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Let H be a Krein space with fundamental symmetry J. Starting with a canonical block-operator matrix representation of J, we
study the regular subspaces ofH. We also present block-operator matrix representations of the J-self-adjoint projections for the
regular subspaces of H, as well as for the regular complements of the isotropic part in a pseudo-regular subspace of H.

1. Introduction

+roughout this paper, letH be a separable complex Hilbert
space with the inner product 〈·, ·〉 and let B(H) be the
algebra of all bounded linear operators onH. A contraction
in B(H) is an operator Q in B(H) such that ‖Q‖≤ 1. For
an operator T ∈B(H), T∗, σ(T), σP(T), R(T), and N(T)

denote the adjoint, the spectrum, the point spectrum, the
range, and the null space of T, respectively. An operator T
in B(H) is said to be self-adjoint if T�T∗.

An operator J inB(H) is said to be a symmetry (or self-
adjoint involution) if J� J∗� J− 1. If the symmetry J is non-
scalar, then

[x, y] � 〈Jx, y〉, (1)

which defines an indefinite inner product onH, and (H, J)

is called a Krein space ([1–3]).
For T ∈B(H), the J-adjoint operator of T is the unique

operator T♯ in B(H) satisfying

[Tx, y] � x, T
♯
y , (2)

for all x, y ∈H. It is easy to see that T♯� JT∗J.

Definition 1. If T ∈B(H), then (a) T is J-normal if
TT♯�T♯T; (b) T is J-self-adjoint if T♯�T; (c) T is J-positive if
JT≥ 0; (d) T is J-negative if JT≤ 0.

An idempotent in B(H) is called a projection. A
projection is normal if and only if it is self-adjoint. However,
there exist J-normal projections which are not J-self-adjoint
(see [4]).

For a subspace S of the Krein spaceH, S[⊥] denotes the
J-orthocomplement of S in H, that is,

S
[⊥]

� h ∈H: [h, s] � 0 for all s inS{ }. (3)

It is obvious thatS[⊥] equals the usual orthocomplement
(JS)⊥. Let S0: � S ∩ S[⊥] be the isotropic part of S. If
S0 � 0{ }, thenS is said to be J-nondegenerate. Otherwise,S
is said to be J-degenerate.

Definition 2. If S is a subspace of the Krein space H, then
(a) S is positive if PSJPS ≥ 0, where PS is the orthogonal
projection of H onto S; (b) S is uniformly positive if
PSJPS ≥ εPS for some ϵ> 0; (c) S is regular ifH � S _+S[⊥];
(d) S is pseudoregular if S and the algebraic sum S + S[⊥]

are closed.
It is well known that a subspace S ofH is regular if and

only if it is the range of a (unique) J-self-adjoint projection in
B(H) (see [2]). +erefore, there is a one-to-one corre-
spondence between regular subspaces of H and J-self-ad-
joint projections in B(H). It is also proved in [5] that a
closed subspace S is regular if and only if (PSJPS)2 ≥ εPS

for some ϵ> 0. In consequence, a closed subspace S is
uniformly positive if and only if it is regular and positive, and
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due to Proposition 4 in [6], this is the case if and only if it is a
regular subspace with a J-positive projection.

Pseudoregular subspaces are important since they enable
to generalize some Pontryagin space arguments to general
Krein space (see [7]). Pseudoregular subspaces and its
properties have been studied extensively by many authors
(see [4, 7, 8]). In [4], the authors proved that a closed
subspaceS ofH is pseudoregular if and only if it is the range
of a J-normal projection in B(H). +ey also showed in the
same paper that a pseudoregular subspace S admits infi-
nitely many J-normal projections onto it, unlessS is regular.
In [8], Giribet et al. gave a block-operator matrix repre-
sentation of the fundamental symmetry J depending on a
pseudoregular subspace S of H, and from here on, they
characterized the J-self-adjoint projections for the regular
complements of S0 in S.

In this paper, we give a new block-operator matrix
representation of the fundamental symmetry J related to a
closed subspace S of H. +is offers an improvement over
the result in [8], since we do not need to impose the as-
sumption of the pseudoregularity of S. We also study the J-
self-adjoint projections for the regular subspaces of H, as
well as for the regular complements of the isotropic part in a
pseudoregular subspace of H.

+e paper is organized as follows. In Section 2, we give a
block-operator matrix representation of the fundamental
symmetry J. +erein, we also characterize the regular sub-
spaces of H and present a block-operator matrix repre-
sentation of the J-self-adjoint projections for the regular
subspaces of H. In Section 3, we study the pseudoregular
subspaces of H. If S is a pseudoregular subspace of H and
L is a regular complement of S0 in S, we give a block-
operator matrix representation of the J-self-adjoint pro-
jection onto L.

2. J-Self-Adjoint Projections for the
Regular Subspaces

LetH be a Krein space with fundamental symmetry J. +en,
J+: � ((I + J)/2) and J− : � ((I − J)/2) are mutually anni-
hilating orthogonal projections. Denote H+ � R(J+) and
H− � R(J− ). We have fundamental decomposition
H � H+ ⊕ H− .

Let S be a closed subspace of the Krein spaceH, and let
S0 be its isotropic part. DenoteH1 � S∩H+,H2 � S∩H− ,
H3 � S0,H4 � S⊖ (H1 ⊕H2 ⊕H3),H5 � S⊥ ⊖ (J(S0)⊕
(S⊥ ∩H+)⊕ (S⊥ ∩H− )),H6 � J(S0),H7 � S⊥ ∩H+, and
H8 � S⊥ ∩H− . It is easy to check that Hi, 1≤ i≤ 8, are
pairwise orthogonal subspaces of H. +e operators in this
paper are frequently treated as block-operator matrices with
respect to the space decomposition:

H � H1 ⊕H2 ⊕ H3 ⊕H4 ⊕H5 ⊕H6( ⊕H7 ⊕H8. (4)

For a pseudoregular subspace S of the Krein space H, a
block-operator matrix representation of the fundamental
symmetry Jwas obtained with the space decompositionH �

S0 ⊕ (S⊖S0)⊕ (S⊥ ⊖ J(S0))⊕ J(S0) in [8]. We continue
the study of the block-operator matrix representation of the

fundamental symmetry J, but we do not impose the as-
sumption of the pseudoregularity of the subspace S.

Theorem 1. Let H be a Krein space with fundamental
symmetry J, and let S be a closed subspace of H. 3en, J has
the operator matrix representation:

J � I1 ⊕ − I2 ⊕

0 0 0 U

0 Q I4 − Q2( 
1/2

V 0

0 V∗ I4 − Q2( 
1/2

− V∗QV 0

U∗ 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕ I7 ⊕ − I8,

(5)

with respect to space decomposition (4), where Ii is the identity
operator on the corresponding space Hi, i� 1, 2, 4, 7, 8, U is
an isometric isomorphism from H6 onto H3, V is an iso-
metric isomorphism fromH5 ontoH4, and Q is a self-adjoint
contraction on H4 with 0, ±1 ∉ σP(Q).

Proof. It is clear that H1 and H7 are subspaces of H
+ and

H2 and H8 are subspaces of H− . So J|H+ � I|H+ implies
J|H1

� I|H1
and J|H7

� I|H7
and J|H− � − I|H− implies J|H2

�

− I|H2
and J|H8

� − I|H8
. Since J(H3) � H6, we have

PHi
J|H3

� 0 for i≠ 6. Moreover, since J(H6) � J(J(H3)) �

J2(H3) � I(H3) � H3, we get PHi
J|H6

� 0 for i≠ 3. Noting
that J is self-adjoint, then J has the operator matrix
representation:

J � I1 ⊕ − I2 ⊕

0 0 0 J36

0 J44 J45 0

0 J∗45 J55 0

J∗36 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⊕ I7 ⊕ − I8, (6)

with respect to space decomposition (4), where Ii is
the identity operator on the corresponding space Hi,
i � 1, 2, 7, 8, J36 ∈B(H6,H3), J45 ∈B(H5,H4), and J44
and J55 are self-adjoint contractions on H4 and H5,
respectively:

Let J36 �U. Since J2 � I, it is easy to see thatUU∗� I3 and
U∗U� I6. +us, U is an isometric isomorphism from
H6 onto H3.
Let J44�Q. If ξ ∈N(I4 − Q) and x� (0, 0, 0, ξ, 0, 0, 0, 0)T,
then

Jx � 0, 0, 0, Qξ, J
∗
45ξ, 0, 0, 0( 

T

� 0, 0, 0, ξ, J
∗
45ξ, 0, 0, 0( 

T
.

(7)

Since ‖J‖ � 1, J∗45ξ � 0 and Jx� x. It follows that x ∈H+,
and hence, x ∈ S∩H+ � H1. +is implies ξ � 0. +us,
1 ∉ σP(Q). Analogously, − 1 ∉ σP(Q) and ±1 ∉ σP(J55).

Moreover, if ξ ∈N(Q) and x� (0, 0, 0, ξ, 0, 0, 0, 0)T, then

[x, y] � 〈Jx, y〉 � 〈Qξ, y〉 +〈J∗45ξ, y〉 � 〈Qξ, y〉 � 0, (8)

for all y ∈ S. It follows that x ∈ S[⊥], and hence,
x ∈ S∩S[⊥] � S0 � H3. So ξ � 0, and hence, 0 ∉ σP(Q).
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Let J′ � PH4 ⊕H5
J|H4 ⊕H5

, that is,

J′ �
Q J45

J∗45 J55
 : H4 ⊕H5⟶H4 ⊕H5. (9)

+en, J′ is a symmetry. So we have

J′
+

�
1
2

I4 ⊕ I5 + J′(  �
1
2

I4 + Q J45

J∗45 I5 + J55

⎛⎝ ⎞⎠≥ 0, (10)

and by Proposition 5 in [9], there exists a contraction V from
H5 into H4 such that

J45 � I4 + Q( 
1/2

V I5 + J55( 
1/2

. (11)

+en, by a direct calculation, equation (J′
+
)2 � J′

+

implies

I4 + Q( 
2

+ I4 + Q( 
1/2

V I5 + J55( V∗ I4 + Q( 
1/2

� 2 I4 + Q( ,

I4 + Q( 
3/2

V I5 + J55( 
1/2

+ I4 + Q( 
1/2

V I5 + J55( 
3/2

� 2 I4 + Q( 
1/2

V I5 + J55( 
1/2

,

I5 + J55( 
1/2

V∗ I4 + Q( V I5 + J55( 
1/2

+ I5 + J55( 
2

� 2 I5 + J55( .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

Noting that − 1 ∉ σP(Q) and − 1 ∉ σP(J55), it follows that
(i) I4 − Q � V I5 + J55( V∗,

(ii) − QV � VJ55,

(iii) V∗ I4 + Q( V � I5 − J55.

⎧⎪⎪⎨

⎪⎪⎩
(13)

By (11) and (ii) of (13), we obtain

J45 � I4 + Q( 
1/2

V I5 + J55( 
1/2

� I4 + Q( 
1/2

I4 − Q( 
1/2

V

� I4 − Q
2

 
1/2

V.

(14)

By (i) and (ii) of (13), (I4 − Q) (VV∗ − I4)� 0, and since
I4 − Q is injective,VV∗� I4. By (ii) and (iii) of (13), (V∗V − I5)
(I5 − J55) � 0, and since I5 − J55 is a self-adjoint operator
with dense range in H5, V

∗V � I5. +us, V is an isomet-
ric isomorphism from H5 onto H4, and by (ii) of (13)
again,

J55 � − V
∗
QV. (15)

Now we see that

J′ �
Q I4 − Q2( 

1/2
V

V∗ I4 − Q2( 
1/2

− V∗QV

⎛⎝ ⎞⎠: H4 ⊕H5⟶H4 ⊕H5,

(16)

and J has the asserted operator matrix. □

Lemma 1 (see [5]). A closed subspace S is regular if and
only if (PSJPS)2 ≥ ϵPS for some ϵ> 0. In this case, the J-self-
adjoint projection onto S is determined as (PSJPS)†J, where
(PSJPS)† stands for the Moore–Penrose inverse of PSJPS.

Theorem 2. Let H be a Krein space with fundamental
symmetry J, and letS be a closed subspace ofH. Write J in (5)
with respect to space decomposition (4). 3en, S is regular
if and only if H3 � 0{ } and 0 ∉ σ(Q). In this case, H6 � 0{ }

and with respect to the space decomposition H � H1 ⊕H2 ⊕
(H4 ⊕H5)⊕H7 ⊕H8, J and the J-self-adjoint projection
E onto S have operator matrix representations:

J � I1 ⊕ − I2 ⊕
Q I4 − Q2( 

1/2
V

V∗ I4 − Q2( 
1/2

− V∗QV

⎛⎝ ⎞⎠⊕ I7 ⊕ − I8

(17)

and

E � I1 ⊕ I2 ⊕
I4 Q− 1 I4 − Q2( 

1/2
V

0 0
⎛⎝ ⎞⎠⊕ 0⊕ 0, (18)

respectively.

Proof. It is clear that PS has the operator matrix
representation:

PS � I1 ⊕ I2 ⊕ I3 ⊕ I4 ⊕ 0⊕ 0⊕ 0⊕ 0, (19)

with respect to space decomposition (4), and by a direct
calculation,

PSJPS � I1 ⊕ − I2 ⊕ 0 ⊕Q ⊕ 0⊕ 0⊕ 0⊕ 0. (20)

+en, by Lemma 1, S is regular if and only if H3 � 0{ }

and Q2≥ ϵI4 for some ϵ> 0, and since Q is self-adjoint, this is
the case if and only if H3 � 0{ } and 0 ∉ σ(Q).

If S is regular, then H6 � J(H3) � 0{ }, and hence,
H � H1 ⊕H2 ⊕H4 ⊕H5 ⊕H7 ⊕H8. By +eorem 1, J has
the operator matrix representation given in (17), and since
PS � I1 ⊕ I2 ⊕ I4 ⊕ 0⊕ 0⊕ 0 with respect to H � H1 ⊕H2 ⊕
H4 ⊕H5 ⊕H7 ⊕H8, we have

PSJPS( 
†

� I1 ⊕ − I2 ⊕Q ⊕ 0⊕ 0⊕ 0( 
†

� I1 ⊕ − I2 ⊕Q
− 1 ⊕ 0⊕ 0⊕ 0.

(21)

+en, by Lemma 1, we get

E � PSJPS( 
†
J � I1 ⊕ I2 ⊕

I4 Q− 1 I4 − Q2( 
1/2

V

0 0
⎛⎝ ⎞⎠⊕ 0⊕ 0,

(22)

with respect to H � H1 ⊕H2 ⊕ (H4 ⊕H5)⊕H7 ⊕H8.
Recall that a closed subspace S of H is uniformly

positive if and only if it is a regular subspace with a J-positive
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projection in B(H). We give a characterization of the
uniformly positive subspaces of the Krein space H. □

Corollary 1. Let H be a Krein space with fundamental
symmetry J, and letS be a closed subspace ofH. Write J in (5)
with respect to space decomposition (4). 3en, S is uniformly
positive if and only ifH2 � 0{ },H3 � 0{ }, and Q is a positive
operator in B(H4) with 0 ∉ σ(Q). In this case, the block-
operator matrix representation of the J-positive projection E
onto S is given by

E � I1 ⊕
I4 Q− 1 I4 − Q2( 

1/2
V

0 0
⎛⎝ ⎞⎠⊕ 0⊕ 0, (23)

with respect to the space decomposition
H � H1 ⊕ (H4 ⊕H5)⊕H7 ⊕H8.

Proof (Necessity). Suppose that the closed subspace S is
uniformly positive. +en,S is regular, and suppose that E is the
J-self-adjoint projection onto S. By +eorem 2, H3 � 0{ },
0∉ σ(Q), and with respect to H � H1 ⊕H2 ⊕ (H4 ⊕H5)⊕
H7 ⊕H8, J and E have operatormatrix representations (17) and
(18), respectively. By a direct calculation, we have

JE � I1 ⊕ − I2 ⊕
Q I4 − Q2( 

1/2
V

V∗ I4 − Q2( 
1/2

V∗ I4 − Q2( Q− 1V

⎛⎝ ⎞⎠⊕ 0⊕ 0,

(24)

and since JE≥ 0, we see that H2 � 0{ } and Q≥ 0. □

Sufficiency. Suppose that H2 � 0{ }, H3 � 0{ }, and Q is a
positive operator in B(H4) with 0 ∉ σ(Q). +en, by +e-
orem 1, J has the operator matrix representation:

J � I1 ⊕
Q I4 − Q2( 

1/2
V

V∗ I4 − Q2( 
1/2

− V∗QV

⎛⎝ ⎞⎠⊕ I7 ⊕ − I8,

(25)

with respect to H � H1 ⊕ (H4 ⊕H5)⊕H7 ⊕H8, and by
+eorem 2, S is regular and the J-self-adjoint projection E
onto S has the operator matrix representation:

E � I1 ⊕
I4 Q− 1 I4 − Q2( 

1/2
V

0 0
⎛⎝ ⎞⎠⊕ 0⊕ 0, (26)

with respect to H � H1 ⊕ (H4 ⊕H5)⊕H7 ⊕H8. It follows
that

JE � I1 ⊕
Q I4 − Q2( 

1/2
V

V∗ I4 − Q2( 
1/2

V∗ I4 − Q2( Q− 1V

⎛⎝ ⎞⎠⊕ 0⊕ 0

� I1 ⊕
Q1/2 0
V∗ I4 − Q2( 

1/2
Q− (1/2) 0

 

·
Q1/2 I4 − Q2( 

1/2
Q− (1/2)V

0 0
⎛⎝ ⎞⎠⊕ 0⊕ 0

≥ 0,

(27)

and hence, S is uniformly positive.

Remark 1. LetS be a subspace of the Krein spaceH. +en,S
is said to be negative (resp., uniformly negative) if PSJPS ≤ 0
(resp., PSJPS ≤ − εPS for some ϵ> 0). If more S is closed,
then S is uniformly negative if and only if it is regular and
negative, or equivalently, if and only if it is a regular subspace
with a J-negative projection. Arguing as in Corollary 1, we can
also give a characterization of the uniformly negative subspaces
of the Krein space H. With the notation as in Corollary 1,
a closed subspace S is uniformly negative if and only if
H1 � 0{ },H3 � 0{ }, and − Q is a positive operator inB(H4)

with 0∉ σ(Q). In this case, the block matrix representation of
the J-negative projection F onto S is given by

F � I2 ⊕
I4 Q− 1 I4 − Q2( 

1/2
V

0 0
⎛⎝ ⎞⎠⊕ 0⊕ 0, (28)

with respect to the space decomposition
H � H2 ⊕ (H4 ⊕H5)⊕H7 ⊕H8.

In the end of this section, we give an alternative proof of
+eorem 2.3 in [5].

Corollary 2. LetS be a regular subspace ofH with the J-self-
adjoint projection E.3en, E is uniquely written as E� E1 + E2
with E1, a J-positive projection, and E2, a J-negative projection
satisfying E1E2 � E1E

∗
2 � 0.

Proof. Write J and E in (17) and (18), respectively. Since Q is
a self-adjoint operator in B(H4), there are unique positive
operators Q+ and Q− in B(H4) such that Q�Q+ − Q− and
Q+Q− �Q− Q+ � 0 (see [10]). Note that 0 ∉ σ(Q), Q+, and Q−

have closed ranges in H4, and I4 � PR(Q+) + PR(Q− ). Let

E1 � I1 ⊕ 0⊕
PR Q+( ) Q+( )

† PR Q+( ) − Q+( )
2

 
1/2

V

0 0
⎛⎝ ⎞⎠⊕ 0⊕ 0,

E2 � 0⊕ I2 ⊕
PR Q−( ) Q−( )† PR Q−( ) − Q−( )2 

1/2
V

0 0
⎛⎝ ⎞⎠⊕ 0⊕ 0,

(29)

with respect to H � H1 ⊕H2 ⊕ (H4 ⊕H5)⊕H7 ⊕H8.
+en, E1 and E2 are projections, and Q+Q− �Q− Q+ � 0
implies E� E1 +E2 and E1E2 � E1E

∗
2 � 0.

Moreover, since

JE1 � I1 ⊕ 0⊕
Q+ PR Q+( ) − Q+( )

2
 

1/2
V

V∗ PR Q+( ) − Q+( )
2

 
1/2

V∗Q+† PR Q+( ) − Q+( )
2

 V

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

⊕ 0⊕ 0

� I1 ⊕ 0⊕XX
∗ ⊕ 0⊕ 0

≥ 0,

(30)

where X �
(Q+)1/2 0

V∗(PR(Q+) − (Q+)2)1/2(Q+)†(1/2) 0 , we see

that E1 is J-positive. Similarly, we have JE2≤ 0, and hence, E2
is J-negative.
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Now, we prove the uniqueness of E1 and E2. Since JE1
and JE2 are self-adjoint operators in B(H), we have

JE1(  − JE2(  � − JE1(  JE2( 
∗

� − JE1E
∗
2J � 0,

− JE2(  JE1(  � − JE2(  JE1( 
∗

� − JE2E
∗
1J � 0.

(31)

Noting that JE� JE1 − (− JE2), where JE1 and − JE2 are the
positive operators inB(H), we see that JE1 and − JE2 are the
positive part and the negative part of the self-adjoint op-
erator JE, respectively. So JE1 and − JE2, and hence, E1 and E2
are unique. □

3. J-Self-Adjoint Projections for the
Pseudoregular Subspaces

In this section, we study the pseudoregular subspaces of H.
If S is a pseudoregular subspace of H and L is a com-
plement of S0 in S, we present a block-operator matrix
representation of the J-self-adjoint projection onto L.

Lemma 2. Let H be a Krein space with fundamental sym-
metry J, and let S be a closed subspace of H. 3en, the
following statements are equivalent:

(a) S is pseudoregular
(b) 3ere exists a regular subspace M such that

S � S0[ _+]M, where [ _+] denotes the direct [·, ·]-or-
thogonal sum

(c) If S � S0 _+ T, then T is regular

(d) S⊖S0 is regular
(e) 3e operator Q in (5) is invertible

Proof. Due to Proposition 4.1 in [4], (a)⟺ (b)⟺ (c).

(c)⟹ (d): since S � S0 _+(S⊖S0), this is immediate.
(d)⟹ (b): since S⊖S0 � H1 ⊕H2 ⊕H4 and
J(S0) � H6,

[x, y] � 〈Jx, y〉 � 0, (32)

for all x ∈ S0 and y ∈ S⊖S0. +us, S � S0[ _+]

(S⊖S0), and hence, (d)⟹ (b) is clear.
(d)⟺ (e): arguing as +eorem 2, S⊖S0 is regular if
and only if the operator Q in (5) is invertible.

If S be a pseudoregular subspace of H and L be a
complement of S0 in S, then by Lemma 2, L is a regular
subspace. +e following theorem gives a block-operator
matrix representation of the J-self-adjoint projection
onto L. □

Theorem 3. Let H be a Krein space with fundamental
symmetry J, and let S be a pseudoregular subspace of H.
Write J in (5) with respect to space decomposition (4). IfL is a
complement of S0 in S, then the J-self-adjoint projection E
onto L has the operator matrix representation:

E �

I1 0 0 0 0 E16 0 0

0 I2 0 0 0 E26 0 0

UE∗16 − UE∗26 0 UE∗46Q UE∗46 I4 − Q2( 
1/2

V UE∗16E16 − UE∗26E26 + UE∗46QE46 0 0

0 0 0 I4 Q− 1 I4 − Q2( 
1/2

V E46 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (33)

with respect to the space decomposition H � ⊕ 8i�1Hi, where
Ei6 ∈B(H6,Hi), i� 1, 2, 4.

Proof. If L is a complement of S0 in S, then L is regular.
Suppose that E is the J-self-adjoint projection ontoL. Since
L ⊆S, we have PS⊥ � PS⊥PL⊥ , and hence,

PS⊥E � PS⊥PL⊥( E � PS⊥ PL⊥E(  � PS⊥0 � 0. (34)

Moreover, since S0⊆S[⊥]⊆L[⊥] � N(E), we get
E|S0 � 0. Noting that ⊕ 8i�5Hi � S⊥ and H3 � S0, then E
has the operator matrix representation:

E �

E11 E12 0 E14 E15 E16 E17 E18

E21 E22 0 E24 E25 E26 E27 E28

E31 E32 0 E34 E35 E36 E37 E38

E41 E42 0 E44 E45 E46 E47 E48

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (35)
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with respect to the space decomposition H � ⊕ 8i�1Hi,
where Eij ∈B(Hj,Hi).

Let P � PH1 ⊕H2 ⊕H4
E|H1 ⊕H2 ⊕H4

. By a direct calculation,
P2 � PH1 ⊕H2 ⊕H4

E2|H1 ⊕H2 ⊕H4
, and sinceE2� E, it follows that

P2� P. +us, P is a projection onH1 ⊕H2 ⊕H4. Furthermore,
since H1 ⊕H2 ⊕H4 � S⊖S0 and S0⊆N(PS⊖S0)∩N(E),
we have

R(P) � PS⊖S0E S⊖S0
  � PS⊖S0E(S) � PS⊖S0(L)

� PS⊖S0(S) � S⊖S0
� H1 ⊕H2 ⊕H4.

(36)

So P is the identity on H1 ⊕H2 ⊕H4, and hence,

E �

I1 0 0 0 E15 E16 E17 E18

0 I2 0 0 E25 E26 E27 E28

E31 E32 0 E34 E35 E36 E37 E38

0 0 0 I4 E45 E46 E47 E48

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

+en,

JE �

I1 0 0 0 E15 E16 E17 E18

0 − I2 0 0 − E25 − E26 − E27 − E28

0 0 0 0 0 0 0 0

0 0 0 Q QE45 QE46 QE47 QE48

0 0 0 X XE45 XE46 XE47 XE48

U∗E31 U∗E32 0 U∗E34 U∗E35 U∗E36 U∗E37 U∗E38

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (38)

where X � V∗(I4 − Q2)1/2, and since JE is self-adjoint, we
have

E15 � 0, U∗E31 � E∗16, E17 � 0, E18 � 0,

E25 � 0, U∗E32 � − E∗26, E27 � 0, E28 � 0,

QE45 � I4 − Q2( 
1/2

V, U∗E34 � E∗46Q, QE47 � 0, QE48 � 0,

U∗E35 � E∗46 I4 − Q2( 
1/2

V, U∗E37 � 0, U∗E38 � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(39)

Since U is an isometric isomorphism from H6 onto H3
and 0 ∉ σ(Q), it also follows that

E31 � UE∗16,

E32 � − UE∗26,

E45 � Q− 1 I4 − Q2( 
1/2

V, E34 � UE∗46Q, E47 � 0, E48 � 0,

E35 � UE∗46 I4 − Q2( 
1/2

V, E37 � 0, E38 � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(40)

Now, we see that

E �

I1 0 0 0 0 E16 0 0

0 I2 0 0 0 E26 0 0

UE∗16 − UE∗26 0 UE∗46Q UE∗46 I4 − Q2( 
1/2

V E36 0 0

0 0 0 I4 Q− 1 I4 − Q2( 
1/2

V E46 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)
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Moreover, since E2 � E, we have

E36 � UE
∗
16E16 − UE

∗
26E26 + UE

∗
46QE46. (42)

+us, E has the asserted operator matrix. □

Corollary 3. Let H be a Krein space with fundamental
symmetry J, and let S be a pseudoregular subspace of H.
Write J in (5) with respect to space decomposition (4). 3en,
the J-self-adjoint projection E onto S⊖S0 has the operator
matrix representation:

E � I1 ⊕ I2 ⊕ 0⊕
I4 Q− 1 I4 − Q2( 

1/2
V

0 0
⎛⎝ ⎞⎠⊕ 0⊕ 0⊕ 0,

(43)

with respect to space decomposition (4).

Proof. By +eorem 3, the J-self-adjoint projection E onto
S⊖S0 has operator matrix representation (33) with respect to
space decomposition (4). Moreover, since PS0 � 0⊕ 0⊕ I3 ⊕
0⊕ 0⊕ 0⊕ 0⊕ 0, the equation PS0E � 0 implies

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

UE∗16 − UE∗26 0 UE∗46Q UE∗46 I4 − Q2( 
1/2

V UE∗16E16 − UE∗26E26 + UE∗46QE46 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0. (44)

It follows that UE∗16 � 0, − UE∗26 � 0, and UE∗46Q � 0.
Noting that U is an isometric isomorphism from H6 onto
H3 and Q is a self-adjoint contraction with dense range in
H4, we get that E16 � 0, E26 � 0, and E46 � 0. +us, E has the
asserted operator matrix. □
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