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The paper deals with the existence of infinitely many solutions of a class of perturbed nonlinear fractional p-Laplacian differential
systems using one control parameter combined with the variational method.

1. Introduction

Fractional differential equations (FDEs) involve fractional
derivatives of the form ðdα/dxαÞðα > 0Þ, where is not neces-
sarily an integer. They are generalizations of the ordinary dif-
ferential equations to a random (noninteger) order. FDEs
have attracted considerable interest due to their ability to
model complex phenomena in several fields of science, engi-
neering, physics, biology, and economics (see [1–7]). In sum-
mary, many improvements have been made in the theory of
partial calculus and partial differential equations and partial
and ordinary differential equations (see [8–18], [2, 5]).
Numerous studies have explored the existence and solutions
of different nonlinear elementary and boundary value prob-
lems through the use of various nonlinear analysis tools
and techniques (see, for example, [7, 19–38]). Some of these
ways are the fixed point theorems, critical point theory,
monotone iterative methods, coincidence degree theory,
and variational methods (see [30]).

Motivated by the above, the interest of this paper is
the infinite existence solutions of the following fractional
system

tD
α
T Φp 0D

α
t u tð Þð Þ� �

= λFu t, u tð Þ, v tð Þð Þ + h1 u1ð Þ, a:e:t ∈ 0, T½ �,

tD
β
T Φp 0D

β
t v tð Þ

� �� �
= λFv t, u tð Þ, v tð Þð Þ + h2 u2ð Þ, a:e:t ∈ 0, T½ �,

u 0ð Þ = u Tð Þ = 0, v 0ð Þ = v Tð Þ = 0,

8>>><
>>>:

ð1Þ

where λ is a positive real parameter, α, βϵð0 ; 1�, and 0D
α
t ,

tD
α
T and 0D

β
t , tD

β
T are the left and right Riemann-Liouville

fractional derivatives of order α, β, respectively, ΦpðsÞ =
jsjp−2s, p > 1, ðH0ÞF : ½0, T� ×ℝ2 →ℝ, where Fð·, u, vÞ is
continuous in ½0, T� for any ðu, vÞ ∈ℝ2, Fðt, ·, · Þ is a C1

function in ℝ2, and Fs is the partial derivative of F with
respect to s, and hi : ℝ⟶ℝ are two Lipschitz continuous
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functions of order ðp – 1Þ with Lipschitzian constants
Li > 0 for 1 ≤ i ≤ 2, i.e.,

hi x1ð Þ − hi x2ð Þj j ≤ Li x1 − x2j jp−1: ð2Þ

2. Preliminaries

We give some basic lemmas and notations and construct a vari-
ational framework in order to apply critical point theory toprove
the existence of an infinite number of solutions to the system (1).

Let X be a real Banach space, and in addition, let YX
denote the class of all functionals

ϕ = X ⟶ℝ; ; ð3Þ

that possess the following property:
If fwng is a sequence in X converge weakly to w ∈ X with

lim
n→∞

inf ϕðwnÞ ≤ ϕðwÞ; thus, fwng has a subsequence con-

verge strongly to w.
For offer, if X is uniformly convex and S : ½0,+∞Þ⟶ℝ

is a continuous strictly increasing function, then the func-
tional w⟶ SðkwkÞ belongs toYX .

Definition 1 (see Kilbas et al. [4] chapter 2, p. 87). Let u be a
function defined on [a, b]. The right and left Riemann-
Liouville fractional derivatives of order > 0 for a function u
are defined by

aD
α
t u tð Þ≔ dn

dtn aD
α−n
t u tð Þ = 1

Γ n − αð Þ
dn

dtn

ðt
a
t − sð Þn−α−1u sð Þds,

ð4Þ

aD
α
bu tð Þ≔ −1ð Þn dn

dtn aD
α−n
b u tð Þ = −1ð Þn

Γ n − αð Þ
dn

dtn

ðb
a
t − sð Þn−α−1u sð Þds,

ð5Þ
for all t ∈ ½a, b�, provided the right-hand sides are pointwise
defined on ½a, b�, where n − 1 ≤ α < n and n ∈ℕ.

Here, ΓðαÞ is the standard gamma function given by

Γ αð Þ≔
ð+∞
0

zα−1e−zdz: ð6Þ

Set ACn ð½a, b�,ℝÞ the functions space u : ½a, b�⟶ℝ
such that

u ∈ Cn−1 a, b½ �,ℝð Þ, ð7Þ

with

u n−1ð Þ ∈ ACn a, b½ �,ℝð Þ: ð8Þ

As usual, Cn−1ð½a, b�,ℝÞ denotes the mapping set having
ðn − 1Þ times continuously differentiable on ½a, b�. In particu-
larly, we have

AC a, b½ �,ℝð Þ≔ AC1 a, b½ �,ℝð Þ: ð9Þ

Definition 2 (see [31]). Let 0 < α ≤ 1, for 1 < p <∞ the deriv-
ative fractional space

Ep
α = u tð Þ ∈ Lp 0, T½ �,ℝð Þ0Dα

t u tð Þ ∈ Lp 0, T½ �,ℝð Þ, u 0ð Þ = u Tð Þ = 0
� �

:

ð10Þ

Thus, for all u ∈ Ep
α, we de ne the norm for Ep

α as follows:

uk kα =
ðT
0
u tð Þj jpdt +

ðT
0

0D
α
t u tð Þj jpdt

� 	1/p

: ð11Þ

Lemma 3 (see [3]). Let 0 < α ≤ 1 and 1 < p <∞. For any u
∈ Ep

α, we have

uk kLp ≤
Tα

Γ α + 1ð Þ 0D
α
t uk kLp : ð12Þ

Also, if α > p and 1/p + 1/q = 1, then

uk k∞ ≤
Tα−1/p

Γ αð Þ α − 1ð Þq + 1ð Þ1/q 0D
α
t uk kLp : ð13Þ

Under the result of Lemma 3, we note that

uk kLp ≤
Tα−1/p

Γ α + 1ð Þ 0D
α
t uk kLp , ð14Þ

for 0 < α ≤ 1, and

uk k∞ ≤
Tα−1/p

Γ αð Þ α − 1ð Þq + 1ð Þ1/q 0D
α
t uk kLp , ð15Þ

for α > p and 1/p + 1/q = 1.
Under (14), we can see that (11) is equivalent to the follow-

ing norm:

uk kα =
ðT
0

0D
α
t u tð Þj jpdt

� 	1/p

, ∀u ∈ Ep
α: ð16Þ

For 0 < β ≤ 1, 1 < p <∞. Analogous to the space Ep
α, we

define the fractional derivative space Ep
α as

v tð Þ ∈ Lp 0, T½ �,ℝð Þ0Dβ
t v tð Þ ∈ Lp 0, T½ �,ℝð Þ, v 0ð Þ = v Tð Þ = 0

n o
:

ð17Þ

Then, for any v ∈ Ep
β, the norm of Ep

β is defined by

vk kβ =
ðT
0
v tð Þj jpdt +

ðT
0

0D
β
t v tð Þ




 


pdt� 	1/p

, ∀v ∈ Ep
β:

ð18Þ
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Similar with (14) and (15), we get

vk kLp ≤
Tβ

Γ β + 1ð Þ 0D
α
t vk kLp , ð19Þ

for 0 < β ≤ 1, and

vk k∞ ≤
Tβ−1/p

Γ βð Þ β − 1ð Þq + 1ð Þ1/q 0D
α
t vk kLp :: ð20Þ

Moreover, if 0 < β ≤ 1 and 1/p + 1/q = 1, then, based upon
(19), the weighted norm

vk kβ =
ðT
0

0D
β
t v tð Þ




 


pdt� 	1/p

; ; ð21Þ

is equivalent to (18), for every v ∈ Ep
β.

In the following discussion, for any u ∈ Ep
α, v ∈ E

p
β denote

the space of X = Ep
α × Ep

β with the norm

u, vð Þk kX = uk kpα + vk kpβ
� �1/p

, ∀ u, vð Þ ∈ X, ð22Þ

where kukα and kukβ are defined in (16) and (21),
respectively.

Clearly, X is embedded compactly on

C0 0, T½ �,ℝð Þ × C0 0, T½ �,ℝð Þ: ð23Þ

Lemma 4 (see [33]). For 0 < α, β ≤ 1 and 1 < p <∞. The
derivative fractional space X is a reflexive separable Banach
space.

Lemma 5. Assume that 1/p < α ≤ 1 and the sequence fung
converge weakly to u in Ep

α, i.e., un ⇀ u. Then, fung converges
strongly to u in Cð½0, T�,ℝÞ, i.e., kun − uk∞ ⟶ 0, as n⟶
+∞.

Definition 6 (see [3]). We point out to a weak solution to the
system (1), for all ðu, vÞ ∈ X such that

ðT
0
Φp 0D

α
t u tð Þð Þ0Dα

t x tð Þdt +
ðT
0
Φp 0D

α
t v tð Þð Þ0Dβ

t y tð Þdt

−
ðT
0
h1 u tð Þð Þx tð Þdt −

ðT
0
h2 v tð Þð Þy tð Þdt

− λ
ðT
0
Fu t, u tð Þ, v tð Þð Þx tð Þ + Fv t, u tð Þ, v tð Þð Þy tð Þð Þdt = 0,

ð24Þ

for all ðx, yÞ ∈ X.

We define for all x ∈ℝ:

Hi xð Þ =
ðx
0
hi zð Þdz,Θi xð Þ =

ðT
0
Hi x sð Þð Þds for all i = 1, 2,

ð25Þ

for every t ∈ ½0, T�.

Lemma 7. Let h1, h2 : ℝ→ℝ satisfy (2) and HiðxÞ,ΘiðxÞ,
i = 1, 2, defined by (25). Thus, Θðu, vÞ: X⟶ℝ defined by

Θ u, vð Þ =Θ1 uð Þ +Θ2 vð Þ =
ðT
0
H1 u tð Þð Þdt +

ðT
0
H2 v tð Þð Þdt,

ð26Þ

is a Gâteaux function weakly sequentially differentiable
over X with

Θ′ u, vð Þ x, yð Þ =
ðT
0
h1 u tð Þð Þx tð Þdt +

ðT
0
h2 v tð Þð Þy tð Þdt, for all x, yð Þ ∈ X:

ð27Þ

Proof. Assume that

un, vnð Þf g ⊂ X, un, vnð Þ⇀ u, vð Þ inX, ð28Þ

as n→ +∞. According to Lemma 5 that ðun, vnÞ converges
uniformly to ðu, vÞ on ½0, T�. Then, there exists c1, c2 > 0
such that kunk∞ ≤ c1 and kvnk∞ ≤ c2 for any n ∈ℕ.

Then,

H1 un tð Þð Þ −H1 u tð Þð Þj j ≤ L1

ðun tð Þ

u tð Þ
sj jp−1ds














≤
L1
p

un tð Þj jp + u tð Þj jp� �
≤
L1
p

cp1 + u tð Þk kp∞
� �

,

ð29Þ

H2 vn tð Þð Þ −H2 v tð Þð Þj j ≤ L2

ðvn tð Þ

v tð Þ
sj jp−1ds














≤
L2
p

vn tð Þj jp + v tð Þj jp� �
≤
L2
p

cp2 + v tð Þk kp∞
� �

,

ð30Þ

for any n ∈ℕ and t ∈ ½0, T�. Furthermore, H1ðunðtÞÞ⟶
H1ðuðtÞÞ andH2ðvnðtÞÞ⟶H2ðvðtÞÞ at every t ∈ ½0, T�, and
by the Lebesgue Convergence Theorem

Θ un, vnð Þ =
ðT
0
H1 un tð Þð Þdt +

ðT
0
H2 vn tð Þð Þdt⟶

ðT
0
H1 u tð Þð Þdt

+
ðT
0
H2 v tð Þð Þdt =Θ u, vð Þ:

ð31Þ

Now we prove the Gâteaux differentiability ofΘ. Assume
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that u, x ∈ Ep
α and s ≠ 06; thus,

Θ1 u + sxð Þ −Θ1 uð Þ
s

−
ðT
0
h1 u tð Þð Þx tð Þdt












≤
ðT
0

H1 u + sxð Þ −H1 uð Þ
s

− h1 u tð Þð Þx tð Þ










dt
=
ðT
0
h1 u tð Þð Þ + sζ tð Þx tð Þ − h1 u tð Þð Þj j x tð Þj jdt

≤ L1 xk kp∞ sj j,

ð32Þ

where

0 < ζ tð Þ < 1, t ∈ 0, T½ �: ð33Þ

Thus

Θ1 : E
p
α ⟶ℝ, ð34Þ

is a Gâteaux differentiable for all u ∈ Ep
α.

Likewise, we have

Θ2 : E
p
β ⟶ℝ, ð35Þ

which is a Gâteaux differentiable for all v ∈ Ep
α.

Therefore,

Θ : X⟶ℝ, ð36Þ

is a Gâteaux differentiable for all ðu, vÞ ∈ X with its derivative

Θ′ u, vð Þ x, yð Þ ==
ðT
0
h1 u tð Þð Þx tð Þdt +

ðT
0
h2 v tð Þð Þy tð Þdt, x, yð Þ ∈ X:

ð37Þ

For any three elements ðu1, v1Þ, ðu2, v2Þ, and ðx, yÞ of X, it
is easy to see that

Θ′ u1, v1ð Þ −Θ′ u2, v2ð Þ
� �

x, yð Þ =
ðT
0
h1 u1ð Þ − h1 u2ð Þx tð Þð Þdt

+
ðT
0
h2 v1ð Þ − h2 v2ð Þy tð Þð Þdt ≤ L1

ðT
0
u1 − u2j jp−1 x tð Þj jdt

+ L2

ðT
0
v1 − v2j jp−1 y tð Þj jdt ≤ L1T

α−1/p

Γ αð Þ α − 1ð Þq + 1ð Þ1/p

� u1 − u2k kp−1∞ xk kα +
L2T

β−1/p

Γ βð Þ β − 1ð Þq + 1ð Þ1/p
� v1 − v2k kp−1∞ yk kα,

ð38Þ

which implies

Θ′ u1, v1ð Þ −Θ′ u2, v2ð Þ�� ��
X
≤ T∗ u1 − u2k kp−1∞ + v1 − v2k kp−1∞

� �
,

ð39Þ

where

T∗ ≔max
L1T

α−1/p

Γ αð Þ α − 1ð Þq + 1ð Þ1/q ,
L2T

β−1/p

Γ βð Þ β − 1ð Þq + 1ð Þ1/q
( )

:

ð40Þ

Hence, Θ′ : X⟶ X∗ is a compact operator.

Similarly to the proof of Theorem 5.1 of [4], we have

Lemma 8 (see [36]). Let 1/p < α, β ≤ 1, and ðu, vÞ ∈ X. If ðu, vÞ
is a nontrivial weak solution of problem (1), then ðu, vÞ is also
a nontrivial solution of problem (1).

Our analysis is mainly based on the following critical
points theorem of Bonanno and Molica Bisci [36], which is
a more precise result of Ricceri ([37], Theorem 2.5).

Lemma 9 (see [[36], Theorem 2.1]). Let X be a reflexive real
Banach space. Let ϕ,Ψ : X⟶ℝ be two Gâteaux differentia-
ble functionals such that ϕ is sequentially weakly lower semicon-
tinuous, strongly continuous, and coercive and Ψ is sequentially
weakly upper semicontinuous. For every r > infXϕ, put

φ rð Þ = inf
u∈ϕ−1 −∞,r� �ð Þ

supv∈ϕ−1 −∞,r� �ð ÞΨ vð Þ −Ψ uð Þ
r − ϕ uð Þ , ð41Þ

γ≕ lim
r→+∞

inf φ rð Þ, δ≕ lim
r→ infXϕð Þ+

inf φ rð Þ: ð42Þ

Then,

(1) If γ < +∞ and λ ∈ �0, 1/γ½, the following alternative
holds: either the functional ϕ − λΨ has a global min-
imum or there exists a sequence fung of local minima
ϕ − λΨ such that limn→+∞ϕðunÞ = +∞

(2) If γ < +∞ and λ ∈ �0, 1/δ½, the following alternative
holds: either there exists a global minimum of ϕ or
the following alternative holds: either there exists a
global minimum of ϕ − λΨ or there exists a sequence
{un} of pairwise distinct local minima of ϕ − λΨ, with
limn→+1ϕðunÞ = infXϕ, which weakly converges to a
global minimum of ϕ

3. Main Results

Here, we prove our main results.
Setting

k≔min 1 −
L1T

pα

Γ α + 1ð Þð Þp , 1 −
L2T

pβ

Γ β + 1ð Þð Þp
( )

, ð43Þ

ρ≔max 1 +
L1T

pα

Γ α + 1ð Þð Þp , 1 +
L2T

pβ

Γ β + 1ð Þð Þp
( )

, ð44Þ

4 Journal of Function Spaces



M =max
Tpα−1

Γ αð Þð Þp α − 1ð Þq + 1ð Þp/q ,
Tpβ−1

Γ βð Þð Þp β − 1ð Þq + 1ð Þp/q
( )

:

ð45Þ

For a given constant θ ∈ ð1/p, 0Þ, set

P α, θð Þ = 1
p θTð Þp

ðθT
0
tp 1−αð Þdt +

ð 1−θð ÞT

θT
t1−α − t − θTð Þ1−α� �p

dt
�

+
ðT

1−θð ÞT
t1−α − t − θTð Þ1−α� �

− t − 1 − θð ÞTð Þð Þ1−α �p�,
ð46Þ

Q β, θð Þ = 1
p θTð Þp

ðθT
0
tp 1−βð Þdt +

ð 1−θð ÞT

θT
t1−β − t − θTð Þ1−β
� �p

dt
�

+
ðT

1−θð ÞT
t1−β − t − θTð Þ1−β
� �

− t − 1 − θð ÞTð Þð Þ1−β
h ip�

:

ð47Þ

For any d > 0, we denote by ΩðdÞ the set

x, yð Þ ∈ℝ2 :
1
p
xj jp + 1

p
yj jp ≤ d

� �
: ð48Þ

Theorem 10. Suppose that k > 0 and (H0) hold. In addition,
(H1) 1/p ≤ α, β < 1
(H2) Fðt, x, yÞ ≥ 0 for any ðt, x, yÞ ½0, T� ∈ ½0,+∞Þ½0,+∞Þ
(H3) there exists θ ∈ ð0, 1/pÞ where if we set

A∞ = lim
ξ→+∞

inf
Ð T
0 sup xj j+ yj j≤ξF t, x, yð Þdt

ξp
, ð49Þ

B∞ = lim
ξ→+∞

sup
Ð 1−θð ÞT
θT F t, Γ 2 − αð Þξ, Γ 2 − βð Þξð Þdt

ξp
,

ð50Þ

one has

A∞ <
k

2pMρΔ
B∞, ð51Þ

where

Δ =max P α, θð Þ,Q β, θð Þf g, ð52Þ

and M is given in (45).
Then, for every

λ ∈
ρΔ

B∞
,

k
2pMA∞

� �
: ð53Þ

(1) has an unbounded sequence in X (weak solutions).

Proof. Our goal is to apply a portion (1) of Lemma 9 to prob-
lem (1). First, by taking

X = Ep
α × Ep

β, ð54Þ

endowed with kðu, vÞkX similar to what is considered in (22).
We define the following functional

Iλ u, vð Þ = ϕ u, vð Þ − λΨ u, vð Þ, ð55Þ

for all ðu, vÞ ∈ X, where

ϕ u, vð Þ = 1
p

uk kpα +
1
p

vk kpβ −Θ u, vð Þ, ð56Þ

Ψ u, vð Þ =
ðT
0
F t, u tð Þ, v tð Þð Þdt: ð57Þ

Since X is embedded compact in

C0 0, T½ �,ℝð Þ × C0 0, T½ �,ℝð Þ, ð58Þ

it is well known that is a well-defined Gâteaux differentiable
functional whose Gâteaux derivative at the point ðu, vÞ ∈ X
is the functional Ψ′ðu, vÞ ∈ X ∗, given by

Ψ′ u, vð Þ x, yð Þ =
ðT
0
Fu t, u tð Þ, v tð Þð Þð Þx tð Þdt

+
ðT
0
Fv t, u tð Þ, v tð Þð Þð Þy tð Þdt,

ð59Þ

for every ðx, yÞ ∈ X.
We claim that the functional Ψ is a sequentially weakly

upper semicontinuous functional on X. Indeed, for fixed ðu,
vÞ ∈ X, suppose that fðun, vnÞg ⊂ X, ðun, vnÞ⇀ ðu, vÞ in X as
n⟶ +∞. Then, ðun, vnÞ converges uniformly to ðu, vÞ on
½0, T�. Hence,

lim
n→+∞

sup Ψ un, vnð Þ ≤
ðT
0
lim

n→+∞
sup F t, un tð Þ, vn tð Þð Þdt

=
ðT
0
F t, u, tð Þ, v tð Þð Þdt =Ψ u, vð Þ,

ð60Þ

which implies that it is sequentially weakly upper semicon-
tinuous. Hence, the claim is true.

Concerning the functional ϕ, we can show that what is
defined by (56) is a sequentially weakly lower semicontinu-
ous, strongly continuous, and coercive functional on X. In
fact since (2) holds for every x1, x2 ∈ R and h1ð0Þ = h2ð0Þ = 0,
one has jhiðxÞj ≤ Lijxjp−1, i = 1, 2, for all x ∈ℝ. It follows from
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(14), (20), and Lemma 5 that

ϕ u, vð Þ ≥ 1
p

uk kpα +
1
p

vk kpβ −
ðT
0
H1 u tð Þð Þdt










 −

ðT
0
H2 v tð Þð Þdt












≥
1
p

uk kpα +
1
p

vk kpβ −
L1
p

ðT
0
u tð Þj jpdt − L2

p

ðT
0
v tð Þj jpdt

≥
1
p
−

L1T
pα

p Γ α + 1ð Þð Þp
� 	

uk kpα +
1
p
−

L2T
pβ

p Γ β + 1ð Þð Þp
 !

vk kpβ,

ð61Þ

for all ðu, vÞ ∈ X and similarly

ϕ u, vð Þ ≤ 1
p

uk kpα +
1
p

vk kpβ +
ðT
0
H1 u tð Þð Þdt










 +

ðT
0
H2 v tð Þð Þdt












≤
1
p
−

L1T
pα

p Γ α + 1ð Þð Þp
� 	

uk kpα +
1
p
−

L2T
pβ

p Γ β + 1ð Þð Þp
 !

vk kpβ

≤
ρ

p
uk kpα + vk kpβ

� �
,

ð62Þ

for all ðu, vÞ ∈ X. So ϕ is coercive.
Moreover, ϕ +Θ is a continuous functional on X, and Θ,

from Lemma 5, is Gâteaux differentiable sequentially weakly
continuous and therefore continuous on X, then ϕ is a con-
tinuous functional on X. It is not difficult to verify that the
functional is a Gâteaux differentiable functional with the dif-
ferential

ϕ′ u, vð Þ x, yð Þ =
ðT
0
Φp 0D

α
t u tð Þð Þ0Dα

t x tð Þdt

+
ðT
0
Φp 0D

α
t v tð Þð Þ0Dβ

t y tð Þdt

−
ðT
0
h1 u tð Þð Þx tð Þdt −

ðT
0
h2 v tð Þð Þy tð Þdt:

ð63Þ

Furthermore, ϕ is also sequentially weakly lower semi-
continuous on X since Θ is sequentially weakly lower semi-
continuous, and if ðun, vnÞ⇀ ðu, vÞ in X then

lim
n→+∞

inf ϕ un, vnð Þ = lim
n→+∞

inf
1
p

uk kpα +
1
p

vk kpβ
� 	

− lim
n→+∞

Θ un, vnð Þ ≥ 1
p

uk kpα +
1
p

vk kpβ −Θ u, vð Þ = ϕ u, vð Þ:

ð64Þ

It is easy to show that the critical points of the functional
Iλ and the weak solutions of the problem (1) are the same,
and by Lemma 9, we prove our result. According to

uk k∞ =max
0,T½ �

u tð Þj j and uk k∞ =max
0,T½ �

u tð Þj j, ð65Þ

taking (13) and (20) into account, one has

max
rt∈ 0,T½ �

u tð Þj jp ≤M uk kpαand max
t∈ 0,T½ �

v tð Þj jp ≤M vk kpβ ð66Þ

for every ðu, vÞ ∈ X.
Hence,

max
t∈ 0,T½ �

u tð Þj jp + v tð Þj jp� �
≤M uk kpα + vk kpβ

� �
: ð67Þ

So, for every r > 0, from the definition of and by using
(61), one has

ϕ−1 −∞,r� �ð Þ≔ u, vð Þ ∈ X : ϕ u, vð Þ ≤ rf g
⊆ u, vð Þ ∈ X :

1
p

uk kpα +
1
p

vk kpβ ≤
r
k

� �

⊆ u, vð Þ ∈ X :
Γ αð Þð Þp α − 1ð Þq + 1ð Þp/q

Tpα−1 uk kp∞
(

+
Γ βð Þð Þp β − 1ð Þq + 1ð Þp/q

Tpβ−1 uk kp∞ ≤
r
k

)

⊆ u, vð Þ ∈ X :
1
p
uj jp + 1

p
vj jp ≤ Mr

k
, for all t ∈ 0, T½ �

� �
:

ð68Þ

Set

φ rð Þ = inf
u,vð Þ∈ϕ−1 −∞,r� �ð Þ

sup x,yð Þ∈ϕ−1 −∞,r� �ð ÞΨ x, yð Þ −Ψ u, vð Þ
r − ϕ u, vð Þ :

ð69Þ

Note that ϕð0, 0Þ = 0, and from the condition (H1), Ψð0
, 0Þ ≥ 0. Hence, for every r > 0,

φ rð Þ = inf
u,vð Þ∈ϕ−1 −∞,r� �ð Þ

sup x,yð Þ∈ϕ−1 −∞,r� �ð ÞΨ x, yð Þ
� �

−Ψ u, vð Þ
r − ϕ u, vð Þ

≤
sup x,yð Þ∈ϕ−1 −∞,r� �ð ÞΨ x, yð Þ

r
,

ð70Þ

and it follows from (68) that

φ rð Þ ≤ 1
r

sup
Ω Mr/kð Þ

ðT
0
F t, u, vð Þdt, ð71Þ

where

Ω
Mr
k

� 	
= u, vð Þ ∈ X :

1
p
u tð Þj jp + 1

p
v tð Þj jp ≤ Mr

k
,∀t ∈ 0, T½ �

� �
:

ð72Þ
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Let fξng be a sequence of positive numbers such that
ξn ⟶ +∞ and

lim
ξ→+∞

inf
Ð T
0 sup xj j+ yj j≤ξF t, x, yð Þdt

ξp
= A∞ < +∞: ð73Þ

Put rn = ðk/p2pMÞξpn for all n ∈ℕ. Let ðu, vÞ ∈ ϕ1ð�1−∞,
rn�Þ, by (68) one has

1
p
u tð Þj jp + 1

p
v tð Þj jp ≤ M

k
rn, ∀t ∈ 0, T½ �, ð74Þ

which implies

u tð Þj j ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
pM
k

rn
p

r
and v tð Þj j ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
pM
k

rn
p

r
: ð75Þ

Hence, for n large enough ðrn > 1Þ

u tð Þj j + v tð Þj j ≤ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
pM
k

rn
p

r
= ξn: ð76Þ

Thus, for all n ∈ℕ,

φ rnð Þ = p2pM
kξpn

sup
u,vð Þ∈X: u tð Þj j+ v tð Þj j<ξn,∀t∈ 0,T½ �f g

ðT
0
F t, u tð Þ, v tð Þð Þdt

≤
p2pM
k

:

Ð T
0 sup xj j+ yj j<ξn F t, x, yð Þdt

ξpn
:

ð77Þ

Let

γ≔ lim
r→+∞

inf φ rð Þ: ð78Þ

Then,

γ ≤ lim
n→+∞

inf φ rnð Þ ≤ p2pM
k

⋅ lim
n→+∞

Ð T
0 sup xj j+ yj j<ξn F t, x, yð Þdt

ξpn

=
p2pM
k

A∞ < +∞:

ð79Þ

Hence, Λ⊑�0, 1/γ½:
For λ ∈Λ, we shall show that the functional Iλ is

unbounded from below.
Indeed, since B∞/ρΔ > 1/λ, we can choose a sequence

fηng of positive numbers and ε > 0 such that ηn ⟶ +∞
and

1
λ
< ε <

1
ρΔ

⋅
Ð 1−θð ÞT
θT F t, Γ 2 − αð Þηn, Γ 2 − βð Þηnð Þdt

ηpn
, ð80Þ

for n large enough.

For all n ∈ℕ, and ð0, 1/pÞ define ωnðtÞ = ðω1,nðtÞ, ω2,nðtÞÞ
by setting

ω1,n tð Þ =

Γ 2 − αð Þ
θT

t, t ∈ 0, θT½ ½,
Γ 2 − αð Þηn, t ∈ θT , 1 − θð ÞT½ �,
Γ 2 − αð Þηn

θT
T − tð Þ, t ∈ 1 − θð ÞT , T� �,

8>>>>><
>>>>>:

ð81Þ

ω2,n tð Þ =

Γ 2 − βð Þηn
θT

t, t ∈ 0, θT½ ½,
Γ 2 − αð Þβηn, t ∈ θT , 1 − θð ÞT½ �,
Γ 2 − βð Þηn

θT
T − tð Þ, t ∈ 1 − θð ÞT , T� �:

8>>>>><
>>>>>:

ð82Þ
Clearly ωi,nð0Þ = ωi,nðTÞ = 0 and ωi,n ∈ Lpð½0, T�Þ for

i = 1, 2. A direct calculation shows that

0D
α
t ω1,n tð Þ =

ηn
θT

t1−α, t ∈ 0, θT½ ½,
ηn
θT

t1−α − t − θTð Þ1−α� �
, t ∈ θT , 1 − θð ÞT½ �,

ηn
θT

t1−α − t − θTð Þ1−α − t − 1 − θð ÞTð Þ1−α� �
, t ∈ 1 − θð ÞT , T� �,

8>>>>><
>>>>>:

ð83Þ

0D
β
t ω2,n tð Þ =

ηn
θT

t1−β, t ∈ 0, θT½ ½,
ηn
θT

t1−β − t − θTð Þ1−β
� �

, t ∈ θT , 1 − θð ÞT½ �,
ηn
θT

t1−β − t − θTð Þ1−β − t − 1 − θð ÞTð Þ1−β
� �

, t ∈ 1 − θð ÞT , T� �:

8>>>>><
>>>>>:

ð84Þ
Furthermore,

ðT
0

0D
α
t ω1,n tð Þ

 

pdt = ðθT

0
+
ð 1−θð ÞT

θT
+
ðT

1−θð ÞT
0D

α
t ω1,n tð Þ

 

pdt

=
ηPn
θTð Þp

ðθT
0
tp 1−αð Þdt +

ð 1−θð ÞT

θT
t1−α − t − θTð Þ1−α� �p

dt
�

+
ðT

1−θð ÞT
t1−α − t − θTð Þ1−α� �

− t − 1 − θð ÞTð Þ1−α� � �p�

= pP α, θð Þηpn,
ð85Þ

ðT
0

0D
β
t ω2,n tð Þ




 


pdt = ðθT
0

+
ð 1−θð ÞT

θT
+
ðT

1−θð ÞT
0D

β
t ω1,n tð Þ




 


pdt
=

ηPn
θTð Þp

ðθT
0
tp 1−βð Þdt +

ð 1−θð ÞT

θT
t1−β − t − θTð Þ1−β
� �p

dt
�

+
ðT

1−θð ÞT
t1−β − t − θTð Þ1−β
� �

− t − 1 − θð ÞTð Þ1−β
� �h ip�

= pQ β, θð Þηpn:
ð86Þ
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Thus, ωn ∈ X, and

ω1,n tð Þ�� ��p = ðT
0

0D
α
t ω1,n tð Þ

 

pdt = pP α, θð Þηpn,

ω2,n tð Þ�� ��p = ðT
0

0D
α
t ω1,n tð Þ

 

pdt = pQ β, θð Þηpn:

ð87Þ

This and (61) imply that

Φ ω1,n, ω2,nð Þ = 1
p

ω1,n tð Þ�� ��p + 1
p

ω2,n tð Þ�� ��p −Θ ω1,n, ω2,nð Þ

≤
ρ

p
ω1,n tð Þ�� ��p + ω2,n tð Þ�� ��p� �

= ρ P α, θð Þ +Q β, θð Þð Þηpn ≤ ρΔηpn:

ð88Þ

From (H2), we have

Ψ ω1,n, ω2,nð Þ =
ðθT
0

+
ð 1−θð ÞT

θT
+
ðT

1−θð ÞT
F t, ω1,n, ω2,nð Þdt

≥
ð 1−θð ÞT

θT
F t, ω1,n, ω2,nð Þdt

=
ð 1−θð ÞT

θT
F t, Γ 2 − αð Þηn, Γ 2 − βð Þηnð Þdt:

ð89Þ

According to (80), (88), and (89), we have

Iλ ω1,n, ω2,nð Þ = ϕ ω1,n, ω2,nð Þ − λΨ ω1,n, ω2,nð Þ
≤ ρ P α, θð Þ +Q β, θð Þð Þηpn

− λ
ð 1−θð ÞT

θT
F t, Γ 2 − αð Þηn, Γ 2 − βð Þηnð Þdt

≤ ρΔ 1 − λεð Þηpn,
ð90Þ

for n large enough. Taking into account the choice of
ε, the above inequality shows that

lim
n→+∞

Iλ ω1,n, ω1,nð Þ = −∞, ð91Þ

which implies that the functional Iλ is unbounded
from below and the claim follows.

By using the case (1) of Lemma 9, the functional Iλ has a
sequence fðun, vnÞg of critical points such that

Φ un, vnð Þ⟶ +∞: ð92Þ

From (22) and (61), we get

un, vnð Þk kX≥p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pΦ un, vnð Þ

ρ

s
, ð93Þ

which implies kðun, vnÞkX ⟶ +∞ and the proof of Theo-
rem 10 is complete.

Theorem 11. Assume that k > 0 and (H0) and (H2) hold. Fur-
thermore, (H4) Fðt, 0, 0Þ = 0 for all t ∈ ½0, T�.

(H5) There exists θ ∈ ð0, 1/pÞ such that, if we put

A0 = lim
ξ→0+

inf
Ð T
0 sup xj j+ yj j≤ξF t, x, yð Þdt

ξp
, ð94Þ

B0 = lim
ξ→0+

sup
Ð 1−θð ÞT
θT F t, Γ 2 − αð Þξ, Γ 2 − βð Þξð Þdt

ξp
, ð95Þ

one has

A0 <
k

2pMρΔ
B0, ð96Þ

where Δ =max fPðα, θÞ,Qðβ, θÞg and M is given in (45).
Then, for every

λ ∈Λ′ ≔ ρΔ

B0
,

k
2pMA0

� �
, ð97Þ

(1) has a sequence fðun, vnÞg of weak solutions such that
ðun, vnÞ⇀ ð0, 0Þ.

Proof. Our goal is to apply part (2) of Lemma 9 to ϕ and Ψ
defined in (48) and (51), respectively.

As it has been pointed out before, the functionals ϕ andΨ
satisfy the assumption regularity required in Lemma 9.

Since Fðt, 0, 0Þ = 0 for all t ∈ ½0, T�, then

min
u,vð Þ∈X

ϕ u, vð Þ = ϕ 0, 0ð Þ = 0: ð98Þ

Let fξng be a sequence of positive numbers such that
ξn ⟶ 0 and

lim
n→+∞

Ð T
0 sup xj j+ yj j≤ξn F t, x, yð Þdt

ξpn
= A0 < +∞: ð99Þ

Setting rn = ðk/p2pMÞξPn for all n ∈ℕ, and working as
in the proof of Theorem 10, we can show that

δ = lim
r→ infXΦð Þ

inf φ rð Þ ≤ p2pM
k

⋅ lim
n→+∞

Ð T
0 sup xj j+ yj j≤ξn F t, x, yð Þdt

ξpn

=
p2pM
k

A0,

ð100Þ

and so Λ′ ⊂ ð0, 1/δÞ.
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Now fix λ as in the conclusion, then

1
λ
<

1
ρΔ

lim
ξ→0+

sup
Ð 1−θð ÞT
θT F t, Γ 2 − αð Þξ, Γ 2 − βð Þξð Þdt

ξp
,

ð101Þ

and there exist a sequence fτng of positive numbers and a
constant ε1 such that τn ≤ 1/n and

lim
n→+∞

Ð 1−θð ÞT
θT F t, Γ 2 − αð Þτn, Γ 2 − βð Þτnð Þdt

τpn

= lim
ξ→0+

sup
Ð 1−θð ÞT
θT F t, Γ 2 − αð Þξ, Γ 2 − βð Þξð Þdt

ξp
,

ð102Þ

and in addition

1
λ
< ε1 <

1
ρΔ

lim
n→+∞

Ð 1−θð ÞT
θT F t, Γ 2 − αð Þτn, Γ 2 − βð Þτnð Þdt

τpn
:

ð103Þ

For all n ∈ℕ, and θ ∈ ð0, 1/pÞ define ωnðtÞ = ðω1,nðtÞ,
ω2,nðtÞÞ by setting

ω1,n tð Þ =

Γ 2 − αð Þτn
θT

t, t ∈ 0, θT½ ½,
Γ 2 − αð Þτn, t ∈ θT , 1 − θð ÞT½ �,
Γ 2 − αð Þτn

θT
T − tð Þ, t ∈ 1 − θð ÞT , T� �,

8>>>>><
>>>>>:

ð104Þ

ω2,n tð Þ =

Γ 2 − βð Þτn
θT

t, t ∈ 0, θT½ ½,
Γ 2 − βð Þτn, t ∈ θT , 1 − θð ÞT½ �,
Γ 2 − βð Þτn

θT
T − tð Þ, t ∈ 1 − θð ÞT , T� �:

8>>>>><
>>>>>:

ð105Þ
Clearly ωi,nð0Þ = ωi,nðTÞ = 0 for i = 1, 2, and fωng con-

verges strongly to ð0, 0Þ in X.
By the same argument as in Theorem 10, we have

Iλ ω1,n, ω2,nð Þ − λΨ ω1,n, ω2,nð Þ ≤ ρ P α, θð Þ +Q β, θð Þð Þτpn
− λ
ð 1−θð ÞT

θT
F t, Γ 2 − αð Þτn, Γ 2 − βð Þτn
� �

dt

≤ ρΔ 1 − λε1ð Þτpn < 0 = Iλ 0, 0ð Þ,
ð106Þ

for n large enough. This together with the fact that kωnkX
= kω1,n, ω2,nkX ⟶ 0 shows that Iλ has no local minimum
at zero, and the claim follows.

The alternative of Lemma 9 case (2) ensures the existence
of sequence fðun, vnÞg of pairwise distinct local minima of Iλ
which weakly converges to ð0, 0Þ. This completes the proof of
Theorem 11.

Finally, we present an example to illustrate our main
results.

Example 12. Consider the following fractional differential
system:

tD
0,6
1 Φ3 0D

0,6
t u tð Þ� �� �

= λFu t, u tð Þ, v tð Þð Þ + sin
u1
2

� �� �2
, a:e:t ∈ 0, T½ �,

tD
0,75
1 Φ3 0D

0,75
t u tð Þ� �� �

= λFv t, u tð Þ, v tð Þð Þ + arctan
u2
3

� �� �2
, a:e:t ∈ 0, T½ �,

u 0ð Þ = u 1ð Þ = 0, v 0ð Þ = v 1ð Þ = 0,

8>>>>><
>>>>>:

ð107Þ

where T = 1, α = 0, 6, β = 0, 75, and h1ðu1Þ = ðsin ðu1/2ÞÞ2, h2
ðu2Þ = ðarctan ðu2/3ÞÞ2. Moreover, for all ðt, u, vÞ ∈ ½0, 1� ×
ℝ2 put

F t, u tð Þ, v tð Þð Þ = 1 + t2
� �

H u, vð Þ, ð108Þ

where

H u, vð Þ =
ξ3n+1 exp

−1
1 − u − 0:8873ξn+1ð Þ2 + v − 0:9064ξn+1ð Þ2

 !
, u, vð Þ ∈Ω,

0, u, vð Þ ∈ℝ2 \Ω,

8>><
>>:

ð109Þ

where

Ω = ∪n≥1 u, vð Þ: u − 0:8873ξn+1ð Þ2 + v − 0:9064ξn+1ð Þ < 1
n o

,

ð110Þ

and ξ1 = 1, ξn+1 = nðξnÞ4/3 + 1 for all n ∈ℕ.

Clearly, h1, h2 : ℝ⟶ℝ are two Lipschitz continuous
functions of order 2 with Lipschitzian constants L1 = 1/2,
L2 = 1/3 and h1ð0Þ = h2ð0Þ = 0, Fðt, 0, 0Þ = 0 for all t ∈ ½0, 1�.
With the aid of direct computation we have that

M ≈ 1:8925, k ≈ 0:2991, ρ ≈ 1:7009: ð111Þ

Let θ = 1/3, then we have

P α,
1
3

� 	
= P 0, 6,

1
3

� 	
≈ 0:3366,Q β,

1
3

� 	
=Q 0, 75,

1
3

� 	
≈ 0:3745:

ð112Þ

Then, Δ ≈ 0:3745. Thus, all conditions of Theorem 10
are satisfied.

In fact, the conditions (H0), (H1), and (H2) hold. For all
n ∈ℕ.

Restriction of Hðu, vÞ on Ω attains its maximum in
ð0:8873ξn+1, 0:9064ξn+1Þ and

H 0:8873ξn+1, 0:9064ξn+1
� �

= ξ3n+1 exp −1ð Þ: ð113Þ
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In addition,

sup
uj j+ vj j≤0,8873ξn+1−1

H u, vð Þ = ξ3n exp −1ð Þ, ð114Þ

and so

B∞ = lim sup
n→+∞

Ð 2/3
1/3H 0:8873ξn+1, 0:9064ξn+1ð Þdt

ξ2n + 1

= lim
n→+∞

ξ3n+1 exp −1ð Þ
ξ2n + 1

= +∞,
ð115Þ

A∞ = lim
n→+∞

inf
Ð 1
0 sup uj j+ vj j≤ 0:8873ξn+1ð Þ−1H u, vð Þdt

0:8873ξn+1ð Þ2

= lim
n→+∞

ξ3n exp −1ð Þ
0:8873ξn+1ð Þ2

= 0 <
k

2pMρΔ
B0,

ð116Þ

which implies that the condition (H3) holds. Hence,
owing to Theorem 10, for each λ ∈ ð0;+∞Þ, the coupled
system (107) has an unbounded sequence of weak
solutions.
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