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In this paper, we study the existence of periodic solutions to nonlinear fully third-order differential equation x‴ + f(t, x, x′, x″) �

0, t ∈ R ≔ (−∞,∞), where f: R4⟶ R is continuous and T-periodic in t. By using the topological transversality method
together with the barrier strip technique, we obtain new existence results of periodic solutions to the above equation without
growth restrictions on the nonlinearity. Meanwhile, as applications, an example is given to demonstrate our results.

1. Introduction

In this paper, we consider the existence of periodic solutions
for nonlinear fully third-order differential equation

x
‴

(t) + f t, x(t), x′(t), x″(t)( 􏼁 � 0, t ∈ R, (1)

where f: R4⟶ R is continuous and T-periodic with re-
spect to t.

)e third-order periodic problem arises in many areas of
applied mathematics and physics, and so it has been ex-
tensively studied by many authors via various methods, for
instance, see [1–22] and the references therein. Among a
substantial number of works, we mention that the upper and
lower solutions method is used in [5, 6, 15, 16], Ler-
ay–Schauder continuation theorem is used in [1, 10, 20, 21],
Leray–Schauder degree theory or the Schauder-fixed-point
theorem is used in [10, 12, 13, 18], Mawhin coincidence
degree theory is used in [2, 3, 8, 17], and fixed-point theorem
in cone or fixed-point index theory is used in [7, 9, 11, 19,
22]. However, to the best of our knowledge, there is no work
that refers to periodic solutions of equation (1) using the
topological transversality method.

Recently, Kelevedjiev and Todorov [23] have used the
topological transversality method and barrier strip tech-
nique to study various third-order two-point boundary

value problems. But, they did not consider the third-order
periodic boundary value problem.

Motivated and inspired by the aforementioned
works, the aim of this paper is to establish new existence
results of periodic solutions to equation (1) by using the
topological transversality method together with barrier
strip technique. It is worth mentioning that our results
do not need any growth restrictions on the nonlinearity.
In addition, compared with the corresponding ones in
the known literature, the barrier strip technique we use
to estimate a prior bounds of periodic solutions is es-
sentially new.

)is work is organized as follows. In Section 2, we first
introduce some notations and lemmas and then estimate a
prior bounds of periodic solutions of equation (1) by using
barrier strip technique. Finally, by using the topological
transversality method, we establish the existence results of
periodic solutions to equation (1). As applications of our
main results, an example is given in the last section.

2. Main Results

)roughout this section, the following assumptions are used:

(H0): there exists M> 0 such that, for any T-periodic
function x ∈ C2(R),
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(sign x(t)) · 􏽚
T

0
f t, x(t), x′(t), x″(t)( 􏼁dt> 0, if min

t∈[0,T]
|x(t)|>M. (2)

(H0′): there exists M> 0 such that, for any T-periodic
function x ∈ C2(R),

(sign x(t)) · 􏽚
T

0
f t, x(t), x′(t), x″(t)( 􏼁dt< 0, if min

t∈[0,T]
|x(t)|>M. (3)

(H1): there exists M1 > 0 such that

yf(t, x, y, 0)< 0, ∀(t, x) ∈ [0, T] × R, |y|>M1. (4)

(H2): there are constants Li, i � 1, 2, 3, 4 with
L2 > L1 > 0 and L3 < L4 < 0 such that f(t, x, y, z) does
not change its sign for (t, x, y, z) ∈ D1 and for
(t, x, y, z) ∈ D2, respectively, here

D1 � [0, T] × −M0, M0􏼂 􏼃 × −M1, M1􏼂 􏼃 × L1, L2􏼂 􏼃,

D2 � [0, T] × −M0, M0􏼂 􏼃 × −M1, M1􏼂 􏼃 × L3, L4􏼂 􏼃,
(5)

and M0 � M + TM1.
Let us introduce some notations of the topological

transversality method for the convenience of the reader. Let
U be a convex subset of a Banach space Y andΩ ⊂ U be open
in U. Denote by HzΩ(Ω, U) the set of compact operators
F: Ω⟶ U which are fixed-point-free on zΩ. We say that
F ∈ HzΩ(Ω, U) is essential if every operator in HzΩ(Ω, U)

which agrees with F on zΩ has a fixed point in Ω.
)e next two lemmas can be found in [24].

Lemma 1. If p ∈ Ω and F ∈ HzΩ(Ω, U) is a constant op-
erator, F(y) � p for y ∈ Ω then is essential.

Lemma 2. Let

(i) F ∈ HzΩ(Ω, U) be essential
(ii) H: Ω × [0, 1]⟶ U be a compact homotopy,

H(·, 0) � F, andH(y, λ)≠y for y ∈zΩand λ ∈ [0, 1]

)en, H(·, 1) is essential, and therefore, it has a fixed
point in Ω.

We note that the existence of T-periodic solutions for
equation (1) is equivalent to the solvability of the following
third-order periodic boundary value problem (for short
PBVP):

x‴(t) + f t, x(t), x′(t), x″(t)( 􏼁 � 0, 0≤ t≤T,

x(0) � x(T),

x′(0) � x′(T),

x″(0) � x″(T),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

in C2[0, T].
We first consider the family of following PBVPs:

x
‴

(t) + λf t, x(t), x′(t), x″(t)( 􏼁 � 0, 0≤ t≤T, (7)

x(0) � x(T),

x′(0) � x′(T),

x″(0) � x″(T),

(8)

where λ ∈ (0, 1].
A priori bounds for the solutions of PBVP (7), (8) are

presented in the following lemmas.

Lemma 3. Suppose that (H0)(or (H0′)) and (H1) hold. Let
x(t) be a solution of PBVPs (7) and (8) for some λ ∈ (0, 1].
)en,

|x(t)| ≤M0, ∀t ∈ [0, T], (9)

|x′(t)|≤M0, ∀t ∈ [0, T]. (10)

Proof. At first, we show that (10) holds. Indeed, suppose on
the contrary that there exist t1 ∈ [0, T] such that
|x′(t1)|>M1. We may assume that x′(t1)>M1. Let
t2 ∈ [0, T] be such that

x′ t2( 􏼁 � max
t∈[0,T]

x′(t)>M1. (11)

Without loss of generality, we assume that t2 ∈ (0, T);
then, x″(t2) � 0 and x‴(t2)≤ 0. It follows from condition
(H1) that

0≥ x′ t2( 􏼁x
‴

t2( 􏼁 � −x′ t2( 􏼁λf t2, x t2( 􏼁, x′ t2( 􏼁, 0( 􏼁> 0,

(12)

which is a contradiction. )is means that (10) holds.
Next, we prove that (9) holds. Indeed, integrating the

equation in (7) from 0 to T, we obtain that

􏽚
T

0
f t, x(t), x′(t), x″(t)( 􏼁dt � 0. (13)

)is together with the condition (H0)(or (H0′)) implies
that there exists ξ ∈ [0, T] such that |x(ξ)|≤M. It follows
from (10) that, for t ∈ [0, T],
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|x(t)| � x(ξ) + 􏽚
t

ξ
x′(s)ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤M + 􏽚

T

0
x′(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds≤M0,

(14)

which means that (9) holds. )is completes the proof of the
lemma. □

Lemma 4. Suppose that (H0)(or (H0′)), (H1), and (H2)

hold. Let x(t) be a solution of PBVPs (7) and (8) for some
λ ∈ (0, 1]. )en,

x″(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤M2 ≔ max L1, −L4􏼈 􏼉, ∀t ∈ [0, T]. (15)

Proof. We estimate x″(t) by using the barrier strip tech-
nique. From condition (H2), f(t, x, y, z) does not change its
sign for (t, x, y, z) ∈ D1 and for (t, x, y, z) ∈ D2, respec-
tively. For the sake of certainty, without loss of generality, we
assume that

f(t, x, y, z)≤ 0, onD1,

f(t, x, y, z)≤ 0, onD2.
(16)

Notice that x′(0) � x′(T), and from Rolle’s mean value
theorem, there exists η ∈ (0, T) such that x″(η) � 0. Let

S0 � t ∈ [0, η] : L1 < x″(t)≤ L2􏼈 􏼉,

S1 � t ∈ [0, η] : L3 ≤ x″(t)< L4􏼈 􏼉.
(17)

We now assert that the sets S0 and S1 are empty. We shall
complete the proof in two steps. □

Step 1. Show that S0 � ∅. Suppose on the contrary that there
exist some t0 ∈ S0. )en, L1 <x″(t0)≤L2, and t0 ∈ [0, η).
Since x″(t) is continuous on [0, η], there exist t0 ≤ t1 < t2 < η
such that

L1 < x″ t2( 􏼁< x″ t1( 􏼁≤ L2,

x″ t2( 􏼁≤ x″(t)≤x″ t1( 􏼁, ∀t ∈ t1, t2􏼂 􏼃,
(18)

and so [t1, t2] ⊂ S0. Consequently, from assumption (16), we
have

x
‴

(t) � −λf t, x(t), x′(t), x″(t)( 􏼁≥ 0, ∀t ∈ t1, t2􏼂 􏼃 ⊂ S0,

(19)

and thus,

x″ t2( 􏼁≥x″ t1( 􏼁, (20)

which contradicts (18). )is implies that S0 � ∅.

Step 2. Prove that S1 � ∅. By contradiction, assume that
there exist some t0′ ∈ S1. )en, L3 ≤ x″(t0′)< L4, and
t0′ ∈ [0, η). We now assert that

x″(0)≥L4. (21)

Indeed, if x″(0)≥L4, then from the fact x″(0) � x″(T),
it follows that x″(T)≥L4. Notice that x″(η) � 0, and it
follows from the continuity of x″(t) on [η, T] that there exist
η< η1 < η2 ≤T such that

L3 ≤ x″ η2( 􏼁<x″ η1( 􏼁<L4,

x″ η2( 􏼁≤ x″(t)≤x″ η1( 􏼁, ∀t ∈ η1, η2􏼂 􏼃.
(22)

Hence, from Lemma 3, we have

t, x(t), x′(t), x″(t)􏼒 􏼓 ∈ D2, ∀t ∈ η1, η2􏼂 􏼃, (23)

and so from (16), it follows that

x
‴

(t) � −λf t, x(t), x′(t), x″(t)􏼒 􏼓≥ 0, ∀t ∈ η1, η2􏼂 􏼃.

(24)

)erefore,

x″ η2( 􏼁≥x″ η1( 􏼁, (25)

which contradicts (22). )is means that (21) holds.
)us, from (21) and the continuity of x″(t) on [0, η],

there exist 0< t1′ < t2′ < t0′ such that

L3 ≤ x″ t2′( 􏼁<x″ t1′( 􏼁<L4,

x″ t2′( 􏼁≤ x″(t)≤ x″ t1′( 􏼁, ∀t ∈ t1′, t2′􏼂 􏼃,
(26)

and thus, [t1′, t2′] ⊂ S1. It follows from assumption (16) that

x
‴

(t) � −λf t, x(t), x′(t), x″(t)􏼒 􏼓≥ 0, ∀t ∈ t1′, t2′􏼂 􏼃 ⊂ S1,

(27)

and hence,

x″ t1′( 􏼁≤x″ t2′( 􏼁, (28)

which contradicts (26). )is implies that S1 � ∅.
)erefore, by the facts that x″(η) � 0 and the continuity

of x″(t) on [0, η], we obtain

L4 ≤x″(t)≤ L1, ∀t ∈ [0, η]. (29)

In particular, L4 ≤x″(0)≤ L1. Notice x″(0) � x″(T),
and we have

L4 ≤x″(T)≤ L1. (30)

We now let

S2 � t ∈ [η, T]: L1 <x″(t)≤L2􏼈 􏼉,

S3 � t ∈ [η, T]: L3 <x″(t)≤L4􏼈 􏼉.
(31)

Notice that, from (30), using the similar arguments on
S0 � ∅ and S1 � ∅, we can show that

S2 � ∅,

S3 � ∅.
(32)

Hence,

L4 ≤x″(t)≤L1, ∀t ∈ [η, T]. (33)

From this, together with (29), it follows that

L4 ≤ x″(t)≤ L1, ∀t ∈ [0, T], (34)

which implies that
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x″(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤max L1, −L4􏼈 􏼉 � M2, ∀t ∈ [0, T]. (35)

)is completes the proof of the lemma.
Now, denote Y � C2[0, T] × R the Banach space

equipped with the norm ‖(x, r)‖ � ‖x‖∞ + ‖x′‖∞+

‖x″‖∞ + |r|. Set

U � (x, r) ∈ Y : x(0) � x(T) � 0, r ∈ R{ },

Ω � (x, r) ∈ U : ‖x‖∞ < 2M0 + 1, ‖x′‖∞ <M1 + 1, x″
����

����∞􏼚

<M2 + 1, |r|<M0 + 1􏼉.

(36)
)en, U is a closed and convex subset of Y, and Ω is an

open subset of U.
We now give two lemmas which will be used in the proof

of our main theorem.

Lemma 5. Suppose that (H0) holds. Let the operator
F1: Ω⟶ U be defined by

F1(x, r) � 0, r − 􏽚
T

0
f τ, x(τ) + r, x′(τ), x″(τ)( 􏼁dτ􏼠 􏼡.

(37)

)en, F1 is essential.

Proof. Define H : Ω × [0, 1]⟶ U by

H(x, r, λ) � 0, λr − λ􏽚
T

0
f τ, x(τ) + r, x′(τ), x″(τ)􏼒 􏼓dτ􏼠 􏼡.

(38)

)en, H(·, ·, 1) � F1(·, ·) and H(x, r, 0) � (0, 0) ∈ Ω for
(x, r) ∈ Ω. )us, it follows from Lemma 1 that H(x, r, 0) is
essential. Meanwhile, by a standard argument, it is easy to
show that H(x, r, λ) is compact.

We now show that

H(x, r, λ)≠ (x, r), ∀(x, r) ∈zΩ , λ ∈ [0, 1]. (39)

Obviously, H(x, r, 0)≠ (x, r) for all (x, r) ∈zΩ. Suppose
that H(x0, r0, λ0) � (x0, r0) for some (x0, r0) ∈zΩ and
λ0 ∈ (0, 1]. )en, x0(t) ≡ 0 on [0, T], and so

􏽚
T

0
f τ, r0, 0, 0( 􏼁dτ � 1 −

1
λ

􏼒 􏼓r0. (40)

Hence, from (H0), we can deduce that −M≤ r0 ≤M,
which contradicts (0, r0) ∈zΩ. )is implies that (39) holds.
)erefore, from Lemma 2, F1(·, ·) � H(·, ·, 1) is essential.
)is completes the proof of the lemma. □

Lemma 6. Suppose that (H0′) holds. Let the operator
F2: Ω⟶ U be defined by

F2(x, r) � 0, r + 􏽚
T

0
f τ, x(τ) + r, x′(τ), x″(τ)􏼒 􏼓dτ􏼠 􏼡.

(41)

)en, F2 is essential.

Proof. )e proof is similar to the proof of Lemma 5 and
hence is omitted. □

Theorem 1. Suppose that (H0), (H1), and (H2) hold. )en,
equation (1) has at least one T-periodic solution x � x(t)

satisfying (9), (10), and (15).

Proof. At first, we define operator A: Ω × [0, 1]⟶
C2[0, T] by

A(x, r, λ) � λ􏽚

T

0

K(t, s) 􏽚
s

0
f τ, x(τ) + r, x′(τ), x″(τ)􏼒 􏼓dτ􏼔

−
1
T

􏽚
T

0
(T − τ)f τ, x(τ) + r, x′(τ), x″(τ)􏼒 􏼓dτ􏼣ds,

(42)

where

K(t, s) �
1
T

t(T − s), 0≤ t≤ s≤T;

s(T − t), 0≤ s≤ t≤T.

⎧⎪⎨

⎪⎩
(43)

It is easy to check that, for each (x, r, λ) ∈ Ω × [0, 1],
A(x, r, λ) is the unique solution of the following boundary
value problem:

u‴ + λf t, x(t) + r, x′(t), x″(t)( 􏼁 � 0, t ∈ [0, T],

u(0) � u(T) � 0,

u′(0) � u′(T).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(44)

Furthermore, by a standard argument, it is easy to show
that the operator A(x, r, λ) is completely continuous.

We now define operator G1: Ω × [0, 1]⟶ U by

G1(x, r, λ) � A(x, r, λ), r − 􏽚
T

0
f τ, x(τ) + r, x′(τ), x″(τ)􏼒 􏼓dτ􏼠 􏼡.

(45)

Suppose that (x1, r1) is a fixed point of G1(·, ·, 1). )en,

x1(t) � 􏽚

T

0

K(t, s) 􏽚
s

0
f τ, x1(τ) + r1, x1′(τ), x

′′
1(τ)􏼒 􏼓dτ􏼔

−
1
T

􏽚
T

0
(T − τ)f τ, x1(τ) + r1, x1′(τ), x

′′
1(τ)􏼒 􏼓ds􏼣,

􏽚
T

0
f τ, x1(τ) + r1, x1′(τ), x

′′
1(τ)􏼒 􏼓dτ � 0.

(46)

It follows that x1(0) � x1(T) � 0, x1′(0) � x1′(T), and
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−x
′′
1(t) � 􏽚

t

0
f τ, x1(τ) + r1, x1′(τ), x

′′
1(τ)􏼒 􏼓dτ

−
1
T

􏽚
T

0
(T − τ)f τ, x1(τ) + r1, x1′(τ), x

′′
1(τ)􏼒 􏼓dτ, t ∈ [0, T],

(47)

and thus, by (46),

x
′′
1(0) �

1
T

􏽚
T

0
(T − τ)f τ, x1(τ) + r1, x1′(τ), x

′′
1(τ)􏼒 􏼓dτ � x

′′
1(T).

(48)

Set x2(t) � x1(t) + r1 for t ∈ [0, T]. It is easy to see that
x2(t) is a solution of PBVP (6), and validity of (9), (10), and
(15) now follows from Lemmas 3 and 4. )erefore, to prove
the existence of solutions of PBVP (6) satisfying (9), (10),
and (15), it is sufficient to show that the operator G1(·, ·, 1)

has at least one fixed point. Since G1(·, ·, 0) � F1(·, ·) and F1
is essential by Lemma 5, for the existence of a fixed point of
G1(·, ·, 1), it is sufficient to verify (i) and (ii) of Lemma 2.
Notice that operator A is completely continuous, then op-
erator G1 is continuous, and also G1(Ω × [0, 1]) is compact
in U. )us, (i) of Lemma 2 is satisfied. Let G1(x0, r0, λ0) �

(x0, r0) for some (x0, r0) ∈zΩ and λ0 ∈ [0, 1]. If λ0 � 0, then
(x0, r0) ∉ zΩ , which has been proved in the proof of Lemma
5. Let λ0 ∈ (0, 1]. )en,

x0(t) � λ0 􏽚

T

0

K(t, s) 􏽚
s

0
f τ, x0(τ) + r0, x0′(τ), x0″(τ)( 􏼁dτ􏼔

−
1
T

􏽚
T

0
(T − τ)f τ, x0(τ) + r0, x0′(τ), x0″(τ)( 􏼁dτ􏼣ds,

􏽚
T

0
f τ, x0(τ) + r0, x0′(τ), x0″(τ)( 􏼁dτ � 0.

(49)

Hence,

−x
″′
0(t) � λ0f t, x0(t) + r0, x0′(t), x0″(t)( 􏼁, t ∈ [0, T],

x0(0) � x0(T) � 0,

x0′(0) � x0′

(T),

(50)

and so

x0″(0) �
1
T

􏽚
T

0
(T − τ)f τ, x0(τ) + r0, x0′(τ), x0″(τ)( 􏼁dτ � x0″(T).

(51)

Set x(t) � x0(t) + r0 for t ∈ [0, T]. We can see that x(t)

is a solution of PBVPs (7) and (8) with λ � λ0. It follows from
Lemmas 4 and 5 that

x0 + r0
����

����∞ � ‖x‖∞ ≤M0,

x0′
����

����∞ � x′
����

����∞ ≤M1 <M1 + 1,

x
′′
0

�����

�����∞
� x′′

����
����∞ ≤M2 <M2 + 1.

(52)

Since x0(0) � 0, the first inequality of (52) yields

r0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤M0 <M0 + 1, (53)

and thus,

x0
����

����∞≤M0 + r0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 2M0 < 2M0 + 1. (54)

Hence, (x0, r0) ∉ zΩ, and so (ii) of Lemma 2 is verified.
)is completes the proof of the theorem. □

Theorem 2. Suppose that (H0′), (H1), and (H2) hold. )en,
equation (1) has at least one T-periodic solution x � x(t)

satisfying (9), (10), and (15).

Proof. )e proof is similar as that for )eorem 1 except that

G2(x, r, λ) ≔ A(x, r, λ), r + 􏽚
T

0
f τ, x(τ) + r, x′(τ), x″(τ)􏼒 􏼓dτ􏼠 􏼡

(55)

and F2 are used in place of G1(x, r, λ) and F1, respectively,
and hence is omitted. )is completes the proof of the
theorem. □

3. An Example

In this section, we give an example to demonstrate the
applications of the our results.

Example 1. Consider the nonlinear third-order differential
equation

x
‴

+ x′
2

+ 1􏼒 􏼓x″ − 1 −
1
2
cosx􏼒 􏼓x′ +

x − 1
x2 + 1

� sin t, t ∈ R.

(56)

Let

f(t, x, y, z) � y
2

+ 1􏼐 􏼑z − 1 −
1
2
cosx􏼒 􏼓y +

x − 1
x2 + 1

− sin t,

(t, x, y, z) ∈ R4
.

(57)

)en, for any 2π-periodic function x ∈ C2(R), we have

(sign x(t)) 􏽚
2π

0
f t, x(t), x′(t), x″(t)( 􏼁dt � (signx(t)) 􏽚

2π

0

x(t) − 1
x2(t) + 1

dt> 0, if min
t∈[0,2π]

|x(t)|> 1 ≔M, (58)
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and so condition (H0) holds. Notice that

lim
y⟶±∞

yf(t, x, y, 0) � lim
y⟶±∞

y − 1 −
1
2
cosx􏼒 􏼓y +

x − 1
x2 + 1

− sin t􏼒 􏼓 � −∞, (59)

uniformly in (t, x) ∈ [0, 2π] × R; then, there exists M1 > 0
such that

yf(t, x, y, 0)< 0, ∀(t, x) ∈ [0, 2π] × R, |y|>M1, (60)

that is, condition (H1) holds. In addition, since

lim
z⟶±∞

f(t, x, y, z) � ±∞, (61)

uniformly in (t, x, y) ∈ [0, 2π] × [−M0, M0] × [−M1, M1],
where M0 � M + 2πM1, it follows that condition (H2)

holds. Hence, by )eorem 1, third-order differential equa-
tion (56) has at least one 2π-periodic solution.
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