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In this paper, we deal with two fractional boundary value problems which have linear growth and quadratic growth about the
fractional derivative in the nonlinearity term. By using variational methods coupled with the iterative methods, we obtain the
existence results of solutions. To the best of the authors’ knowledge, there are no results on the solutions to the fractional
boundary problem which have quadratic growth about the fractional derivative in the nonlinearity term.

1. Introduction

It has been seen that fractional differential equations have
better effects in many realistic applications than the classical
ones. Qualitative theory and its applications in physics, engi-
neering, economics, biology, and ecology are extensively dis-
cussed and demonstrated in [1–4] and the references therein.
Some recent contributions to the theory of fractional differ-
ential equation can be seen in [5–10].

Some classical tools such as fixed point theorems [5], the
method of upper and lower solutions, and monotone itera-
tive technique [11, 12] have been widely used to study the
fractional differential equation. Recently, the study of frac-
tional differential equations has attracted much attention
by using variational methods, for example, [7, 8, 13–19].
We also mention that in the recent works [20, 21], the
authors have developed a general approach concerting the
existence of solutions.

Fractional differential equations containing left and right
fractional differential operators have received attention from
scientists due to their applications in physical phenomena
exhibiting anomalous diffusion. In [7], appropriate fractional
derivative spaces were defined and existence and uniqueness
results for a fractional boundary value problem were proven
using the Lax-Milgram theorem.

Jiao and Zhou [8] showed the variational structure of a
fractional boundary value problem under an appropriate
functional space; they used the least action principle and
the Mountain Pass theorem to obtain the existence of at
least one solution. Sun and Zhang [22] obtained the exis-
tence result for a fractional boundary value problem by
using the Mountain Pass method and an iterative tech-
nique. In [23], the authors discussed the existence of a
fractional boundary value problem with linear growth
about the fractional derivative in a nonlinearity term.
Compared with some integral-order partial differential equa-
tions such as [6, 24–31], the fractional derivatives have
hereditary and nonlocal properties so that they are much
more suitable for describing long-memory processes than
the classical integer-order derivatives.

Motivated by the above papers, in this paper, we first
investigated the existence of solutions for the following frac-
tional boundary value problems:

tD
α
T 0D

α
t u tð Þ + 0D

α
t tD

α
Tu tð Þ = f t, u tð Þ, 0Dα

t u tð Þð Þ, a:e:t ∈ 0, T½ �,
u 0ð Þ = u Tð Þ = 0,

(

ð1Þ
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where 0D
α
t and tD

α
T are the left and right fractional Riemann-

Liouville derivatives of order 1/2 < α < 1, respectively, f : ½0,
T� ×ℝ ×ℝ⟶ℝ.

Note that problem (1) is not variational due to the
fractional derivative contained in nonlinearity, so we can-
not find a functional such that its critical point is the weak
solution corresponding to (1). In order to overcome this
difficulty, we consider the following fractional boundary
value problem which is independent on the fractional
derivative of the solution

tD
α
T0D

α
t u tð Þ + 0D

α
t tD

α
Tu tð Þ = f t, u tð Þ, 0Dα

t w tð Þð Þ, a:e:t ∈ 0, T½ �,
u 0ð Þ = u Tð Þ = 0,

(

ð2Þ

where w is an element of fractional Sobolev space Eα.
First, by using variational methods, we obtain the exis-
tence of solutions for (2). Then, under the assumption
that f is linear growth about the fractional derivative
and based on iterative methods, we show there exists a
solution for (1). Our conditions are weaker than that
in [23].

We also discuss the following fractional boundary value
problem:

tD
α
T 0D

α
t u tð Þ + 0D

α
t tD

α
Tu tð Þ = a tð Þg u tð Þð Þ + λ 0D

α
t u tð Þj j2, a:e:t ∈ 0, T½ �,

u 0ð Þ = u Tð Þ = 0,

(

ð3Þ

where a ∈ L1ð0, T ;ℝ+Þ, λ is a parameter, and g ∈ Cðℝ ;ℝÞ.
Compared with (1), the nonlinearity of (3) is quadratic
growth about a fractional derivative. By using variational
methods and an iterative technique, we obtain that there
exists solutions for (3) when λ and a satisfy suitable condi-
tions. To the best of the authors’ knowledge, there are no
results on the solutions to the fractional boundary problem
which have quadratic growth about the fractional derivative
in the nonlinearity term .

The paper is organized as follows. In Section 2, we will list
some important properties of the basic functional space. We
show the existence results for (1) and (3) in Section 3 and
Section 4, respectively.

2. Preliminary

Let us briefly recall the property of a fractional derivative
which will be used to construct the variational functional.

Lemma 1 [1]. For 0 < β ≤ 1, if f ∈ Lpð½a, b�ℝÞ with pð1 − βÞ
> 1, 0 J

1−β
t f ðtÞ is absolutely continuous, and g : ð½a, b�,ℝÞ is

absolutely continuous with gðbÞ = 0, then

ðb
a

aD
β
t f tð Þ

h i
g tð Þdt =

ðb
a

tD
β
bg tð Þ

h i
f tð Þdt: ð4Þ

Now, we recall some properties of the basic function
space which have been studied in [32].

Throughout this paper, let 1/2 < α < 1.
The fractional derivative space Eα is defined by the

completion of C∞
0 ð0, TÞ with respect to the norm kuk =

ðÐ T0 juðtÞj2dt + Ð T0 j0Dα
t uðtÞj2dtÞ

1/2
, where 0D

α
t is the α-order

left Riemann-Liouville fractional derivative. Then, Eα is a
reflexive and separable Hilbert space. And the Riemann-
Liouville fractional derivative exists for the elements in
Eα [22].

Lemma 2 [32]. For all u ∈ Eα, we have

uk kL2 ≤
Tα

Γ α + 1ð Þ 0D
α
t uk kL2 , ð5Þ

uk k∞ ≤
Tα− 1/2ð Þ

Γ αð Þ 2α − 1ð Þ1/2 0D
α
t uk kL2 : ð6Þ

According to (5), one can consider Eα with respect to the
equivalent norm

uk kα = 0D
α
t uk kL2 : ð7Þ

Lemma 3 [32]. If the sequence fukg converges weakly to u in
Eα, i.e., uk ⇀ u, then uk ⟶ u in Cð½0, T�,ℝNÞ, i.e.,
ku − ukk∞ ⟶ 0 as k⟶∞.

By the proof of Proposition 4.1 in [8], we have the follow-
ing property.

Lemma 4. For any u ∈ Eα,

cos παð Þj j2 uk k2α ≤ tD
α
Tuk k2L2 ≤

1

cos παð Þj j2 uk k2α: ð8Þ

3. Existence Result for (1)

We assume that f ðt, x, yÞ satisfies the following conditions:
ðH0Þ f : ½0, T� ×ℝ ×ℝ⟶ℝ is measurable in t ∈ ½0, T�

for every ðx, yÞ ∈ℝ ×ℝ and continuous in ðx, yÞ ∈ℝ ×ℝ
for a:e:t ∈ ½0, T�, and there exist a ∈ Cðℝ+,ℝ+Þ, b ∈ L1ð0, T ;
ℝ+Þ, such that

f t, x, yð Þj j ≤ a xj jð Þb tð Þ + y2, ð9Þ

for all t ∈ ½0, T�, x, y ∈ℝ.
ðH1Þ There are constants μ > 2 and R > 0 such that, for

jxj ≥ R, y ∈ℝ,

0 < μF t, x, yð Þ ≤ f t, x, yð Þx, ð10Þ

where Fðt, x, yÞ = Ð x0 f ðt, s, yÞds.
ðH2Þ limx→0ð f ðt, x, yÞ/xÞ = 0 uniformly for t ∈ ½0, T� and

y ∈ℝ.
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In order to derive a weak solution of (1), we suppose
that u is a solution of (1), and multiplying (1) by an arbi-
trary v ∈ C∞

0 ð0, TÞ and by Lemma 1, we have

ðT
0
0D

α
t u tð Þ0Dα

t v tð Þ + tD
α
Tu tð ÞtDα

Tv tð Þdt

−
ðT
0
f t, u tð Þ, 0Dα

t u tð Þð Þv tð Þdt = 0:
ð11Þ

Since (11) is well defined for u, v ∈ Ea, the weak solu-
tion of (1) may be defined as follows.

Definition 5. A weak solution of (1) is a function u ∈ Eα

such that

ðT
0
0D

α
t u tð Þ0Dα

t v tð Þ + tD
α
Tu tð ÞtDα

Tv tð Þdt

−
ðT
0
f t, u tð Þ, 0Dα

t u tð Þð Þv tð Þdt = 0,
ð12Þ

for every v ∈ Eα.

Definition 6.A function u is called a solution of (1), if 0D
α
t uðtÞ

and tD
α
TuðtÞ exist, ð−t J1−αT 0D

α
t uðtÞ + 0 J

1−α
t tD

α
TuðtÞÞ is deriv-

able for almost every t ∈ ½0, T�, and u satisfies (1).

For a given w ∈ Eα, we consider the functional φw : Eα

⟶ℝ, defined by

φw uð Þ = 1
2

ðT
0

0D
α
t u tð Þj j2 + tD

α
Tu tð Þj j2dt

−
ðT
0
F t, u tð Þ, 0Dα

t w tð Þð Þdt:
ð13Þ

In view of assumption ðH0Þ, we know that φ is continu-
ously differentiable and

φw
′ uð Þv =

ðT
0
0D

α
t u tð Þ0Dα

t v tð Þ + tD
α
Tu tð ÞtDα

Tv tð Þdt

−
ðT
0
f t, u tð Þ, 0Dα

t w tð Þð Þv tð Þdt,
ð14Þ

for u, v ∈ Eα. Hence, a critical point of φw gives us a weak
solution of (2).

Lemma 7. If u is a weak solution of (1), then u is also a solu-
tion of (1).

Proof. Let u be a weak solution of (1), then u ∈ Eα, so 0Dt
αuðtÞ

and tDT
αuðtÞ exist and uð0Þ = uðTÞ = 0. For every v ∈ C∞

0 ,

we have

ðT
0
0D

α
t u tð Þ0Dα

t v tð Þ + tD
α
Tu tð ÞtDα

Tv tð Þdt

−
ðT
0
f t, u tð Þ, 0Dα

t u tð Þð Þv tð Þdt = 0:
ð15Þ

Since v ∈ C∞
0 , we have 0D

α
t vðtÞ = 0 J

α
t v′ðtÞ and tD

α
TvðtÞ

= −t J
α
Tv′ðtÞ, so
ðT
0

−t J
1−α
T 0D

α
t u tð Þ + 0 J

1−α
t tD

α
t u tð Þ

 

−
ðt
0
f s, u sð Þ, 0Dα

s u sð Þð Þds
!
v′ tð Þdt = 0:

ð16Þ

Then, there exists a constant C such that

−t J
1−α
T 0D

α
t u tð Þ + 0 J

1−α
t tD

α
Tu tð Þ −

ðt
0
f s, u sð Þ, 0Dα

s u sð Þð Þds = C,

ð17Þ

thus,

tD
α
T 0D

α
t u tð Þ + 0D

α
t tD

α
Tu tð Þ = f t, u tð Þ, 0Dα

t u tð Þð Þ, t ∈ 0, T½ �:
ð18Þ

Lemma 8. Suppose ðH0Þ and ðH1Þ hold, then φw satisfies
the (PS) condition.

Proof. Let fung ⊂ Eα, fφwðunÞg is bounded, and φw
′ ðunÞ

⟶ 0; we first show that fung is bounded.

It follows from ðH1Þ that

μφw unð Þ − φw
′ unð Þun =

μ

2 − 1
� �ðT

0
0D

α
t un tð Þj j2 + tD

α
Tun tð Þj j2dt

+
ð

t∈ 0,T½ � un tð Þ ≥Rjkf g
f t, un tð Þ, 0Dα

t w tð Þð Þun tð Þ

− μF t, un tð Þ, 0Dα
t w tð Þð Þdt

+
ð

t∈ 0,T½ � un tð Þ <Rjkf g
f t, un tð Þ, 0Dα

t w tð Þð Þun tð Þ

− μF t, un tð Þ, 0Dα
t w tð Þð Þdt

≥
μ

2 − 1
� �ðT

0
0D

α
t un tð Þj j2 + tD

α
Tu tð Þj j2dt

+
ð

t∈ 0,T½ � un tð Þ <Rjkf g
f t, un tð Þ, 0Dα

t w tð Þð Þun tð Þð

− μF t, un tð Þ, 0Dα
t w tð Þð ÞÞ,

ð19Þ

which implies that fung is bounded.

3Journal of Function Spaces



From the reflexivity of Eα, we may extract a weakly con-
vergent subsequence that, for simplicity, we call fung, un
⇀ u then kun − uk∞ ⟶ 0. Next, we will prove that fung
strongly converges to u. By ðH0Þ, we know that

ðT
0

f t, un tð Þ, 0Dα
t w tð Þð Þ − f t, u tð Þ, 0Dα

t w tð Þð Þ un tð Þðð
− u tð ÞÞdt⟶ 0 as n⟶∞:

ð20Þ

Note that

φw
′ unð Þ − φw

′ uð Þ
� �

un − uð Þ =
ðT
0

0D
α
t un tð Þ − u tð Þð Þj j2

+ tD
a
T un tð Þ − u tð Þð Þj j2dt −

ðT
0

f t, un tð Þ, 0Da
t w tð Þð Þð

− f t, u tð Þ, 0Da
t w tð Þð Þ un tð Þ − u tð Þð Þdt ≥ 1 + cos παj j2� �

un − uk k2α
−
ðT
0

f t, un tð Þ, 0Dα
t w tð Þð Þ − f t, u tð Þ, 0Dα

t w tð Þð Þ un tð Þ − u tð Þð Þdtð :

ð21Þ

By φ′ðunÞ⟶ 0 and un ⇀ u, we obtain that

φ′ unð Þ − φ′ uð Þ
� �

un − uð Þ⟶ 0 as n⟶∞: ð22Þ

Thus, kun − ukα ⟶ 0 as n⟶∞. Therefore, φw satisfies
the (PS) condition.

Lemma 9. Letw ∈ Eα and suppose ðH0Þ, ðH1Þ, and ðH2Þ hold,
then (2) has at least one nontrivial solution.

Proof. The proof relies on the Mountain Pass theorem
[33, 34]. It is clear that φw ∈ C1ðEα, RÞ, φwð0Þ = 0, and
φw satisfies the (PS) condition from Lemma 8. By ðH2Þ,
for all ε > 0, there is a δ > 0 such that

F t, x, yð Þ ≤ ε xj j2, xj j < δ, t ∈ 0, T½ �, y ∈ℝ: ð23Þ

Let ρ = δΓðαÞð2α − 1Þ1/2/2Tα−ð1/2Þ and choose kukα = ρ;
by the above inequality and (6), we have

φw uð Þ = 1
2

ðT
0

0D
α
t u tð Þj j2 + tD

α
Tu tð Þj j2dt

−
ðT
0
F t, u tð Þ, 0Dα

t w tð Þð Þdt ≥ 1 + cos παj j2
2 uk k2α

− εT uk k2∞ ≥
1 + cos παj j2

2 −
εT2α

Γ αð Þ2 2α − 1ð Þ

 !
uk k2α:

ð24Þ

It suffices to choose ε = ð1 + jcos παj2ÞΓðαÞ2ð2α − 1Þ/4
T2α and σ = ðð1 + jcos παj2Þ/4Þρ to get φwðuÞ ≥ σ. Thus,
there exist positive numbers ρ and σ which are independent
of w such that φwðuÞ ≥ σ for u ∈ Eα satisfies kukα = ρ.

It follows from ðH1Þ that there exist c1, c2 > 0 such that

F t, x, yð Þ ≥ c1 xj jμ − c2, ∀t ∈ 0, T½ �, x, y ∈ℝ: ð25Þ

Choosing ~u ∈ Eα satisfies k~ukα = 1, and we obtain

φw r~uð Þ = r2

2

ðT
0

0D
α
t ~u tð Þj j2 + tD

α
T~u tð Þj j2dt

−
ðT
0
F t, r~u tð Þ, 0Dα

t w tð Þð Þdt ≤ r2

2 1 + 1
cos παj j2

� �

− c1r
μ
ðT
0
~uj jμdt + c2T ,

ð26Þ

which implies that φðr~uÞ⟶ −∞ as r⟶∞. Hence, we
obtain that there exists a β > 0 independent of u1 and w such
that φwðuÞ ≤ 0 for all kukα > β.

The above discussions combined with the Mountain Pass
theorem show that (2) has at least one nontrivial solution uw
which can be characterized as

φw
′ uwð Þ = 0, φw uwð Þ = inf max

g∈Γu∈g 0,1½ �ð Þ
φw uð Þ, ð27Þ

where Γ = fg ∈ Cð½0, 1�, EαÞjgð0Þ = 0, gð1Þ = β~ug.
In order to obtain the existence of solutions for (1), we

need the following Lipschitz condition.
ðH3Þ There exist L1, L2 > 0 such that

f t, x1, yð Þ − f t, x2, yð Þj j ≤ L1 x1 − x2j j, 
∀t ∈ 0, T½ �, x1, x2 ∈ 0, r1½ �, y ∈ℝ,

f t, x, y1ð Þ − f t, x, y2ð Þj j ≤ L2 y1 − y2j j, 
∀t ∈ 0, T½ �, x ∈ 0, r1½ �, y1, y2 ∈ℝ,

ð28Þ

where r1 = c2T
α−ð1/2Þ/ΓðαÞð2α − 1Þ1/2; C2 will be determined

later.

Theorem 10. Let γ = L2T
αΓðα + 1Þ/ðð1 + jcos παj2ÞΓ

ðα + 1Þ2 − L1T
2αÞ, suppose (H0)–(H3) hold, 2R/ð1 + jcos παj2Þ

< 1, and 0 < γ < 1, then problem (1) has a nontrivial solution.

Proof. For n = 1, 2,⋯ and u1 = 0, we construct a sequence
fung, where un is the solution of the following problem:

tD
α
T 0D

α
t un tð Þ + 0D

α
t tD

α
Tun tð Þ = F t, un tð Þ, 0Dα

t un−1 tð Þð Þ, a:e:t ∈ 0, T½ �,
un 0ð Þ = un Tð Þ = 0:

(

ð29Þ

Now, we assume kun−1kα ≤ C2; by the mathematical
induction, we will prove that kunkα ≤ C2. It follows from
un satisfying (29) that
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φun−1
unð Þ = inf max

g∈Γu∈g 0,1½ �ð Þ
φun−1

uð Þð ≤ max
r∈ 0,β½ �

φun−1
r~uð Þð

≤ max
r∈ 0,β½ �

r2

2 1 + 1
cos παj j2

� �
− c1r

μ
ðT
0
~uj jμdt + c2T

� �
:

ð30Þ

Let

h rð Þ = r2

2 1 + 1
cos παj j2

� �
− c1r

μ
ðT
0
~uj jμdt + c2T , ð31Þ

then hðrÞ can achieve its maximum at ~r =
ððjcos παj2 + 1Þ/cos παj2c1μ

Ð T
0 ju1jμdtÞ

1/ðμ−2Þ
, so φun−1

ðunÞ ≤
hð~rÞ. By ðH1Þ and ðH0Þ, we have

h ~rð Þ ≥ φun−1
unð Þ = 1

2

ðT
0

0j Dα
t un tð Þj2 + tj Dα

Tun tð Þj2dt

−
ðT
0
F t, un tð Þ,0Dα

t un−1 tð Þð Þdt

≥
1
2 1 + cos παjj 2� �

unk k2α −
ð

t∈ 0,T� un tð Þ ≤Rjk½f g
F t, un tð Þ,0Dα

t un−1 tð Þð Þdt

≥
1
2 1 + cos παjj 2� �

unk k2α
ð

t∈ 0,T� un tð Þ ≤Rjk½f g

ðun tð Þ

0
f t, s,0Dα

t un−1 tð Þð Þdsdt

≥
1
2 1 + cos παjj 2� �

unk k2α −
ð

t∈ 0,T� un tð Þ ≤Rjk½f g

ðR
0
a sj jð Þb tð Þdsdt

− R
ðt
0
0D

α
t un−1 tð Þj j2dt ≥ 1

2 1 + cos παjj 2� �
unk k2α

−
ðT
0
b tð Þdt

ðR
0
a sj jð Þds − R un−1k k2α:

ð32Þ

Then,

unk k2α ≤
2R

1 + cos παj j2 un−1k k2α +
2 h ~rð Þ + Ð T0 b tð ÞdtÐ R0a sj jð Þds
� �

1 + cos παj j2

≤
2R

1 + cos παj j2
� �n−1

u1k k2α

+
2 h ~rð Þ + Ð T0 b tð ÞdtÐ R0a sj jð Þds
� �

1 + cos παj j2 〠
n−2

k=0

2R
1 + cos παj j2
� �k

= 2R
1 + cos παj j2
� �n−1

u1k k2α

+
2 1 + cos παj j2� �

h ~rð Þ + Ð T0 b tð ÞdtÐ R0a sj jð Þds
� �

1 + cos παj j2� �
1 + cos παj j2 − 2R
� � :

ð33Þ

Thus, we can choose C2 = 2ð1 + jcos παj2Þðhð~rÞ + Ð T0 b
ðtÞdtÐ R0aðjsjÞdsÞ/ð1 + jcos παj2Þð1 + jcos παj2 − 2RÞ.

Since ðφ′ðun+1Þ − φ′ðunÞÞðun+1 − unÞ = 0 and ∥un∥α ≤ C2,
then ∥un∥∞≤r1, where r1 is given by ðH3Þ. From ðH3Þ,
we have

ðT
0

0D
α
t un+1 tð Þ − un tð Þð Þj j2 + tD

α
T un+1 tð Þ − un tð Þð Þj j2dt

=
ðT
0

f t, un+1 tð Þ, 0Dα
t un tð Þð Þð

− f t, un tð Þ, 0Dα
t un−1 tð Þð ÞÞ un+1 tð Þ − un tð Þð Þdt

=
ðT
0

f t, un+1 tð Þ0Dα
t un tð Þð Þ − f t, un tð Þ, 0Dα

t un tð Þð Þð Þ un+1 tð Þð

− un tð ÞÞdt +
ðT
0

f t, un tð Þ, 0Dα
t un tð Þð Þð

− f t, un tð Þ, 0Dα
t un−1 tð Þð ÞÞ un+1 tð Þ − un tð Þð Þdt

≤ L1 un+1 − unk k2L2 + L2

ðT
0

0D
α
t un tð Þ−0D

α
t un−1 tð Þj j un+1 tð Þ − un tð Þð Þdt

≤ L1 un+1 − unk k2L2 + L2 un − un−1k kα un+1 − unk kL2 :
ð34Þ

Combining the above estimates with (8) and (5), we
obtain

1 + cos παj j2 − L1T
2α

Γ α + 1ð Þ2
 !

un+1 − unk kα

≤
L2T

α

Γ α + 1ð Þ un − un−1k kα,
ð35Þ

that is kun+1 − unkα ≤ γkun − un−1kα. Since 0 < γ < 1, the
above inequality implies that fung is a Cauchy sequence
in Eα. Thus, there is a u such that fung converges
strongly to u in Eα.

Now, we show that u≡0. By the proof of Lemma 9, we
know φðunÞ ≥ σ.

If φðunÞ⟶ φðuÞ, thenφðuÞ > σ, and since φð0Þ = 0, we
obtain u≡0. In order to show φðunÞ⟶ φðuÞ, we only need
to show

Ð T
0 Fðt, un, 0Dα

t un−1ðtÞÞdt⟶
Ð T
0 Fðt, u, 0Dα

t uðtÞÞdt.
In fact,

ðT
0
F t, un, 0Dα

t un−1 tð Þð Þdt −
ðT
0
F t, u, 0Dα

t u tð Þð Þdt

=
ðT
0

ðun
0
f t, x, 0Dα

t un−1 tð Þð Þdt −
ðT
0

ðu
0
f t, x, 0Dα

t u tð Þð Þdt

=
ðT
0

ðun
u
f t, x, 0Dα

t un−1 tð Þð Þ − f t, x, 0Dα
t u tð Þð Þdt

≤ L2

ðT
0

0D
α
t un−1 tð Þ − 0D

α
t u tð ÞÞ un − ukj jdt

≤ L2 0D
α
t un−1 tð Þ − 0D

α
t u tð ÞÞ L2

���� un − u L2
����

≤
L2T

α

Γ α + 1ð Þ un − u 2
α

���� ⟶ 0:

ð36Þ

Next, we show that for any v ∈ Eα,
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ðT
0
0D

α
t u tð Þ0Dα

t v tð Þ + tD
α
Tu tð ÞtDα

Tv tð Þdt

=
ðT
0
f t, u tð Þ, 0Dα

t u tð Þð Þv tð Þdt:
ð37Þ

It remains only to show

ðT
0
f t, un tð Þ, 0Dα

t un−1 tð Þð Þv tð Þdt⟶
ðT
0
f t, u tð Þ, 0Dα

t u tð Þð Þ v tð Þdt:

ð38Þ

Note that

ðT
0

f t, un tð Þ, 0Dα
t un−1 tð Þð Þ − f t, u tð Þ, 0Dα

t u tð Þð Þð Þv tð Þdt

=
ðT
0

f t, un tð Þ, 0Dα
t un−1 tð Þð Þ − fðð t, u tð Þ, 0Dα

t un−1 tð Þð Þv tð Þdt

+
ðT
0

f t, u tð Þ, 0Dα
t un−1 tð Þð Þ − f t, u tð Þ, 0Dα

t u tð Þð Þð Þv tð Þdt

≤ L1 un − uk kL2kv L2k + L2 un−1 − u α v L2kkkk
≤ C un − uk kα + un−1 − uk kα
� �

vk kα,
ð39Þ

where C is a constant. Thus, we obtain a nontrivial solution
of problem (1).

4. Existence Result for (3)

In Section 3, condition ðH3Þ implies that the nonlinearity is
linear growth about a fractional derivative of solutions; this
section will consider the fractional boundary value problem
(3) in which the nonlinearity is quadratic growth about the
fractional derivative of solutions.

Assume that g satisfies the following conditions:
ðH1′Þ There are constants μ > 2 and R > 0 such that,

forjxj ≥ R, 0 < µGðxÞ ≤ gðxÞx, where GðxÞ = Ð x0gðsÞds.
ðH2′Þ limx→0ðgðxÞ/xÞ = 0:
Similar to Section 3, since (3) is not variational, given w

∈ Eα, we consider the following problem which is indepen-
dent on the fractional derivative of the solution:

tD
α
T 0D

α
t u tð Þ + 0D

α
t tD

α
Tu tð Þ = a tð Þg u tð Þð Þ + λ 0D

α
t w tð Þj j2, a:e:t ∈ 0, T½ �,

u 0ð Þ = u Tð Þ = 0:

(

ð40Þ

Then, the corresponding functional ϕ : Eα ⟶ Eα is
given by

ϕw uð Þ = 1
2

ðT
0

0D
α
t u tð Þj j2 + tD

α
Tu tð Þj j2dt −

ðT
0
a tð ÞG u tð Þð Þdt

− λ
ðT
0

0D
α
t w tð Þj j2u tð Þdt,

ϕw′ uð Þv =
ðT
0
0D

α
t tð Þ0Dα

t v tð Þ + tD
α
Tu tð ÞtDα

Tv tð Þdt

−
ðT
0
a tð Þg u tð Þð Þv tð Þdt − λ

ðT
0

0D
α
t w tð Þj j2v tð Þdt,

ð41Þ

where v ∈ Eα.
ðH1′Þ implies that there are constants c1, c2 > 0 such that

G xð Þ ≥ c1 xj jµ − c2: ð42Þ

By ðH2′Þ, there is a δ > 0 such that jxj ≤ δ implies

g xð Þ ≤ Γ αð Þð Þ2 2α − 1ð Þ 1 + cos παj j2� �
4
Ð T
0 a tð ÞdtT2a−1 xj j2: ð43Þ

For convenience of our statement, let us give some nota-
tions and denote

a = μ − 2ð Þ 1 + cos παj j2� �
2μ ,

b = λ μ − 1ð ÞTα− 1/2ð Þ

Γ αð Þ 2α − 1ð Þ1/2μ ,

d = μ − 1ð ÞΓ αð Þ 2α − 1ð Þ1/2δ 1 + cos παj j2� �
32Tα− 1/2ð Þμ

,

ð44Þ

where μ is given in ðH1′Þ and δ is given in (43). Assuming
a2 > 4bd, let

ε1 =
a −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 4bd

p

2b , ε2 =
a +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 4bd

p

2b : ð45Þ

For a fixed function ν ∈ Eα with kvk = 1, we denote

m tð Þ = 1 + 1
cos παj j2

� �
r2 − c1r

μ
ðT
0
a tð Þ vj jμdt

+ rΓ αð Þ 2α − 1ð Þ1/2δ 1 + cos παj j2� �
4Tα− 1/2ð Þ + c2

ðT
0
a tð Þ,

ð46Þ

M = max
r∈ 0,∞ð Þ

m tð Þ, M1 =M +
ðT
0
a tð Þdt max

xj j≤R
G xð Þ − 1

μ
g xð Þ

� �
:

ð47Þ
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For ε ∈ ðε1, ε2Þ, denote

R1 = R1 εð Þ = M1ε

aε − bε2 − d
, R2 = R2 εð Þ = R1T

α− 1/2ð Þ

Γ αð Þ 2α − 1ð Þ1/2 :

ð48Þ

We also need the following Lipschitz condition:
ðH3′ÞThere exists LR2 > 0 such that jgðx1Þ − gðx2Þj ≤ LRj

x1 − x2j for 0 < x1, x2 < R2. Then we have the following
result.

Theorem 11. Suppose ðH1′Þ–ðH3′Þ hold, a2 > 4bd; if there
exists ε ∈ ðε1, ε2Þ, such that

λR2
1 ≤

Γ αð Þ2 2α − 1ð Þδ 1 + cos παj j2� �
8T2α−1 , ð49Þ

2λR1T
α− 1/2ð Þ

Γ αð Þ 2α − 1ð Þ1/2
< 1 + cos παj j2 − T2α−1LR2

Ð T
0 a tð Þdt

Γ αð Þð Þ2 2α − 1ð Þ :

ð50Þ

Then, (3) has a nontrivial weak solution.

Proof. We first verify that for a given w ∈ Eα with kwkα ≤ R1,
(40) has at least a nontrivial weak solution.

In order to use the Mountain Pass theorem, we first show
that ϕ satisfies the (PS) condition. Let fung ⊂ Eα, fϕwðunÞg is
bounded, and ϕw′ ðunÞ⟶ 0, we show that fung is bounded.

In fact,

μϕω unð Þ − ϕω′ unð Þun =
μ

2 − 1
� �ðT

0
0D

α
t un tð Þj j2 + tD

α
Tun tð Þj j2dt

+
ðT
0
a tð Þ g unð Þun − μG unð Þð Þdt + λ 1 − μð Þ

ðT
0

0D
α
t ω tð Þj j2un tð Þdt

≥
μ

2 − 1
� �

1 + cos παj j2� �
unk k2α + λ 1 − μð Þ ωk k2α unk k∝

+
ð

t∈ 0,T½ � un tð Þ ≤Rjkf g
a tð Þ un tð Þg un tð Þð Þ − μG un tð Þð Þð Þdt

≥
μ

2 − 1
� �

1 + cos παj j2� �
unk k2α +

λR2
1 1 − μð ÞTα− 1/2ð Þ

Γ αð Þ 2α − 1ð Þ1/2
unk kα

+
ð

t∈ 0,T½ � un tð Þ ≤Rjkf g
a tð Þ un tð Þg un tð Þð Þ − μG un tð Þð Þð Þdt,

ð51Þ

which implies that fung is bounded, and similar to the last
part of Lemma 8, we get that ϕwðuÞ satisfies the (PS)
condition.

Let ρ = ΓðαÞð2α − 1Þ1/2δ/Ta−ð1/2Þ and choose u ∈ Eα with
kuk = ρ, then kuk∞ ≤ δ. From (43), (6), and (49), we have

ϕw uð Þ = 1
2

ðT
0

0D
α
t u tð Þj j2 + tD

α
Tu tð Þj j2dt −

ðT
0
a tð ÞG u tð Þð Þdt

− λ
ðT
0

0D
α
t w tð Þj j2u tð Þdt ≥ 1

2 1 + cos παj j2� �
uk k2α

−
Γ αð Þ2 2α − 1ð Þ 1 + cos παj j2� �

4T2α−1 uk k2∞ − λ wk k2α uk k∞

≥
1
4 1 + cos παj j2� �

uk k2α −
λTα− 1/2ð ÞR2

1
Γ αð Þ 2α − 1ð Þ1/2 uk kα

= 1
4 1 + cos παj j2� �

ρ −
λTα− 1/2ð ÞR2

1
Γ αð Þ 2α − 1ð Þ1/2

 !
ρ

≥
1
8 1 + cos παj j2� �

ρ2:

ð52Þ

Then, we obtain that there exists β > 0 such that for
kukα = ρ, ϕwðuÞ ≥ β uniformly for w ∈ Eα with kwkα ≤ R1.

Let v ∈ Eα with kνk = 1, then

ϕw rvð Þ ≤ r2

2 1 + 1
cos παj j2

� �
− c1r

μ
ðT
0
a tð Þ vj jμdt

+ λr
ðT
0

0D
α
t w tð Þj j2vdt + c2

ðT
0
a tð Þdt

≤
r2

2 1 + 1
cos παj j2

� �
− c1r

μ
ðT
0
a tð Þ vj jμdt

+ rλR2
1T

α− 1/2ð Þ

Γ αð Þ 2α − 1ð Þ1/2 vk kα

+ c2

ðT
0
a tð Þdt⟶ −∞ as r⟶∞,

ð53Þ

which implies there exists r0 > ρ such that ϕwðr0νÞ < 0:
Then, from the Mountain Pass theorem, we get that ϕw
has a nontrivial weak solution uw which can be character-
ized as

ϕw′ uwð Þ = 0, ϕw uwð Þ = inf max
η∈Γu∈η 0,1½ �ð Þ

ϕw uð Þ, ð54Þ

where Γ = fη ∈ Cð½0, 1�, EαÞjηð0Þ = 0, ηð1Þ = r0vg.
Let u1 = 0, we can obtain that ϕu1 has a nontrivial critical

point u2. For n = 1, 2,⋯, we construct a sequence fung,
where un is the critical point of ϕun−1 . Now, we assume that

kun−1kα ≤ R1; by the mathematical induction, we will prove
that kunkα ≤ R1. In fact, by (54), we have
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ϕun−1 unð Þ ≤ max
r∈ 0,r0ð Þ

ϕun−1 rvð Þ ≤ 1 + 1
cos παj j2

� �
r2

−
ðT
0
a tð Þ c1r

μ vj jμ − c2ð Þdt + λr
ðT
0

0D
α
t un−1 tð Þj j2v tð Þdt

≤ 1 + 1
cos παj j2

� �
r2 − c1r

μ
ðT
0
a tð Þ vj jμdt

+ λrTα− 1/2ð Þ

Γ αð Þ 2α − 1ð Þ1/2
un−1k k2α + c2

ðT
0
a tð Þdt

≤ 1 + 1
cos παj j2

� �
r2 − c1r

μ
ðT
0
a tð Þ vj jμdt

+ λrTα− 1/2ð ÞR2
1

Γ αð Þ 2α − 1ð Þ1/2 + c2

ðT
0
a tð Þdt

≤ 1 + 1
cos παj j2

� �
r2 − c1r

μ
ðT
0
a tð Þ vj jμdt

+ rΓ αð Þ 2α − 1ð Þ1/2δ 1 + cos παj j2� �
4Tα− 1/2ð Þ

+ c2

ðT
0
a tð Þdt ≤M,

ð55Þ

where M is given in (47).
Hence,

M ≥ ϕun−1 unð Þ = 1
2

ðT
0

0D
α
t un tð Þj j2 + tD

α
Tun tð Þj j2dt

−
ðT
0
a tð ÞG un tð Þð Þdt − λ

ðT
0

0D
α
t un−1 tð Þj j2un tð Þdt

≥
1
2

ðT
0

0D
α
t un tð Þj j2 + tD

α
Tun tð Þj j2dt

−
1
μ

ðT
0
a tð Þg un tð Þð Þun tð Þdt − λ

ðT
0

0D
α
t un−1 tð Þj j2un tð Þdt

−
ðT
0
a tð Þdt max

xj j≤R
G xð Þ − 1

μ
g xð Þ

� �

= 1
2 −

1
μ

� �ðT
0

0D
α
t un tð Þj j2 + tD

α
Tun tð Þj j2dt

+ 1
μ
ϕun−1
′ unð Þun − λ 1 − 1

μ

� �ðT
0

0D
α
t un−1 tð Þj j2un tð Þdt

−
ðT
0
a tð Þdt max

xj j≤R
G xð Þ − 1

μ
g xð Þ

� �

≥
1
2 −

1
μ

� �
1 + cos παj j2� �

unk k2α

− λ 1 − 1
μ

� �ðT
0

0D
α
t un−1 tð Þj j2un tð Þdt

−
ðT
0
a tð Þdt max

xj j≤R
G xð Þ − 1

μ
g xð Þ

� �
:

ð56Þ

So,

1
2 −

1
μ

� �
1 + cos παj j2� �

unk k2α ≤M

+ λ 1 − 1
μ

� �ðT
0

0D
α
t un−1 tð Þj j2un tð Þdt

+
ðT
0
a tð Þdt max

xj j≤R
G xð Þ − 1

μ
g xð Þ

� �
≤M1

+ 1 − 1
μ

� �
λTα− 1/2ð Þ

Γ αð Þ 2α − 1ð Þ1/2 un−1k k2α unk kα ≤M1

+ λ μ − 1ð ÞTα− 1/2ð Þ

Γ αð Þ 2α − 1ð Þ1/2μ ε unk k2α +
R2
1

4ε un−1k k2α
� �

:

ð57Þ

By (49), we obtain

μ − 2ð Þ 1 + cos παj j2� �
2μ −

λε μ − 1ð ÞTα− 1/2ð Þ

Γ αð Þ 2α − 1ð Þ1/2μ

 !
unk k2α

≤
λR2

1 μ − 1ð ÞTα− 1/2ð Þ

4εΓ αð Þ 2α − 1ð Þ1/2μ un−1k k2α +M1

≤
μ − 1ð ÞΓ αð Þ 2α − 1ð Þ1/2δ 1 + cos παj j2� �

32Tα− 1/2ð Þμε
un−1k k2α +M1:

ð58Þ

That is

a − bεð Þ unk k2α ≤
d
ε

un−1k k2α +M1: ð59Þ

When ε ∈ ðε1, ε2Þ, where ε1 and ε2 are given in (45), we
have

d
ε
< a − bε: ð60Þ

Then,

unk k2α ≤
d/ε

a − bε
un−1k k2α +

M1
a − bε

≤
d/ε

a − bε

� �n−1
u1k k2α +

M1
a − bε

〠
n−2

k=0

d/ε
a − bε

� �k

≤ u1k k2α +
M1ε

aε − bε2 − d
:

ð61Þ

Therefore, the above argument implies that kunkα ≤ R1.
Finally, we show that fung is convergent to a nontrivial

solution of (3).
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Since kunkα ≤ R1, we have kunk∞ ≤ R2, then by ðH3′Þ, we
obtain

1 + cos παj j2� �
un+1 − unk k2α ≤

ðT
0

0D
α
t un+1 − un tð Þð Þj j2

+ tD
α
T un+1 − un tð Þð Þj j2dt

= ϕun
′ un+1ð Þ − ϕun−1

′ unð Þ
� �

un+1 − un tð Þð Þ

+
ðT
0
a tð Þ f unð Þ − f un+1ð Þð Þ un+1 − unð Þdt

+ λ
ðT
0

0D
α
t un tð Þj j2 − 0D

α
t un−1j j2

� �
un+1 − un tð Þð Þdt

≤ LR2
un+1 − unk k2∞

ðT
0
a tð Þdt

+ λ
ðT
0
0D

α
t un tð Þ0Dα

t un − un−1ð Þdt un+1 − unk k∞

+ λ
ðT
0
0D

α
t un−1 tð Þ0Dα

t un − un−1ð Þdt un+1 − unk k∞

≤ LR2
un+1 − unk k2∞

ðT
0
a tð Þdt + λ unk kα un − un−1k kα un+1 − unk k∞

+ λ un−1k kα un − un−1k kα un+1 − unk k∞
≤
T2α−1LR2

Ð T
0 a tð Þdt

Γ αð Þð Þ2 2α − 1ð Þ un+1 − unk k2α

+ 2λR1T
α− 1/2ð Þ

Γ αð Þ 2α − 1ð Þ1/2 un − un−1k kα un+1 − unk kα:

ð62Þ

So

1 + cos παj j2 − T2α−1LR2

Ð T
0 a tð Þdt

Γ αð Þð Þ2 2α − 1ð Þ

 !
un+1 − unk kα

≤
2λR1T

α− 1/2ð Þ

Γ αð Þ 2α − 1ð Þ1/2 un − un−1k kα:
ð63Þ

From (50), we know that fung is a Cauchy sequence in
Eα and u is a weak solution of (3). Since ϕun−1ðunÞ > β > 0
for n = 1, 2,⋯ and β does not depend on n, we obtain
that u is a nontrivial weak solution of (3).

Corollary 12. Suppose ðH1′Þ-ðH3′Þ hold; if the right-hand side
of (50) is greater than 0, then there exists a constant λ0 > 0,
such that (1) has a solution when λ ∈ ð0, λ0Þ.
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