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In this paper, we study multiplicity of positive solutions for a class of semilinear elliptic equations with the nonlinearity containing
singularity and Hardy-Sobolev exponents. Using variational methods, we establish the existence and multiplicity of positive
solutions for the problem.

1. Introduction and Main Results

Consider the following semilinear elliptic equations with
Dirichlet boundary value conditions:

−Δu − μ
u

xj j2 = uj j2∗ sð Þ−2

xj js u + λu−γ, in Ω,

u > 0, in Ω,
u = 0, in ∂Ω,

0
BBBB@ ð1Þ

where Ω is a smooth bounded domain in RNðN ≥ 3Þ, 0 <
s < 2, 2∗ðsÞ = 2ðN − sÞ/N − 2 is the Hardy-Sobolev critical
exponent, 2∗ = 2∗ð0Þ = 2N/ðN − 2Þ is the Sobolev critical
exponent, μ < �μ= Δ ðN − 2Þ2/4, and γ ∈ ð0, 1Þ.

The energy functional associated with problem (1) is
defined by

Iλ uð Þ = 1
2

ð
Ω

∇uj j2 − μ
u2

xj j2
� �

d x −
1

2∗ sð Þ
ð
Ω

uj j2∗ sð Þ

xj js d x

−
λ

1 − γ

ð
Ω

uj j1−γ d x,

ð2Þ

for any u ∈H1
0ðΩÞ. In general, a function u is called a weak

solution of problem (1) if u ∈H1
0ðΩÞ and uðxÞ > 0 for all x

∈Ω; it holds

ð
Ω

∇u · ∇v − μ
uv

xj j2 −
uj j2∗ sð Þ−1

xj js v − λ uj j−γv
 !

d x

= 0, ∀v ∈H1
0 Ωð Þ:

ð3Þ

The paper by Crandall et al. [1] is the starting point
on semilinear problem with singular nonlinearity. There
is a large literature on singular nonlinearities (see [2–14]
and references therein). In particular, the following Dirichlet
problem

−Δu = uβ + μu−γ, inΩ,
u > 0, inΩ,
u = 0, in∂Ω,

0
BB@ ð4Þ

has been shown in [2], in which the authors proved that
problem (4) possesses at least one solution for μ > 0 small
enough, and there exists no solution when μ is large.
Chabrowski in [15] considered the Neumann boundary
problems with singular superlinear nonlinearities by approx-
imation and variational methods. When the superlinear term
is subcritical, he obtained two solutions, a mountain-pass
solution and a local minimizer solution. And, in the critical
case, he obtained a local minimizer solution and proved that
there is no moutain-pass solution.

In recent years, people have paid much attention to the
existence of solutions for problems with the Sobolev critical
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exponent (the case that s = 0) (see [16–21] and the references
therein); some authors also considered the singular problems
with the Hardy-Sobolev critical exponent (the case that s ≠ 0)
(see [22–27] and the references therein).

Up to our knowledge, the literature does not contain any
result on the existence of positive solutions to the problem (1)
with the nonlinearity containing singularity and Hardy-
Sobolev exponents. Motivated by reasons above, the aim of
this paper is to show the existence of positive solutions of
problem (1). We study problem (1) and obtain at least two
solutions via the Nehari method. It is well-known that the
singular term leads to the nondifferentiability of the func-
tional I on H1

0ðΩÞ, so I does not belong to C1ðH1
0ðΩÞ,RÞ.

In order to get the existence of multiple positive solutions
of problem (1), we use the Nehari method and differentiate
the two solutions by their different Nehari-type sets.

The main result can be described as follows.

Theorem 1. Let 0 < s < 2, μ < �μ= Δ ðN − 2Þ2/4 and γ ∈ ð0, 1Þ.
Then, there exists λ∗ > 0 small enough, such that problem
ð1Þ has at least two positive solutions for any λ ∈ ð0, λ∗Þ.

The paper is organized as follows: in Section 2, we give
some preliminaries; in Section 3, we prove Theorem 1. This
idea is essentially introduced in 20]. Throughout this paper,
we make use of the following notations:

(i) The norm in H1
0ðΩÞ is denoted by

∥u∥2 =
ð
Ω

∇uj j2 − μ
u2

xj j2
� �

d x ð5Þ

By Hardy inequality [28], we easily derive that the norm
is equivalent to the usual norm:

∥u∥20 =
ð
Ω

∇uj j2d x ð6Þ

(ii) D1,2ðRNÞðN ≥ 3Þ denotes the space of the functions
u ∈ L2∗ðRNÞ such that ∣∇u∣ ∈ L2ðRNÞ, endowed with
scalar product and norm, respectively, given by

u, vh iRN =
ð
RN

∇u · ∇v − μ
uv

xj j2
� �

d x,

∥u∥2
RN =

ð
RN

∇uj j2 − μ
u2

xj j2
� �

d x

ð7Þ

that coincides with the completion of C∞
0 ðRNÞ with respect

to the L2-norm of the gradient. By Hardy inequality [28],
we easily derive that the norm is equivalent to the usual
norm:

∥u∥20,RN =
ð
RN

∇uj j2 d x ð8Þ

in D1,2ðRNÞ.

(iii) The norm in LpðΩÞ is denoted by j·jp
(iv) C, C0, C1, C2,⋯ denote positive constants

2. Preliminaries

In this section, we will study the unperturbed problem

−Δu − μ
u

xj j2 = uj j2∗ sð Þ−2

xj js u, x ∈RN ,

u ∈D1,2
r RN� �

, u > 0, x ∈RN :

8>>>><
>>>>:

ð9Þ

It is well-known that the nontrivial solutions of problem
(9) are equivalent to the nonzero critical points of the energy
functional

I0 uð Þ = 1
2

ð
RN

∇uj j2 − μ
u2

xj j2
� �

d x

−
1

2∗ sð Þ
ð
RN

u+j j2∗ sð Þ

xj js d x, u ∈D1,2
r RN� �

:

ð10Þ

Obviously, the energy functional I0ðuÞ is well-defined
and is of C2 with derivatives given by

I0′ uð Þ, v
D E

=
ð
RN

∇u · ∇v − μ
uv

xj j2
� �

d x

−
ð
RN

u+j j2∗ sð Þ−1

xj js v d x, u, v ∈D1,2
r RN� �

,
ð11Þ

I0′′ uð Þv,w
D E

=
ð
RN

∇v · ∇w − μ
vw

xj j2
� �

d x

−
ð
RN

2∗ sð Þ − 1ð Þ u+j j2∗ sð Þ−2

xj js vw d x,

 u, v,w ∈D1,2
r RN� �

:

ð12Þ
For all ε > 0, it is well-known that the function

zε xð Þ = 2ε 2−sð Þ ffiffiffiffiffiffiffi
�μ−μ

p / ffiffiffi
�μ

p
N − sð Þ �μ − μð Þffiffiffi
�μ

p
 ! ffiffiffi

�μ
p /2−s

/

� xj j
ffiffiffi
�μ

p
−
ffiffiffiffiffiffiffi
�μ−μ

p�
ε 2−sð Þ ffiffiffiffiffiffiffi

�μ−μ
p / ffiffiffi

�μ
p

+ xj j 2−sð Þ ffiffiffiffiffiffiffi
�μ−μ

p / ffiffiffi
�μ

p� ð13Þ

solves equation (9) and satisfies

ð
RN

∇zεj j2 − μ
z2ε
xj j2

� �
d x =

ð
RN

zεj j2∗ sð Þ

xj js d x: ð14Þ
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Moreover zεðxÞ is the extremal function of the minimiza-
tion problem

S≔ inf
Ð
RN ∇uj j2 − μ u2/ xj j2� �� �

d xÐ
RN uj j2∗ sð Þ/ xj js
� �

d x
� �2/2∗ sð Þ : u ∈D

1,2 RN� �
, u ≠ 0

8><
>:

9>=
>;,

SN−s/2−s =
ð
RN

∇zεj j2 − μ z2ε / xj j2� �� �
d x =

ð
RN

zεj j2∗ sð Þ/ xj jsd x:

ð15Þ

In view of [27, 29], we have the following exact local
behavior of the solutions of (1).

Lemma 2. Let 0 < s < 2, μ < �μ= Δ ðN − 2Þ2/4. If u ∈H1
0ðΩÞ is a

positive solution of (1), then there exists r > 0 small enough
and some positive constants C1 and C2 such that

C1 xj j−
ffiffiffi
�μ

p
−
ffiffiffiffiffiffiffi
�μ−μ

pð Þ ≤ ∣u xð Þ∣ ≤ C2 xj j−
ffiffiffi
�μ

p
−
ffiffiffiffiffiffiffi
�μ−μ

pð Þ, x ∈ B 0, rð Þ \ 0f g:
ð16Þ

Define ζ ∈ C1
0ðΩÞ such that ∣ζðxÞ∣ ≤ 1, ∣∇ζðxÞ∣ ≤ c for any

x ∈Ω, ζðxÞ ≥ 0 for all ∈Ω, 0 ∈Ω, and

ζ xð Þ =
1, if  xj j ≤ δ,
0, if  xj j ≥ 2δ:

(
ð17Þ

Denote vεðxÞ = ζðxÞzεðxÞ. Then, using an argument simi-
lar to [30], we have the following lemma.

Lemma 3. Let u ∈H1
0ðΩÞ be a weak solution of problem (1).

Then, for ε > 0 small enough

ð
Ω

uj j2∗ sð Þ−1

xj js vεdx =O εN−2/4−2s� �
,

ð
Ω

u
vεj j2∗ sð Þ−1

xj js dx =O εN−2/4−2s� �
,

ð
Ω

∇vεj j2 − μ
v2ε
xj j2

� �
dx = SN−s/2−s +O εN−s/2−s� �

+O εN−2/2−s� �
,

ð
Ω

vεj j2∗ sð Þ

xj js dx ≥ SN−s/2−s −O εN−2/2−s� �
,

ð
Ω

vεj jp dx =O εp N−2ð Þ/4−2s
� �

:

ð18Þ

Next, we define some Nehari-type sets, which are relevant
in getting multiple positive solutions. Denote

N λ = u ∈H1
0 Ωð Þ: ∥u∥2 =

ð
Ω

uj j2∗ sð Þ

xj js + λ ∣ uj1−γ
 !

d x, u ≠ 0

( )
,

N +
λ = u ∈N λ : 1 + γð Þ∥u∥2 > 2∗ sð Þ − 1 + γð Þ

ð
Ω

uj j2∗ sð Þ

xj js d x

( )
,

N 0
λ = u ∈N λ : 1 + γð Þ∥u∥2 = 2∗ sð Þ − 1 + γð Þ

ð
Ω

uj j2∗ sð Þ

xj js d x

( )
,

N −
λ = u ∈N λ : 1 + γð Þ∥u∥2 < 2∗ sð Þ − 1 + γð Þ

ð
Ω

uj j2∗ sð Þ

xj js d x

( )
:

ð19Þ

Define the minimization problems

d+ λð Þ≔ inf
u∈N +

λ

Iλ uð Þ: ð20Þ

Since

Iλ uð Þ = 1
2

ð
Ω

∇uj j2 − μ
u2

xj j2
� �

d x −
1

2∗ sð Þ
ð
Ω

uj j2∗ sð Þ

xj js d x

−
λ

1 − γ

ð
Ω

uj j1−γd x,

ð21Þ

it is easy to see that d+ðλÞ < 0 for λ > 0 and d+ðλÞ⟶ 0 as
λ⟶ 0. Take λ3 > 0 such that d+ðλÞ +N−1SN−s/2−s > 0 for
any λ ∈ ð0, λ3Þ. Denote

λ4 =
2∗ sð Þ − 2

2∗ sð Þ + γ − 1
S 1+γð Þ N−s/4−2sð Þ+1−γ/2

� 1 + γ

2∗ sð Þ − γ − 1

� � 1+γð Þ N−2/4−2sð Þ
Ωj j 1−2∗ sð Þ−γð Þ/2∗ sð Þ,

ð22Þ

and set λ∗ =min fλ3, λ4g:

Lemma 4. If λ ∈ ð0, λ∗Þ, then N 0
λ =∅. Moreover, for any

u ≠ 0, there exists a unique t+ = t+ðuÞ > 0 such that t+ðuÞu
∈N −

λ and

t+ > Tm ≔
∥u∥2

2∗ sð Þ − 1ð ÞÐΩ uj j2∗ sð Þ/ xj js
� �

dx

0
@

1
A

1/ 2∗ sð Þ−2ð Þ

,

Iλ t+uð Þ =max
t≥Tm

Iλ tuð Þ,

ð23Þ

and there exists a unique t− = t−ðuÞ > 0 such that t−ðuÞu
∈N +

λ and

t− < Tm and Iλ t−uð Þ = inf
0≤t≤Tm

Iλ tuð Þ: ð24Þ

Proof. The proof is similar to [30]. We omit the details.
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3. Proof of Theorem 1

In this section, we will prove Theorem 1. The proof of Theo-
rem 1 is based on solving the minimization problem (18) and
the minimization problem

d− λð Þ≔ inf
u∈N −

Iλ uð Þ: ð25Þ

We divide the proof into two steps. In the first step, we
prove that if there is w ∈N +

λ such that d+ðλÞ = IλðwÞ and
there is v ∈N −

λ such that d−ðλÞ = IλðvÞ, then w and v are
two positive weak solutions of (1). In the second step, we
prove that the minima d+ðλÞ in (18) and d−ðλÞ in (23) are
achieved, respectively.

Step 1. Let w ∈N +
λ be such that d+ðλÞ = IλðwÞ and v ∈N −

λ
such that d−ðλÞ = IλðvÞ.

Lemma 5. For each φ ∈H1
0ðΩÞ and φ ≥ 0, we have the

following:
There is η0 such that Iλðw + ηφÞ ≥ IλðwÞ for each 0 ≤

η ≤ η0
ðiiÞ t−η ⟶ 1 as η⟶ 0+, where for each η ≥ 0, t−η is the

unique positive number satisfying t−η ðv + ηφÞ ∈N −
λ

Proof. The proof follows exactly the scheme in the proof of
Lemma 3 in [31].

Lemma 6. For each φ ∈H1
0ðΩÞ and φ ≥ 0, we have w−γφ and

v−γφ ∈ L1ðΩÞ. Moreover,

ð
Ω

∇w∇φ − μ
wφ

xj j2 −
wj j2∗ sð Þ−1

xj js φ − λ wj j−γφ
 !

dx ≥ 0,

ð
Ω

∇v∇φ − μ
vφ

xj j2 −
vj j2∗ sð Þ−1

xj js φ − λ vj j−γφ
 !

dx ≥ 0:

ð26Þ

In particular, w, v > 0 for all x ∈Ω \ f0g.

Proof. We only prove (24) since the proof of (25) is similar.
Let φ ≥ 0 and ε > 0. By (i) of Lemma 5 and simple computa-
tions, we have that

λ

1 − γ

ð
Ω

w + εφð Þ1−γ −w1−γ

ε
dx

≤
1
2ε ∥w + εφ∥2−∥w∥2
� �

−
1

2∗ sð Þε
ð
Ω

∣w + εφ∣2
∗ sð Þ

xj js −
wj j2∗ sð Þ

xj js
 !

dx:

ð27Þ

Since the right hand side of the inequality has a finite
limit value as ε⟶ 0, by direct calculations, we conclude
ε−1ððw + εφÞ1−γ −w1−γÞ increases monotonically as ε⟶ 0
and

lim
ε→0

w + εφð Þ1−γ −w1−γ� �
ε

=

0, if φ xð Þ = 0,

1 − γð Þw−γφ, if φ xð Þ > 0 and w xð Þ > 0,

∞, if φ xð Þ > 0 and w xð Þ = 0:

8>>><
>>>:

ð28Þ

The Fatou lemma yields w−γφ ∈ L1ðΩÞ and we get (24).
Since w, v ≥ 0 and w, v≡0, by the strong maximum prin-

ciple, it follows that

w, v > 0, ∀x ∈Ω \ 0f g: ð29Þ

Lemma 7. We have that w and v are positive weak solutions
of (1).

Proof. For any φ ∈H1
0ðΩÞ and η > 0, we define ψ = ðw + ηφÞ

and ψ+ = max fψ, 0g. Then, ψ+ ∈H1
0ðΩÞ: Since w ∈N λ, we

obtain from (24) that

0 ≤
ð
Ω

∇w∇ψ+ − μ
wψ+

xj j2 −
wj j2∗ sð Þ−1

xj js ψ+ − λ ∣wj−γψ+
 !

dx

=
ð

x∈Ω,w+ηφ>0f g
∇w∇ψ+ − μ

wψ+

xj j2 −
wj j2∗ sð Þ−1

xj js ψ+ − λ wj j−γψ+
 !

dx

=
ð
Ω

∇w∇ψ − μ
wψ

xj j2 −
wj j2∗ sð Þ−1

xj js ψ − λ wj j−γψ
 !

dx

−
ð

x∈Ω,w+ηφ≤0f g
∇w∇ψ − μ

wψ

xj j2 −
wj j2∗ sð Þ−1

xj js ψ − λ wj j−γψ
 !

dx

≤ η
ð
Ω

∇w∇φ − μ
wφ

xj j2 −
wj j2∗ sð Þ−1

xj js φ − λ wj j−γφ
 !

dx

− η
ð

x∈Ω,w+ηφ≤0f g
∇w∇φ − μ

uφ

xj j2
� �

dx:

ð30Þ

Dividing by η and letting η⟶ 0, by w ≥ 0,∀x ∈Ω, we
have the measure of fx ∈Ω,w + ηφ ≤ 0g which tends to 0
as η⟶ 0, and we get that

ð
x∈Ω,w+ηφ≤0f g

∇w∇φdx⟶ 0: ð31Þ

Therefore,

ð
Ω

∇w∇φ − μ
wφ

xj j2 −
wj j2∗ sð Þ−1

xj js φ − λ wj j−γφ
 !

dx ≥ 0: ð32Þ

Since φ is arbitrary, we get that w is a solution of (1).
Similarly, we can prove that v is also a solution of (1).

Step 2. The minima d+ðλÞ and d−ðλÞ are achieved. The proof
is exactly the same as [32]. We omit the details here.
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We point out that vε and the exact local behavior of w
(see Lemma 2.) play essential roles. From Lemma 2., we have

C1 xj j−
ffiffiffi
�μ

p
−
ffiffiffiffiffiffiffi
�μ−μ

pð Þ ≤ ∣w xð Þ∣ ≤ C2 xj j−
ffiffiffi
�μ

p
−
ffiffiffiffiffiffiffi
�μ−μ

pð Þ, x ∈ B 0, rð Þ \ 0f g:
ð33Þ

So there ism > 0 such thatwðxÞ ≥m for x ∈ supp w \ f0g.

Lemma 8. Under the assumptions of Theorem 1,

d− λð Þ < Iλ wð Þ + 2 − s
2 N − sð Þ S

N−s/2−s: ð34Þ

Proof. First, using an argument similar to the proofs in [31],
we have η∗ > 0 such that w + η∗vε ∈N

−
λ . It remains to be

proven that

sup Iλ w + ηvεð Þ: η > 0f g < Iλ wð Þ + 2 − s
2 N − sð Þ S

N−s/2−s: ð35Þ

Since w is a solution, we obtain by direct computation
that

Iλ w + ηvεð Þ − Iλ wð Þ = η2

2 ∥vε∥
2 + η

ð
Ω

∇w∇vε − μ
wvε
xj j2

� �
dx

−
ð
Ω

w + ηvεj j2∗ sð Þ −w2∗ sð Þ

2∗ sð Þ xj js
 !

dx

− λ
ð
Ω

w + ηvεð Þ1−γ
1 − γ

−
w1−γ

1 − γ

 !
dx

= η2

2 ∥vε∥
2 −
ð
Ω

w + ηvεj j2∗ sð Þ −w2∗ sð Þ

2∗ sð Þ xj js
 

−
wj j2∗ sð Þ−1ηvε

xj js
!
dx − λ

ð
Ω

w + ηvεð Þ1−γ
1 − γ

 

−
w1−γ

1 − γ
−w−γηvε

!
dx:

ð36Þ

Note that the following inequality (see [31]) holds:
there is α > 0 and 0 < δ <N − s/N − 2 such that λððr + tÞ1−γ/
1 − γ − r1−γ/1 − γ − r−γtÞ≥−αtδ for each r≥m and t≥0.

By direct calculations, we can get that

Iλ w + ηvεð Þ − Iλ wð Þ ≤ η2

2 ∥vε∥
2 −

η2
∗ sð Þ

2∗ sð Þ
ð
Ω

vεj j2∗ sð Þ

xj js dx

− η2
∗ sð Þ−1

ð
Ω

w
vεj j2∗ sð Þ−1

xj js dx

+ αηδ
ð
Ω

vεj jδdx:

ð37Þ

So Iλðw + ηvεÞ − IλðwÞ⟶ 0 as η⟶ 0 and Iλðw +
ηvεÞ − IλðwÞ⟶−∞ as η⟶ +∞. Hence, we only consider
the right-hand side of the above inequality in the case of

η ∈ ½η0, η1� for some 0 < η0 < η1<+∞: Hence, we obtain
from Lemma 3 that

sup
η>0

Iλ w + ηvεð Þ − Iλ wð Þ ≤ 2 − s
2 N − sð Þ ∥vε∥

22∗ sð Þ/2∗ sð Þ−2

−
ð
Ω

vεj j2∗ sð Þ

xj js dx
 !−2/2∗ sð Þ−2

−O εN−2/4−2s� �
+O εδ N−2/4−2sð Þ
� �

= 2 − s
2 N − sð Þ S

N−s/2−s −O εN−s/4−2s� �
−O εN−2/4−2s� �

+O εδ N−2/4−2sð Þ
� �

< 2 − s
2 N − sð Þ S

N−s/2−s, 

for ε > 0 sufficiently small:
ð38Þ

The proof is complete.

Lemma 9. The minimum d−ðλÞ in (23) is achieved by v ∈N −
λ

with IλðvÞ = d−ðλÞ.

Proof. Let fvng be any sequence in N −
λ such that IλðvnÞ

⟶ d−ðλÞ. It is easy to see that fvng is bounded in H1
0ðΩÞ.

Then, there exists a v ∈H1
0ðΩÞ and a subsequence of fvng,

still denoted by fvng such that

vn ⇀ v, in H1
0 Ωð Þ: ð39Þ

Set un = vn − v and assume that

∥un∥
2 ⟶ a2,ð

Ω

unj j2∗ sð Þ

xj js dx⟶ b2
∗ sð Þ:

ð40Þ

Since vn ∈N
−
λ , according to Bre’zis-Lieb’s Lemma (see

Lemma 1.32 in MW [33]) and the Sobolev embedding
theorem, one gets

a2+∥v∥2 = λ
ð
Ω

vj j1−γ d x + b2
∗ sð Þ +

ð
Ω

vj j2∗ sð Þ

xj js d x: ð41Þ

We claim that v ≠ 0. Indeed, if v = 0, then a2 = b2
∗
≥

SN−s/2−s ≠ 0 (since for any u ∈N −
λ , ∥u∥ is bounded away

from zero) and this means that

d− λð Þ = lim
n⟶∞

Iλ vnð Þ = Iλ 0ð Þ + 1
2 a

2 −
1

2∗ sð Þ b
2∗ sð Þ

≥
2 − s

2 N − sð Þ S
N−s/2−s,

ð42Þ

which contradicts the previous lemma.
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From the assumption λ ∈ ð0, λ∗Þ, by Lemma 4, we have
0 < t+ < Tm < t− such that t+v ∈N +

λ and t−v ∈N −
λ . For t > 0,

we define

δ tð Þ = 1
2 a

2t2 −
1

2∗ sð Þ b
2∗ sð Þt2

∗ sð Þ,

g tð Þ = Iλ tvð Þ + δ tð Þ:
ð43Þ

Now, we consider the cases

(i) t− < 1
(ii) t− ≥ 1 and b > 0
(iii) t− ≥ 1 and b = 0

Case (i). From t− < 1,

g′ t−ð Þ = I t−vð Þ, vh i + δ′ t−ð Þ = a2t− − b2
∗ sð Þ t−ð Þ2∗ sð Þ−1: ð44Þ

Define hðtÞ≐a2t − b2
∗ðsÞðtÞ2∗ðsÞ−1, then hðtÞ is increasing

as t < Tm,; hðtÞ is decreasing as t > Tm, so hðtÞ has maximum
value hðTmÞ: As t− > Tm, we have g′ðt−Þ ≥ hðTmÞ > 0: g′
ð1Þ = 0 and g′ðt−Þ > 0, so we can see that g is increasing on
½t−, 1�. Then, we have

d− λð Þ = g 1ð Þ > g t−ð Þ ≥ Iλ t−vð Þ = Iλ 0ð Þ + t−ð Þ2
2 a2 − b2

∗ sð Þ
� �

> Iλ t−vð Þ ≥ d− λð Þ,
ð45Þ

which is a contradiction.

Case (ii). We set t0 = ða2/b2∗ðsÞÞN−2/2ð2−sÞ
. We know that δ

attains the unique maximum at t0 and δðt0Þ ≥ ð2 − s/2ðN −
sÞÞSN−s/2−s. Moreover, δ′ðtÞ > 0 for 0 < t < t0 and δ′ðtÞ < 0
for t > t0.

From the assumption on λ ∈ ð0, λ∗Þ, we know gð1Þ ≥
gðt0Þ. If t0 ≤ 1, we have

d− λð Þ = g 1ð Þ ≥ g t0ð Þ = Iλ t0vð Þ + δ t0ð Þ
≥ Iλ t0vð Þ + 2 − s

2 N − sð Þ S
N−s/2−s,

ð46Þ

which contradicts the previous lemma. Thus, we have t0 > 1.
By virtue of g′ðtÞ ≤ 0 for t ≥ 1, we obtain ð∂/∂tÞIλðtvÞ≤−δ′
ðtÞ ≤ 0 for 1 ≤ t ≤ t0 and

d− λð Þ = g 1ð Þ = Iλ vð Þ + 1
2 a

2 −
1

2∗ sð Þ b
2∗ sð Þ

≥ Iλ vð Þ + 2 − s
2 N − sð Þ S

N−s/2−s,
ð47Þ

which also contradicts the previous lemma.
Case (iii). If a ≠ 0, then we obtain from the fact that vn

∈N −
λ by some computations that ð∂/∂tÞIλðtvÞjt=1 < 0 and

ð∂2/∂2tÞIλðtvÞjt=1 < 0, from the definition of N −
λ , which con-

tradicts t− ≥ 1. So

a = 0,
vn ⟶ v in H1

0 Ωð Þ:
ð48Þ

Hence, we have v ∈N −
λ with IλðvÞ = d−ðλÞ.

The proof is complete.
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