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In this paper, we introduce new sequential fractional differential equations with mixed-type boundary conditions
ðCDq + kCDq−1ÞuðtÞ = f ðt, uðtÞ, CDq−1uðtÞÞ, t ∈ ð0, 1Þ,
α1uð0Þ + β1uð1Þ + γ1I

ruðηÞ = ε1, η ∈ ð0, 1Þ,
α2u′ð0Þ + β2u′ð1Þ + γ2I

ru′ðηÞ = ε2,

8>><
>>: where q ∈ ð1, 2� is a real number, k, r > 0, αi, βi, γi, εi ∈ℝ, i = 1, 2, CDq is

the Caputo fractional derivative, and the boundary conditions include antiperiodic and Riemann-Liouville fractional integral
boundary value cases. Our approach to treat the above problem is based upon standard tools of fixed point theory and some
new inequalities of norm form. Some existence results are obtained and well illustrated through the aid of examples.

1. Introduction

In this paper, we focus on sequential fractional differential
equations with mixed-type boundary conditions.

CDq + kCDq−1
� �

u tð Þ = f t, u tð Þ, CDq−1u tð Þ� �
, t ∈ 0, 1ð Þ,

α1u 0ð Þ + β1u 1ð Þ + γ1I
ru ηð Þ = ε1, η ∈ 0, 1ð Þ,

α2u′ 0ð Þ + β2u′ 1ð Þ + γ2I
ru′ ηð Þ = ε2,

8>>><
>>>:

ð1Þ

where q ∈ ð1, 2� is a real number and k, r > 0, αi, βi, γi, εi ∈ℝ,
i = 1, 2, CDq is the Caputo fractional derivative of order q.
The nonlinearity term f contains the unknown function
and its lower order fractional derivatives. The new boundary
conditions include antiperiodic and Riemann-Liouville frac-
tional integral boundary value cases which can be regarded
as the linear combination of the values of the unknown
function and its first derivatives at the end points of inter-
val, and the Riemann-Liouville fractional integral value of

the unknown function and its first derivatives at an inte-
rior point of interval.

Fractional differential equations have attracted signifi-
cant attention for their wide application in many fields of
engineering and applied sciences (see [1–10]). Sequential
fractional differential equations as an importance branch
have also received wide attention; for instance, see [11–16].
Motivated by the HIV infection model and its application
background in [12], the existence and uniqueness of solu-
tions for the following sequential fractional differential sys-
tem are obtained by means of Leray-Schauder’s alternative
and Banach’s contraction principle

CDp + λC1D
p−1

� �
u tð Þ = f1 t, u tð Þ, v tð Þð Þ, t ∈ 0, 1ð Þ,

CDp + λC2D
p−1

� �
v tð Þ = f2 t, u tð Þ, v tð Þð Þ, t ∈ 0, 1ð Þ,

u 0ð Þ = u′ 0ð Þ = 0, u 1ð Þ = av ξð Þ,
v 0ð Þ = v′ 0ð Þ = 0, v 1ð Þ = bu ηð Þ,

8>>>>>>><
>>>>>>>:

ð2Þ
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where λi > 0 (i = 1, 2) is a parameter; 2 < p, q ≤ 3, CDp, and
CDq are the Caputo fractional derivatives; and the nonlinear-
ity terms f1, f2 : ½0, 1� ×ℝ ×ℝ⟶ℝ are the given continu-
ous function.

Antiperiodic boundary conditions arise in the mathe-
matical problems of certain physical phenomena and pro-

cesses. Recently, many scholars paid attention to solvability
for fractional differential equations involving antiperiodic
boundary conditions (see [17–21]). For example, in [21],
the authors considered the nonlinear antiperiodic boundary
value problems

where CDq is the Caputo fractional derivatives of order q, αi,
γi (i = 1,2,3), a, b, c ∈ℝ, k > 0, f is a continuous function.

Integral boundary conditions are believed to be more rea-
sonable than the local boundary conditions, which can
describe modeling of blood flow, cellular systems, population
dynamics, heat transmission, etc. There are a number of
results about fractional differential equations and partial dif-
ferential equations with integral boundary condition; we
refer the reader to see [17, 20, 22–43] and the references cited
therein. In [20], the authors discussed the following frac-
tional differential equation with integral boundary condi-
tions given by

CDα+β + kCDβ
� �

x tð Þ = f t, x tð Þð Þ, t ∈ 0, 1ð Þ,

x 0ð Þ = 0, x 1ð Þ = μ
ð1
0
x sð Þds, CDαx 0ð Þ+CDαx 1ð Þ = 0,

8>><
>>:

ð4Þ

where CDα and CDβ are the Caputo fractional derivatives;
0 < α < 1, 1 < β ≤ 2, k > 0, and μ > 0 are real numbers; and
f is a given continuous function.

Observing the results of the above literature, an interesting
and important question is whether antiperiodic and integral
boundary conditions can be unified in a system. If we have
unified the conditions, how can we obtain the existence of
the solutions? Through a literature search, the sequential frac-
tional differential equation (1) has not been given up to now.

Now in this paper, we shall discuss the problem (1) by
using the standard tools of fixed point theory and some
new inequalities of norm from.

2. Preliminary and Lemmas

In this paper, we provide some necessary definitions and
lemmas of the Caputo fractional calculus; for more informa-
tion, see the books [1–3].

Definition 1. The Caputo derivative of fractional order α > 0
for a n-times continuously differentiable function f : ½0,∞Þ
⟶ℝ is defined as

CDα f xð Þ = 1
Γ n − αð Þ

ðx
0
x − tð Þn−α−1 f nð Þ xð Þdt, n − 1 < α < n,

ð5Þ

where n = ½α� + 1 and ½α� denotes the integer part of num-
ber α.

Definition 2. The Riemann-Liouville fractional integral of
order α for a function f is defined as

Iα f xð Þ = 1
Γ αð Þ

ðx
0
x − tð Þα−1 f tð Þdt, α > 0, ð6Þ

where ΓðαÞ = Ð∞
0 tα−1e−tdt.

Lemma 3. The Caputo fractional differential equation CDαu
ðtÞ = 0 has the general solution for α > 0

u tð Þ = c1 + c2t + c3t
2+⋯+cntn−1, ð7Þ

where ci ∈ℝ, i = 1, 2,⋯, n, and n is given as in Definition 1.

Lemma 4. Let hðtÞ ∈ C ½0, 1� and u ∈ C2½0, 1�. Then, the fol-
lowing sequential fractional differential equations

CDq + kCDq−1
� �

u tð Þ = h tð Þ, 0 < t < 1, 1 < q ≤ 2,

α1u 0ð Þ + β1u 1ð Þ + γ1I
ru ηð Þ = ∈1, r > 0, 0 < η < 1,

α2u′ 0ð Þ + β2u′ 1ð Þ + γ2I
ru′ ηð Þ = ∈2,

8>>><
>>>:

ð8Þ

CDq + kCDq−1
� �

u tð Þ = f t, u tð Þð Þ, q ∈ 2, 3ð �, t ∈ 0, Tð Þ,

α1u 0ð Þ + γ1u Tð Þ = a, α2u′ 0ð Þ + γ2u′ Tð Þ = b, α3u″ 0ð Þ + γ3u″ Tð Þ = c,

8<
: ð3Þ

2 Journal of Function Spaces



have a unique solution

u tð Þ = Δ1 − Δ2e
−kt

Δ2Δ3
Φ h 1ð Þ, h ηð Þð Þ + 1

Δ2
ψ h 1ð Þ, h ηð Þð Þ

+
ðt
0
e−k t‐sð ÞIq−1h sð Þds,

ð9Þ

where

Δ1 = α1 + β1e
−k + γ1

ðη
0

η − sð Þr−1
Γ rð Þ e−ksds,

Δ2 = α1 + β1 +
γ1η

r

Γ r + 1ð Þ ,

Δ3 = −kα2 − ke−kβ2 − kγ2

ðη
0

η − sð Þr−1
Γ rð Þ e−ksds,Φ h 1ð Þ, h ηð Þð Þ

= −β2I
q−1h 1ð Þ − kβ2

ð1
0
e−k 1−sð ÞIq−1h sð Þds

+ γ2

"ðη
0

η − sð Þr−1
Γ rð Þ Iq−1h sð Þds‐k

ðη
0

η − sð Þr−1
Γ rð Þ

�
ðs
0
e−k s−mð ÞIq−1h mð Þdm

� �
ds

#
− ∈2,Ψ h 1ð Þ, h ηð Þð Þ

= −γ1

ðη
0

η − sð Þr−1
Γ rð Þ

ðs
0
e−k s‐mð ÞIq−1h mð Þdm

� �
ds

− β1

ð1
0
e−k 1−sð ÞIq−1h sð Þds + ∈1:

ð10Þ

Proof. Using Lemma 3, the general solution of the frac-
tional differential equations ðCDq + kCDq−1ÞuðtÞ = hðtÞ can
be written as

u tð Þ = A0e
−kt + A1 +

ðt
0
e−k t−sð Þ Iq−1h sð Þ� �

ds, ð11Þ

where A0, A1 ∈ℝ. Differentiating (11) with respect to t, we get

u′ tð Þ = −kA0e
−kt + Iq−1h tð Þ − k

ðt
0
e−k t−sð ÞIq−1h sð Þds: ð12Þ

Applying the boundary condition (8) in (11) and (12),
we obtain

Δ1A0 + Δ2A1 =Ψ h 1ð Þ, h ηð Þð Þ, Δ3A0 +Φ h 1ð Þ, h ηð Þð Þ = 0:
ð13Þ

A simultaneous solution of equation (13) leads to

A0 = −
1
Δ3

Φ h 1ð Þ, h ηð Þð Þ, A1 =
Δ1

Δ2Δ3
Φ h 1ð Þ, h ηð Þð Þ

+ 1
Δ2

Ψ h 1ð Þ, h ηð Þð Þ:
ð14Þ

Substituting A0 and A1 to (11), we obtain the desired
solution in (9). The converse of the lemma follows by direct
computation. The proof is completed.

Remark 5. Caputo fractional differentiating (11) with respect
to t, we obtain

CDq−1u tð Þ = kA0
Γ 2 − qð Þ

ðt
0
t − sð Þ1−qe−ksds + 1

Γ 2 − qð Þ
�
ðt
0
t − sð Þ1−qIq−1h sð Þds − k

Γ 2 − qð Þ
�
ðt
0
t − sð Þ1−q

ðs
0
e−k s−mð ÞIq−1h mð Þdm

� �
ds,

ð15Þ

where A0 is defined as (14).
Set C½0, 1� is all the continuous functions on ½0, 1�, Cq−1½

0, 1� = fu ∈ C ½0, 1�: CDq−1u ∈ C ½0, 1�g. Let E = ðCq−1½0, 1�,
k·kq−1Þ denotes the Banach space endowed with the norm

defined by kukq−1 = kuk + kCDq−1uk = sup
0≤t≤1

juðtÞj + sup
0≤t≤1

jC

Dq−1uðtÞj. For the convenience of the proofs in the next main
results, we first give the bounds for integrals arising from the
sequel, which are very important for us to establish the exis-
tence of solutions for problem (1).

Lemma 6. Suppose that h ∈ Cð½0, 1�,ℝÞ. Then, we have

(i) jΦðhð1Þ, hðηÞÞj ≤ ½ðjβ2jð2 − e−kÞ/ΓðqÞÞ + ðjγ2jηq+rð2
− e−kηÞ/ΓðqÞΓðr + 1ÞÞ�khk + j∈2j

(ii) jΨðhð1Þ, hðηÞÞj ≤ ½ðjβ1jð1 − e−kÞ/kΓðqÞÞ + ðjγ1jηq+rð1
− e−kηÞ/kΓðqÞΓðr + 1ÞÞ�khk + j∈1j

Proof.

(i) Obviously, we have

Iq−1h sð Þ�� �� ≤ 1
Γ q‐1ð Þ

ðs
0
s − ωð Þq−2dω hk k

= sq

Γ qð Þ hk k,  Iq−1h 1ð Þ�� �� ≤ 1
Γ qð Þ hk k,

ðs
0
e−k s−mð ÞIq−1h mð Þdm

����
���� ≤ sq

Γ qð Þ
ðs
0
e−k s−mð Þdm hk k

= sq

Γ qð Þ
1 − e−ks

k
hk k,

ð1
0
e−k 1−sð ÞIq−1h sð Þds

����
���� ≤ 1

Γ qð Þ
ð1
0
e−k 1−sð Þds hk k

= 1 − e−k

kΓ qð Þ hk k,
ðη
0

η − sð Þr‐1
Γ rð Þ Iq−1h sð Þds

����
���� ≤ ηq

Γ qð Þ
ðη
0

η − sð Þ
Γ rð Þ ds hk k

≤
ηq+r

Γ qð ÞΓ r + 1ð Þ hk k:

ð16Þ
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Furthermore,

ðη
0

η − sð Þr−1
Γ rð Þ

ðs
0
e−k s−mð Þ

� �
Iq−1h mð Þdm

����
���� ≤ ηq+r 1 − e−kη

� �
kΓ qð ÞΓ r + 1ð Þ hk k:

ð17Þ

Hence,

Φ h 1ð Þ, h ηð Þð Þj j

≤ β2I
q−1h 1ð Þ�� �� + k β2

ð1
0
e−k 1−sð ÞIq−1h sð Þds

����
����

+ γ2j j
" ðη

0

η − sð Þr−1
Γ rð Þ Iq−1h sð Þds

����
����

+ k
ðη
0

η − sð Þr−1
Γ rð Þ

ðs
0
e−k s−mð ÞIq−1h mð Þdm

� �
ds

����
����
#

+ ∈2j j ≤
(

β2j j
Γ qð Þ + β2j j 1 − e−k

� �
Γ qð Þ

+ γ2j jηq+r
Γ qð ÞΓ r + 1ð Þ +

γ2j jηq+r 1 − e−kη
� �

Γ qð ÞΓ r + 1ð Þ

)
hk k + ∈2j j:

ð18Þ

When the proof of (ii) is similar to (i), we omit it.
In view of Lemma 4 and Remark 5, replacing hðtÞ by

f ðt, uðtÞ, C Dq−1uðtÞÞ in (9) and (15), we transform the solu-
tion of problem (1) into the fixed point of operator equation
u = Fu , where operator F : E⟶ E is defined as

Fuð Þ tð Þ = Δ1 − Δ2e
−kt

Δ2Δ3
Φ
�
f 1, u 1ð Þ,CDq−1u 1ð Þ� �

,

f η, u ηð Þ,CDq−1u ηð Þ� ��
+ 1
Δ2

Ψ
�
f 1, u 1ð Þ,CDq−1u 1ð Þ� �

,

f η, u ηð Þ,CDq−1u ηð Þ� ��
+
ðt
0
e−k t−sð ÞIq−1 f s, u sð ÞCDq−1u sð Þ

� �
ds,

ð19Þ

CD
q−1

Fu
� �

tð Þ = −
k

Γ 2 − qð ÞΦ
�
f 1, u 1ð Þ,CDq−1u 1ð Þ� �

,

f η, u ηð Þ,CDq−1u ηð Þ� ��ðt
0
t − sð Þ1−qe−ksds

+ 1
Γ 2 − qð Þ

ðt
0
t − sð Þ1−qIq−1 f �s, u sð Þ,

CDq−1u sð Þ�ds − k
Γ 2 − qð Þ

ðt
0
t − sð Þ1−q

�
�ðs

0
e−k s−mð ÞIq−1 f

�
m, u mð Þ,

CDq−1u mð Þ�dm�
ds:

ð20Þ

Lemma 7 (see [44]). Let T : E→ E be completely continuous
(i.e., a map restricted to any bounded set in E is compact). Let

F = x ∈ E : x = λT xð Þ, for some 0 < λ < 1f g: ð21Þ

Then, either set F is unbounded or F has at least one
fixed point.

Lemma 8 (see [45]). Let E be a Banach space, D ⊂ E be closed
and F : D⟶D a strict contraction, i.e., ∣Fx − Fy∣ ≤ k∣x − y∣
for some k ∈ ð0, 1Þ and all x, y ∈D. Then, F has a unique fixed
point.

3. Main Results

Before starting and introducing the main results, we list our
assumption for f :

(i) H0: f : ½0, 1� ×ℝ ×ℝ⟶ℝ is continuous

(ii) H1: there exist positive constants a11, a12, a13 ∈ℝ+

such that

f t, u, vð Þj j ≤ a11 uj jσ1 + a12 vj jσ2 + a13,
 ∀t ∈ 0, 1½ �, u, v ∈ℝ, 0 < σ1, σ2 < 1

ð22Þ

(iii) H2: there exist positive constants a21, a22, a23 ∈ℝ+

such that

f t, u, vð Þj j ≤ a21 uj jτ1 + a22 vj jτ2 + a23,
 ∀t ∈ 0, 1½ �, u, v ∈ℝ, 0 < τ1, τ2 > 1

ð23Þ

(iv) H3: there exist positive constants a31, a32, a33 ∈ℝ+

such that

f t, u, vð Þj j ≤ a31 uj j + a32 vj j + a33, ∀t ∈ 0, 1½ �, u, v ∈ℝ ð24Þ

(v) H4: there exist positive constants a41, a42, a43 ∈ℝ+

such that

f t, u, vð Þj j ≤ a41 uj jρ1 + a42 tð Þ vj jρ2 + a43,
 ∀t ∈ 0, 1½ �, u, v ∈ℝ, 0 < ρ1 < 1 < ρ2

ð25Þ

(vi) H5: there exist positive constants a51, a52 ∈ℝ+ such
that

f t, u, vð Þ − f t, �u, �vð Þj j ≤ a51 u − �uj j + a52 v − �vj j,
 ∀t ∈ 0, 1½ �, u, v, �u, �v ∈ℝ

ð26Þ

4 Journal of Function Spaces



For convenience, we introduce the following symbols:

L1 =
β2j j 2 − e−k

� �
Γ qð Þ + γ2j jηq+r 2 − e−kη

� �
Γ qð ÞΓ r + 1ð Þ ,

L2 =
β1j j 1 − e−k

� �
kΓ qð Þ + γ1j jηq+r 1 − e−kη

� �
kΓ qð ÞΓ r + 1ð Þ ,

L3 =
Δ1j j + Δ2j jð ÞL1 + Δ3j jL2

Δ2Δ3j j + 1
kΓ qð Þ + kΓ qð ÞL1 + 2

Γ 3 − qð ÞΓ qð Þ ,

L4 =
Δ1j j + Δ2j jð Þ ε2j j + Δ3ε1j j

Δ2Δ3j j + k ε2j j
Γ 3 − qð Þ :

ð27Þ

Theorem 9. Suppose that (H0) and (H1) hold. Then, problem
(1) has at least one solution.

Proof.We first define a ball in E as BR = fuju ∈ E, kukq−1 ≤ Rg,
where

R ≥max 3L3a11ð Þ1/ 1−σ1ð Þ, 3L3a2ð Þ1/ 1−σ1ð Þ, 3 3L3a13 + L4ð Þ
n o

:

ð28Þ

Then, we show that T : BR ⟶ BR. For ∀u ∈ BR, using
Lemma 6 and the condition (H1), we have

Fð Þ tð Þj js ≤ Δ1j j + Δ2j je−kt
Δ2j j Δ3j j jΦ�f 1, u 1ð Þ, CDq−1u 1ð Þ� �

,

f η, u ηð Þ,CDq−1u ηð Þ� ��j + 1
Δ2j j jΨ

�
f
�
1, u 1ð Þ,

CDq−1u 1ð Þ�, f η, u ηð Þ, CDq−1u ηð Þ� ��j
+
ðt
0
e−k t−sð ÞIq−1 f s, u sð Þ, CDq−1u sð Þ� ��� ��ds

≤
Δ1j j + Δ2j j
Δ2Δ3j j L1 a11R

σ1 + a12R
σ2 + a13ð Þ + ε2j j½ �

+ 1
Δ2j j L2 a11R

σ1 + a12R
σ2 + a13ð Þ + ε1j j½ �

+ 1
kΓ qð Þ a11R

σ1 + a12R
σ2 + a13½ �

≤
Δ1j j + Δ2j jð ÞL1 + Δ3j jL2

Δ2Δ3j j + 1
kΓ qð Þ

	 

� a11R

σ1 + a12R
σ2 + a13ð Þ

+ Δ1j j + Δ2j jð Þ ϵ2j j + Δ3ϵ1j j
Δ2Δ3j j ,

ð29Þ

CDq−1Fu
� �

tð Þ�� �� ≤ k
Γ 3 − qð Þ jΦ

�
f 1, u 1ð Þ, CDq−1u 1ð Þ� �

,

f η, u ηð Þ, CDq−1u ηð Þ� ��j
+ 1
Γ 3 − qð ÞΓ qð Þ f s, u sð Þ, CDq−1u sð Þ� ��� ��

+ 1
Γ 3 − qð ÞΓ qð Þ f s, u sð Þ, CDq−1u sð Þ� ��� ��

≤
kL1Γ qð Þ + 2
Γ 3 − qð ÞΓ qð Þ a11R

σ1 + a12R
σ2 + a13ð Þ

+ k ε2j j
Γ 3 − qð Þ :

ð30Þ

From (29) and (30), we obtain

∥Fu∥q−1 ≤ L3a11R
σ1 + L3a12R

σ2 + L4 ≤
1
3R + 1

3R = R: ð31Þ

This means F : BR ⟶ BR.
From the formula (19), it is easy to know that operators

FðuÞðtÞ,CDq−1FðuÞðtÞ are continuous on ½0, 1�. Now, we show
that operator F is equicontinuous. Set

M = max
t∈ 0,1½ �

f t, u tð Þ,CDq−1u tð Þ� ��� ��� �
, ∀u ∈ BR: ð32Þ

Let t1, t2 ∈ ½0, 1�ðt1 < t2Þ, we have

Fuð Þ t2ð Þ − Fuð Þ t1ð Þk j

≤
e−kt2 − e−kt1
�� ��

Δ3j j jΦ�f 1, u 1ð Þ,CDq−1u 1ð Þ� �
,

f η, u ηð Þ,CDq−1u ηð Þ� ��j + ðt1
0
e−k t2−sð Þ − e−k t1−sð Þ
��� ���

� Iq−1 f s, u sð Þ,CDq−1u sð Þ� ��� ��ds
+
ðt2
t1

e−k t2−sð Þ
��� ��� Iq−1 f s, u sð Þ,CDq−1u sð Þ� ��� ��ds

≤
L1M + ε2j j

Δ3j j e−kt1 − e−kt2
� �

+ M
Γ qð Þ

ðt1
0
e−k t2−sð Þ − e−k t1−sð Þ
��� ���ds + M

Γ qð Þ
ðt2
t1

e−k t2−sð Þds

≤
L1M + ε2j j

Δ3j j e−kt1 − e−kt2
� �

+ M
Γ qð Þ 2 1 − e−k t2−t1ð Þ

� �
+ e−kt1 − e−kt2
� �h i

,

ð33Þ
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CDq−1F
� �

uð Þ t2ð Þ − CDq−1F
� �

uð Þ t1ð Þ�� ��
≤

k
Γ 2 − qð Þ jΦ

�
f 1, u 1ð Þ,CDq−1u 1ð Þ� �

,

f η, u ηð Þ,CDq−1u ηð Þ� ��j × jðt2
0
t2 − sð Þ1−qe−ksds

−
ðt1
0
t1 − sð Þ1−qe−ksdsj + 1

Γ 2 − qð Þ
� jðt2

0
t2 − sð Þ1−qIq−1 f s, u sð Þ,CDq−1u sð Þ� �

ds

−
ðt1
0
t1 − sð Þ1−qIq−1 f s, u sð Þ,CDq−1u sð Þ� �

dsj
+ k
Γ 2 − qð Þ jðt20 t2 − sð Þ1−q

�ðs
0
e−k s−mð ÞIq−1 f

�
m, u mð Þ,

CDq−1u mð Þ�dm�
ds −

ðt1
0
t1 − sð Þ1−q

�ðs
0
e−k s−mð ÞIq−1 f

� m, u mð Þ, CDα−1u mð Þ� �
dm

�
dsj

≤
kL1M + k ε2j j
Γ 2 − qð Þ

( ðt1
0

t2 − sð Þ1−q − t1 − sð Þ1−q �
e−ksds

����
����

+
ðt2
t1

t2 − sð Þ1−qe−ksds
�����

�����
)

+ 2M
Γ qð ÞΓ 2 − qð Þ

�
ðt1
0

t2 − sð Þ1−q − t1 − sð Þ1−q �
ds

����
���� +

ðt2
t1

t2 − sð Þ1−qds
�����

�����
( )

:

ð34Þ
In (33) and (34), letting t1⟶ t2, then,

Fuð Þ t2ð Þ − Fuð Þ t1ð Þj j⟶ 0, CDq−1Fu
� �

t2ð Þ − CDq−1Fu
� �

t1ð Þ�� ��
⟶ 0,

ð35Þ

That is, as t1⟶ t2,

Fuð Þ t2ð Þ − Fuð Þ t2ð Þk kq−1 ⟶ 0: ð36Þ

Therefore, FðBRÞ is an equicontinuous set. Furthermore,
it is uniformly bounded because of FðBRÞ ⊂ BR. Applying
the Arzelà-Ascoli theorem, we can infer that F is a completely
continuous operator.

Consider V = fu ∈ BR ∣ u = μFu, 0 < μ < 1g and show that
V is bounded. For u ∈ V , we know jjujjq−1 < kðFuÞkq−1 ≤ R.
By Lemma 7, problem (1) has at least one solution in BR.

Theorem 10. Suppose that (H0) and (H2) hold. If 3ðL3a23 +
L4Þ ≤min fð3L3a21Þ1/ð1−τ1Þ, ð3L3a22Þ1/ð1−τ2Þg, then problem
(1) has at least one solution.

Proof. The proof is similar to Theorem 9. We just need to
make sure that R satisfies 3ðL3a23 + L4Þ ≤ R ≤min fð3L3a21Þ
1/ð1−τ1Þ, ð3L3a22Þ1/ð1−τ2Þg in BR.

Theorem 11. Suppose that (H0) and (H3) hold. If L3ða31 +
a32Þ < 1, then problem (1) has at least one solution.

Proof. The proof is similar to Theorem 9, we omit it.

Theorem 12. Suppose that (H0) and (H4) hold. If max
fð3L3a41Þ1/ð1−ρ1Þ, 3ðL3a43 + L4Þg ≤ ð3L3a42Þ1/ð1−ρ2Þ, then prob-
lem (1) has at least one solution.

Proof. The proof is similar to Theorem 10, we omit it.

Theorem 13. Suppose that (H0) and (H5) hold. If L3ða51 +
a52Þ < 1, then problem (1) has a unique solution.

Proof. Define sup
t∈½0,1�

j f ðt, 0, 0Þj =M <∞, such that r ≥ ðL3
M + L4Þ/ð1 − L3ða51 + a52ÞÞ.

First, we show that TðBrÞ ⊂ Br , where Br = fuju ∈
E : kukα−1 ≤ rg. For ∀u ∈ Br , by direct calculation, we have

Fuð Þ tð Þj j ≤ Δ1j j + Δ2j j
Δ2Δ3j j jΦ�f 1, u 1ð Þ,CDq−1u 1ð Þ� �

− f 1, 0, 0ð Þ

+ f 1, 0, 0ð Þ, f η, u ηð Þ,CDq−1u ηð Þ� �
− f η, 0, 0ð Þ

+ f η, 0, 0ð Þ0j + 1
Δ2j j jΨ

�
f 1, u 1ð Þ,CDq−1u 1ð Þ� �

− f 1, 0, 0ð Þ + f 1, 0, 0ð Þ, f η, u ηð Þ,CDq−1u ηð Þ� �
− f η, 0, 0ð Þ + f η, 0, 0ð Þ�j + ðt

0
e−k t−sð ÞIq−1

� f s, u sð Þ,CDq−1u sð Þ� �
− f s, 0, 0ð Þ�� �� + f s, 0, 0ð Þj j �

ds

≤
Δ1j j + Δ2j j
Δ2Δ3j j L1 a51 uk k + a52

CDq−1u
�� �� +M

� �
+ ε2j j �

+ 1
Δ2j j L2 a51 uk k + a52

CDq−1u
�� �� +M

� �
+ ε1j j �

+ 1
kΓ qð Þ a51 uk k + a52

CDq−1u
�� �� +M

 ���
≤

Δ1j j + Δ2j jð ÞL1 + Δ3j jL2
Δ2Δ3j j + 1

kΓ qð Þ
	 
h

a51 + a52ð Þ uk kq−1

+M
i
+ Δ1j j + Δ2j jð Þ ε2j j + Δ3ε1j j

Δ2Δ3j j ,

ð37Þ

CDq−1Fu
� �

tð Þ�� �� ≤ k
Γ 3 − qð Þ jΦ

�
f 1, u 1ð Þ,CDq−1u 1ð Þ� �

− f 1, 0, 0ð Þ + f 1, 0, 0ð Þ, f �η, u ηð Þ,
CDq−1u ηð Þ� − f η, 0, 0ð Þ + f η, 0, 0ð Þ�j
+ 2
Γ 3 − qð ÞΓ qð Þ

jf s, u sð Þ,CDq−1u sð Þ� �
− f s, 0, 0ð Þj + jf s, 0, 0ð Þj�
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≤
k

Γ 3 − qð Þ

L1 a51 uk k + a52

CDq−1u
�� �� +M

� �
+ ε2j j� + 2

Γ 3 − qð ÞΓ qð Þ

a51 uk k

+ a52
CDq−1u

�� �� +M
�
≤

kΓ qð ÞL1 + 2
Γ 3 − qð ÞΓ qð Þ

� a51 + a52ð Þ uk kq−1 +M
h i

+ k ε2j j
Γ 3 − qð Þ :

ð38Þ

Combining (37) and (38), we obtain

Fuð Þk kα−1 ≤ L3 a51 + a52ð Þ uk kq−1 + L3M + L4 ≤ r: ð39Þ

Now, for any u, v ∈ Br , we have

Fuð Þ tð Þ − Fvð Þ tð Þj j
≤

Δ1j j + Δ2j j
Δ2Δ3j j jΦ�f 1, u 1ð Þ,CDq−1u 1ð Þ� �

,

f η, u ηð Þ,CDα−1u ηð Þ� ��
−Φ

�
f 1, v 1ð Þ,CDα−1v 1ð Þ� �

,

f η, v ηð Þ,CDα−1v ηð Þ� ��j + 1
Δ2j j jΨ

�
f
�
1, u 1ð Þ,

CDα−1u 1ð Þ�, f η, u ηð Þ,CDα−1u ηð Þ� ��
−Ψ f 1, v 1ð Þ,CDα−1v 1ð Þ� �

, f η, v ηð Þ,CDα−1v ηð Þ� �� �j
+
ðt
0
e−k t−sð Þ�Iq−1jf s, u sð Þ,CDα−1u sð Þ� �

− f s, v sð Þ,CDα−1v sð Þ� �jds
≤

Δ1j j + Δ2j jð ÞL1 + Δ3j jL2
Δ2Δ3j j + 1

kΓ qð Þ
	 

� a51 u − vk k + a52

CDα−1u−CDα−1v
�� �� �

≤
Δ1j j + Δ2j jð ÞL1 + Δ3j jL2

Δ2Δ3j j + 1
kΓ qð Þ

	 

� a51 + a52ð Þ u − vk kα−1:

ð40Þ

Similar to (40), one has

CDα−1Fu
� �

tð Þ − CDα−1Fv
� �

tð Þ�� ��
≤

kΓ qð ÞL1 + 2
Γ 3 − qð ÞΓ qð Þ a51 + a52ð Þ u − vk kα−1:

ð41Þ

Therefore,

Fuð Þ − Fvð Þk kα−1 ≤ L3 a51 + a52ð Þ u − vk kα−1: ð42Þ

Since L3ða51 + a52Þ < 1, F is a contraction operator. Using
Lemma 8, operator F has a unique fixed point which is the
unique solution of problem (1).

In order to illustrate our main results, we consider the fol-
lowing sequential fractional differential equations:

CD1:5+CD0:5u tð Þ = f t, u tð Þð ,CD0:5u tð Þ� �
, t ∈ 0, 1ð Þ,

0:1u 0ð Þ + 0:2u 1ð Þ − I2u 0:5ð Þ = 0:01,
0:2u′ 0ð Þ + 0:1u′ 1ð Þ + 2I2u′ 0:5ð Þ = 0:02,

8>><
>>:

ð43Þ

where q = 1:5, k = 1, r = 2, η = 0:5, α1 = 0:1, β1 = 0:2, γ1 = −1,
ε1 = 0:01, α2 = 0:2, β2 = 0:1, γ1 = 2, and ε2 = 0:02.

Example 1. Let f ðt, uðtÞ,CD0:5uðtÞÞ = 0:01uðtÞ0:2 + 0:02
ðCD0:5uðtÞÞ0:1 + 0:15ð1 − tÞ2. So we have

f t, u tð Þ,CD0:5u tð Þ� ��� �� ≤ 0:01 u tð Þj j0:2 + 0:02 CD0:5u tð Þ�� ��0:1
+ 0:15,

ð44Þ

where a11 = 0:01, a12 = 0:02, a13 = 0:15, σ1 = 0:2, and σ2 = 0:1.
Theorem 9 implies that problem (43) has at least one solution.

Example 2. Let f ðt, uðtÞ,CD0:5uðtÞÞ = 0:01uðtÞ1:2 + 0:02
ðCD0:5uðtÞÞ1:1 + 0:01ð1 − tÞ2. By direct calculation, we obtain
that

Δ1 = 0:093438, Δ2 = 0:246808, Δ3
= −0:407603, L1 = 0:323142, L2
= 0:161275, L3 = 5:785852, L4 = 0:130729:

ð45Þ

In the meantime, we have

f t, u tð Þ,CD0:5u tð Þ� ��� �� ≤ 0:01 u tð Þj j1:2 + 0:02 CD0:5u tð Þ�� ��1:1
+ 0:01,

ð46Þ

where a21 = 0:01, a22 = 0:22, a23 = 0:01, τ1 = 1:2, and τ2 = 1:1.
So we obtain 3ðL3a23 + L4Þ = 0:565763 < min fð3L3a21Þ
1/ð1−τ1Þ, ð3L3a22Þ1/ð1−τ2Þg = 1:111599. Theorem 10 implies that
problem (43) has at least one solution.

Example 3. Let f ðt, uðtÞ,CD0:5uðtÞÞ = 0:01uðtÞ + 0:02CD0:5u
ðtÞ + 0:01ð1 − tÞ2. So we have

f t, u tð Þ,CD0:5u tð Þ� �
− f t, v tð Þ,CD0:5v tð Þ� ��� ��

≤ 0:01 u tð Þ − v tð Þj j + 0:02 CD0:5u tð Þ−CD0:5v tð Þ�� ��, ð47Þ

where a51 = 0:01 and a52 = 0:02. Combining with the calcula-
tion result of Example 2, we can obtain that L3ða51 + a52Þ =
0:173576 < 1. Hence, Theorem 13 implies that problem (43)
has a unique solution.
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4. Conclusions

We have obtained some existence results for new sequential
fractional differential equations by using some nonlinear
growth conditions

f t, u vð Þð Þj j ≤ b11 uj jθ1 + b12 vj jθ1 + b13, θ1, θ2 ∈ 0, +∞ð Þ,
ð48Þ

which is different from the existing linear condition. Obvi-
ously, these results are easy to verify and apply (see Example
1 and Example 3).

On the other hand, we note that our results contain
some special types of results by fixing the parameters in
the given problem (1). For instance, let α1 = 1, β1 = 1, γ1 =
0, α2 = 1, β2 = 1, and γ2 = 0, then the results of this paper
are the following sequential fractional differential equations
with the boundary value conditions of the form uð0Þ + uð1Þ
= ϵ1 and u′ð0Þ + u′ð1Þ = ϵ2. Further, letting α1 = 0, β1= 1,
γ1=−1, ϵ1= 0, α2 = 0, β2= 1, γ2=−1, and ϵ2 =0, we obtain
the results for the boundary conditions uð1Þ = IruðηÞ and
u′ð1Þ = Iru′ðηÞ.
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