(tu, (1), v(£))dt =¥ (, v),

0 (60)

which implies that it is sequentially weakly upper semicon-
tinuous. Hence, the claim is true.

Concerning the functional ¢, we can show that what is
defined by (56) is a sequentially weakly lower semicontinu-
ous, strongly continuous, and coercive functional on X. In
fact since (2) holds for every x,, x, € R and h, (0) = h,(0) =0,
one has |h;(x)| < L;|x|P"", i=1,2, for all x € R. It follows from



(14), (20), and Lemma 5 that

o) = 1l o 3= [ o] - [ oiena

4 p L ! rd L, ! 1P
> —|ulll + = ||V — — u(t - —= v(t t
pH ||zx PH Hﬁ p JO‘ ()| P Jol ()l

L VPN (R X T
2<I; p(I(a+ 1)) >” H <p P(F(ﬁ+l)) >|| ||ﬁ’

(61)
for all (u,v) € X and similarly
1 » 1 » T T
B < - [l + 2 M + j H, (u(t))dt | + j H2<v<r>>dt\
0 0
LT 1 L,TPP
< (P )||u|\f;+ S L VT
I(a+1) p pI(p+1))
<P »
< (nuu +IIvIg).

(62)

for all (u, v) € X. So ¢ is coercive.

Moreover, ¢ + @ is a continuous functional on X, and ©,
from Lemma 5, is Gateaux differentiable sequentially weakly
continuous and therefore continuous on X, then ¢ is a con-
tinuous functional on X. It is not difficult to verify that the
functional is a Géateaux differentiable functional with the dif-
ferential

, T
/(1)) = | @ DruO)Dx
! Diy(t)dt

+ | @ploDv(1))o

T

hl(u<t>>x<t>dr—j o (v())y ().

0

,
l

(63)

Furthermore, ¢ is also sequentially weakly lower semi-
continuous on X since © is sequentially weakly lower semi-
continuous, and if (u,,v,) — (&, v) in X then

1 1
v)= lim inf (;||u||f;+ —||v||‘,§)

- lim O(u,,v,) 2 O(u,v) =

n—-+00

lim inf ¢(u,,

n—+00

d(u, v).
(64)

};IIMII"+ —IIVllp

It is easy to show that the critical points of the functional
I, and the weak solutions of the problem (1) are the same,
and by Lemma 9, we prove our result. According to

1o = max|ua(6) and ] = max|u(t),  (65)
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taking (13) and (20) into account, one has

P<M p P <M P
max [u(t)” < M]|u|fand maxjv(t)l* <Mpl[  (66)

for every (u,v) € X.
Hence,

max (ju(t) + V() ) <M (|l + 1) (67)

So, for every r >0, from the definition of and by using
(61), one has

67 (1=o0r]) = (1) € X : 9, v) <1
< {wnex g s )
c { () ex . L@ (@-Dar1y?

Tpa—l

(LB (B 1)+ 1) r
. o Jull, < %}

1 1 M
c {(u, vyeX :—|uf + =y < T forallt e [0, T]}
p p k

(68)
Set
r)=  inf SUP (1. y)e471 -con)) T (% 7) = ¥ (14, V) |
(uv)e¢™ (]-00,r]) r—¢(u,v)
(©9)

Note that ¢(0,0) = 0, and from the condition (H1), ¥ (0
,0) > 0. Hence, for every r > 0,

) (sup(x,y)egb’l(]—oo,r])lp(x’y)) - ¥(uv)
o(r) = inf
()9 (=eor]) r=¢(uv)
< S9P(y)ep! (-cor) ¥ (57)
_ r bl
(70)
and it follows from (68) that
1 T
o(r)< - sup J F(t,u,v)dt, (71)
T o(Mmrik)

where

Q(%) - {(u, v)eX :%|u(t)|”+ %|v(t)|ps %,Vte [0, T]}.
(72)
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Let {£,} be a sequence of positive numbers such that
§, — +00 and

T
lim inf Jo 8Py < F(E % y)dt

=A_ <+00. 73
EH+OO EP * o0 ( )

Put r, = (k/p2?M)& for all n € N. Let (u,v) € ¢' (J1-00,
r,]), by (68) one has

SO + 2 O < o

’ Vtelo, T], (74)

which implies

Hence, for n large enough (r, > 1)

M
()] + v(e)| < 2{/2Er, =, (76)
Thus, for all n € N,
2P M T
= sup J E(t, u(t), v(t))dt
k&8t wmyex:u(n)+v(t)|<E, vee0.173 o

T
L PEM o Sy, (B2 )t

k &
(77)
Let
y:= lim inf ¢(r). (78)
r—+00
Then,

T
pP¥M i Jo SUP .y, F (1 %, y)dt

Y < lim inf (P(rn) = n—+00 Ef;

n—+00
p2PM
k

A, < +00.
(79)

Hence, AC]0, 1/y].

For A€ A, we shall show that the functional I, is
unbounded from below.

Indeed, since B, /p” > 1/A, we can choose a sequence
{n,} of positive numbers and &> 0 such that #, — +co
and

1 [V TF(L T2 = ), T(2 = By, )t

— <& —
rlﬂ >

3 o (80)

for n large enough.

Foralln € N, and (0, 1/p) define w,,(t) = (w, ,(t), w, ,(t))
by setting

o7 t, t€[0,0T],
©,(t)={ T2- te (0T, (1-0)T], (81)
re-awn,
g (T=1), te](1-0)T,T],
F(z_ﬁ)nn
o7 b te[0,0T],
Wy, (1) =9 T'(2-a)B, te[0T, (1-0)T]
F(z_ﬁ)qn
g (T=1), te](1-0)T,1].

(82)
Clearly w;,(0)=w;,(T)=0 and w;,€LP([0,T]) for

~—Yin
i=1,2. A direct calculation shows that

M e,

o te (0,07,
oDfwy,(t) = g—; (- (t-o1)"™), te[0T, (1-0)T),
Mn (,1-a l-a I-a
ﬁ(t —(t-0T)™" = (t-(1-6)T)"™"), te](1-O)T,T],
(83)
M -
ot t€[0,6T],
Dby, (1) = 4 o (8 — (1-01)F), te (0T, (1-0)T),
g—;(tl’ﬁ—(t—@T)Hg—(t—(l—B)T)H;), te)(1-6)T,T].
(84)
Furthermore,

T T  (1-0)T (T
j o Dfw,, (1) dt = J + J + J |oDfw, , (t)[Pdt
0 0 or (1-6)T

i’ 0T (1-6)T
- (QT")p {J P10 gt 4 J (te = (t-0T)" ™) dt

; 0 or )
+J (= (- 6T)") — (t (1-6)T)")] }
(1-6)T
=pP(a, O\,

(85)

T, » o  [(1-6)T (T
J ‘OthM(t)‘ dt:J +J +J
0

0 or (1-6)T

P or (1-6)T
= P dt + 1 — (- or)'F) dr
OT)" Lo or

! 1-B_ e g 1-B\ _ (+_ (/1 1-g\ 17
+L19)T[(t B_(t-6T) ﬁ) (t (1-0)T) l‘)]}

(86)

P
‘ODEwl,n(t)‘ dt




Thus, w,€X, and

T
o (6] = j oDy, (1)t = pP(a, Oy,
0 (87)

T
s (8)|[ = J oDy, (1) Pdt = pQ(B, Oy

This and (61) imply that

1

1
(D(wl,w wz,n) = Z) le,n(t) HP + ; sz,n(t) HP - ®(w1,n’ wz,n)

<2 (o @] + lwzat)]")

= p(P(a,0) + Q(B, 0))m;, < pA.
(88)

From (H2), we have

T  (1-6)" T
lP(wl,w wZ,n) = + J + J

F(t’ CU1 n> CU2 n)dt
or (1-6)" R

(1-6)"
F(t,w,,, w,,)dt

[\

JoTr
(1-0)"

=| " Ewre-wn,re-pun,)d
Jor

(89)
According to (80), (88), and (89), we have

I/l<wl,n’ ‘Uz,n) = ¢(w1,n’ wZ,fl) N Alp(wl’”’ wz,n)
< p(P(e, 0) + Q(B,6))1f!
(1-6)T
_,\J F(t,I'(2-a)n,, [(2- )y, )dt

or
<pA(1—-Ae)nt,
(90)

for n large enough. Taking into account the choice of
&, the above inequality shows that

lim I)(w,,,w,,)=-00, (91)

n—+00
which implies that the functional I, is unbounded
from below and the claim follows.
By using the case (1) of Lemma 9, the functional I) has a
sequence {(u,,v,)} of critical points such that

D(u,,v,) — +00. (92)

From (22) and (61), we get

v P2, (93)
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which implies ||(u,,v, )|y — +00 and the proof of Theo-
rem 10 is complete.

Theorem 11. Assume that k > 0 and (HO) and (H2) hold. Fur-
thermore, (H4) F(t,0,0) =0 for all t € [0, T].
(H5) There exists 0 € (0, 1/p) such that, if we put

T
Jo S9Psp<eF (% 7). (94)

A, = lim inf
0= &

(OT (s, I(2— )&, T(2 - B)E)dt
B, = lim sup 29T (bT2- )% [(2-F)Y) , (95)
S0t EP
one has

k
Ay < mBO, (96)
where A = max {P(a,0), Q(B,0)} and M is given in (45).
Then, for every

reA = %,L , (97)
B, 2pMA,

(1) has a sequence {(u,,v,)} of weak solutions such that
(1 ,) — (0,0)

Proof. Our goal is to apply part (2) of Lemma 9 to ¢ and ¥
defined in (48) and (51), respectively.
As it has been pointed out before, the functionals ¢ and ¥
satisty the assumption regularity required in Lemma 9.
Since F(t,0,0) =0 for all ¢ € [0, T], then

(2}%2){ (u,v) = $(0,0)=0. (98)

Let {&,} be a sequence of positive numbers such that
£, — 0 and

T
lim Jo SuPepyj<e, E(1 % y)dt

n—+00 EI:,

= A, < +00. (99)

Setting r, = (k/p2?M)E” for all ne N, and working as
in the proof of Theorem 10, we can show that

T
2P M SUp, 4yt F(E X, y)dt
8= lim inf(p(r)sp - lim Jo S9Pysepst, F(%:9)
r—(infx @) n—+00 El;’
P2 M
= Ao

(100)

and so A’ (0, 1/8).
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Now fix A as in the conclusion, then

-OT R 12— @)E, (2 - B)E)dt
< — lim sup 29T (L1295 T2 p)Y)
pAE—o’ &

>

N

(101)

and there exist a sequence {7, } of positive numbers and a
constant &, such that 7, < 1/n and

(I*Q)Tp(t, Ir2-wr,,I'(2-p)7,)dt

lim 20T . "
n—+0o
(1-0)T tnF 2— )&, (2 - B)E)dt (102)
= lim sup =T (612~ @) I2-F)) ,
£-0° &r

and in addition

(1-6)T
1 F(t,I'(2-
—<g < — lim 2¢T (I~
A PA n—-+oo Tﬁ

n’

I@2-pyr,)dt

(103)

For all neN, and 0 ¢ (0,1/p) define w,(t) = (w,,(t),
w,,(t)) by setting

r2-awr,
—a7 b te[0,0T],
w ,(t)=< T'2-a)T,, te[0T, (1-0)T], (104)
re2-wr,
r(T=1), te](1-0)T.T],
F(Z _/S)Tn
S, t € [0, 07T,
w,(t)={ T2~ P, e[0T, (1-0)T],
F(ngﬁ)T” (T-1), te](1-O)T,T].
(105)

Clearly w,,(0)=w;,(T)=0 for i=1,2,and {w,} con-
verges strongly to (0, 0) in X.

By the same argument as in Theorem 10, we have
L (@) 0p) = A (@), 05,) < p(P(a, 0) + Q(B, 0)) 7

_ )LJ:TQ)TF<1§, r@2-ar,I(2- ,B)Tn) dt

< pA(1 - Aey)h <0=1,(0,0),
(106)

for n large enough. This together with the fact that ||w,||
= ||w, > @, , ||y, — 0 shows that I; has no local minimum
at zero, and the claim follows.

The alternative of Lemma 9 case (2) ensures the existence
of sequence {(u,,,v,)} of pairwise distinct local minima of I
which weakly converges to (0, 0). This completes the proof of
Theorem 11.

Finally, we present an example to illustrate our main
results.

Example 12. Consider the following fractional differential
system:
DU (@3 (D05 u(t))) = AF, (8, u(t), v(t)) + (sin (%))2

D075 (@, (UD?)H“(O)) =AF (t, u(t), v(t)) + (arctan (%))2, aetel0,T],

u(0) = u(1) =0,

aete0,T],

(107)

where T=1,a=0,6, 3=0,75,and h, (u,) = (sin (4,/2))*, h,
(u,) = (arctan (u,/3))>. Moreover, for all (t,u,v) € [0,1] x
R? put

Fbu(t)v(e) = (1+ ) Hwy),  (108)
where
g3 o - u, v) € Q.
H(uwv)={ " P 1= (= 088738,,,) + (v—09064,,,))’ () €2
o (uv) e R\ Q,
(109)

where

Q=u,., { (1, v): (u—0.8873E,,,)> + (v—0.9064E,,,) < 1},
(110)

and &, =1¢, = n(En)‘”3 +1 forall n e N.

Clearly, h;,h, : R— R are two Lipschitz continuous
functions of order 2 with Lipschitzian constants L, =1/2,
L,=1/3andh,(0) =h,(0) =0, F(t,0,0) =0 for all ¢ €0, 1].
With the aid of direct computation we have that

M = 1.8925, k =~ 0.2991, p = 1.7009. (111)

Let 8 =1/3, then we have

1 1 1 1
p(o)-2(00.!) -osa o 2) -0

~0.3745.
(112)

Then, A=~0.3745. Thus, all conditions of Theorem 10
are satisfied.

In fact, the conditions (HO), (H1), and (H2) hold. For all
neN.

Restriction of H(u,v) on  attains its maximum in
(0.8873,,,1,0.9064,,,) and

H(0.8873,,,,0.9064,,,) =&, exp (-1). (113)
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In addition,

sup H(u,v) =& exp (-1), (114)
|u[+[v|<0,8873¢,,,, "
and so
2/3
H(0.8873 ,0.9064 dt
B, =lim sup =12 ( SZH 1)
n—+00 En +1 (115)
3
— hm n+1 €Xp (_1) =400
n—+00 gi +1 ’
1
A_ = lim inf Jo SUPLuspy<(8873¢,,.,)-1 H (1 v)dt
00 2
n—+oo (0.8873¢,.,,) (116)

3
&, exp (1) o< k B,
2pMpA

noveo0 (0.8873F,,,)0

which implies that the condition (H3) holds. Hence,
owing to Theorem 10, for each A € (0;+c0), the coupled
system (107) has an unbounded sequence of weak
solutions.
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