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In this paper, we study the existence of positive solutions of the following second-order semipositone system (see equation 1).
By applying a well-known fixed-point theorem, we prove that the problem admits at least one positive solution, if f is
bounded below.

1. Introduction

This paper is focused on the existence of positive solutions of
a second-order semipositone system

−u″ + ρu = ϕu + f t, u, ϕð Þ, t ∈ 0, 1ð Þ,
−ϕ″ = μu, t ∈ 0, 1ð Þ,
u 0ð Þ = u 1ð Þ = ϕ 0ð Þ = ϕ 1ð Þ = 0,

8>><
>>: ð1Þ

where μ is a positive constant and f satisfies the following
assumption: ðF0Þf : ½0, 1� ×ℝ2

+ ⟶ℝ is continuous, and

f t, u, ϕð Þ ≥ −e tð Þ, for t, u, ϕð Þ ∈ 0, 1½ � ×ℝ2
+, ð2Þ

where e : ½0, 1�⟶ℝ+ is continuous and eðtÞ ≢ 0 on [0,1].

The second-order elliptic systems

−Δu + ρu = ϕu + f uð Þ, x ∈Ω,
−Δϕ = μu, x ∈Ω,
u = ϕ = 0, x ∈ ∂Ω,

8>><
>>: ð3Þ

have a strong physical meaning in quantum mechanics
models [1, 2], in semiconductor theory [3], or in a time-
and space-dependent mathematical model of nuclear reac-
tors in a closed container [4]. To the best of our knowledge,
existence and multiplicity of nontrivial solutions of BVP(1)
have been widely studied by using the variational method
[5], bifurcation techniques [6, 7], or fixed-point theorems
[8–11]. In general, in order to ensure the positivity of the
solutions of Equation (1), one of the crucial assumptions is
that the nonlinearity f is nonnegative. Of course, the natural
question is whether Equation (1) has a positive solution or
not if f satisfies the assumption ðF0Þ.
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On the other hand, many authors have been interested in
finding the relations between the positivity of solutions and
the changing sign of the nonlinearity in order to prove the
existence of the positive solutions. We refer the readers to
[12–16] and the references.

Inspired by these references, the purpose of this paper is
to find some new conditions, which are used to study the
existence and multiplicity of positive solutions of the semipo-
sitone Equation (1). The main tool is the following well-
known fixed-point theorem.

Lemma 1 [17]. Let E be a Banach space and K be a cone in E.
Assume Ωr and ΩR are open bounded subsets of E with Ωr

∩ K ≠ ϕ,Ωr ∩ K ⊂ΩR ∩ K . Let T : ΩR ∩ K ⟶ K be a
completely continuous operator such that

(a) kTuk ≤ kuk, for u ∈ ∂ðΩr ∩ KÞ, and
(b) there exists a ηðtÞ ∈ K\f0g such that

u ≠ Tu + λη tð Þ, for u ∈ ∂ ΩR ∩ Kð Þ, λ > 0: ð4Þ

Then, T has a fixed point in ΩR ∩ K\Ωr ∩ K . The same
conclusion remains valid if (a) holds on ∂ðΩR ∩ KÞ and (b)
holds on ∂ðΩr ∩ KÞ.

The paper is organized as follows: in Section 2, we give
some preliminaries, which are about the properties of the
Green functions, the notations of some sets, etc.; in Section
3, we give the main results and the corresponding proof. In
Section 4, some examples are given to illustrate the main
results.

2. Preliminary

Let Gðt, sÞ be the Green function of linear boundary value
problem

−u″ + ρu = 0, u 0ð Þ = u 1ð Þ = 0, ð5Þ

where ρ > −π2.

Lemma 2 [18]. Let ω =
ffiffiffiffiffiffijρjp

, then Gðt, sÞ can be expressed by

(i) Gðt, sÞ =
sinh ωt sinh ωð1 − sÞ/ω sinh ω, 0 ≤ t ≤ s ≤ 1,

n
sinh ωs sinh ωð1 − tÞ/ω sinh ω,0 ≤ s ≤ t ≤ 1, if ρ > 0

(ii) Gðt, sÞ = tð1 − sÞ, 0 ≤ t ≤ s ≤ 1,
sð1 − tÞ, 0 ≤ s ≤ t ≤ 1, if ρ = 0

(

(iii) Gðt, sÞ = sin ωt sin ωð1 − sÞ/ω sin ω,f 0 ≤ t ≤ s ≤ 1,
sin ωs sin ωð1 − tÞ/ω sin ω,0 ≤ s ≤ t ≤ 1, if − π2 < ρ
> 0.

Lemma 3 [18]. The function Gðt, sÞ has the following
properties:

(i) Gðt, sÞ > 0, ∀t, s ∈ ð0, 1Þ
(ii) Gðt, sÞ ≤ CGðs, sÞ, ∀t, s ∈ ½0, 1�
(iii) Gðt, sÞ ≥ δGðt, tÞGðs, sÞ, ∀t, s ∈ ½0, 1�

where C = 1, δ = ω/sinh ω, if ρ > 0; C = 1, δ = 1, if ρ = 0; and
C = 1/sin ω, δ = ω sin ω, if −π2 < ρ < 0.

Lemma 4. For the function Gðt, sÞ, there exists a ξ > 0 such
that

G t, tð Þ ≥ ξ
ð1
0
G t, sð Þds: ð6Þ

Proof.

(i) For ρ > 0, we haveð1
0
G t, sð Þds = 1

ω2 sinh w
sinh ωt cosh ω 1 − tð Þ − 1½ � + sinh ω 1 − tð Þ cosh ωt − 1½ �f g:

ð7Þ
Let

J1 tð Þ =
cosh ω 1 − tð Þ − 1
sinh ω 1 − tð Þ , 0 ≤ t < 1,

0, t = 1,

8><
>:

J2 tð Þ =
cosh ωt − 1
sinh ωt

, 0 < t ≤ 1,

0, t = 0:

8<
:

ð8Þ

Since J1ðtÞ is positive and continuous on [0,1] and J1
ð1Þ = 0, we have

J∗1 = max
t∈ 0,1½ �

J1 tð Þ > 0: ð9Þ

In the similar way, we also have

J∗2 = max
t∈ 0,1½ �

J2 tð Þ > 0: ð10Þ

Choosing ξ < ω/ðJ∗1 + J∗2 Þ. Then, for any t ∈ ð0, 1Þ, we
have

ξ
ð1
0
G t, sð Þds = ξ

1
ω2 sinh w

sinh ωt cosh ω 1 − tð Þ − 1½ �f
+ sinh ω 1 − tð Þ cosh ωt − 1½ �g

= ξ
1

ω2 sinh w
sinh ωt sinh ω 1 − tð Þ cosh ω 1 − tð Þ − 1

sinh ω 1 − tð Þ
�

+ sinh ωt sinh ω 1 − tð Þ cosh ωt − 1
sinh ωt

�

= ξ

ω

1
ω sinh w

sinh ωt sinh ω 1 − tð ÞJ∗1f
+ sinh ωt sinh ω 1 − tð ÞJ∗2g

= ξ J∗1 + J∗2ð Þ
ω

G t, tð Þ ≤G t, tð Þ:
ð11Þ
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Since Gð0, 0Þ = Ð 1
0Gð0, sÞds = Gð1, 1Þ = Ð 1

0Gð1, sÞds = 0,
then for any ξ > 0, we have

G t, tð Þ = ξ
ð1
0
G t, sð Þds, for t = 0, 1: ð12Þ

Therefore, there exists a ξ > 0 such that

G t, tð Þ ≥ ξ
ð1
0
G t, sð Þds: ð13Þ

(ii) For ρ = 0, it is obvious that

ð1
0
G t, sð Þds = 1

2 t
2 1 − tð Þ + 1

2 t 1 − tð Þ2 ≤ t 1 − tð Þ2 =G t, tð Þ:

ð14Þ

(iii) For −π2 < ρ < 0, we have

ð1
0
G t, sð Þds = 1

ω2 sin w
sin ωt 1 − cos ω 1 − tð Þ½ �f

+ sinh ω 1 − tð Þ 1 − cos ωt½ �g:
ð15Þ

Using the similar discussion of Case (i), it follows that
there exists a ξ > 0 such that

G t, tð Þ ≥ ξ
ð1
0
G t, sð Þds: ð16Þ

For convenience, let Kðt, sÞ denote the Green function for
ρ = 0. Then, Equation (1) can be rewritten as

−u″ + ρu = μu
ð1
0
K t, sð Þu sð Þds + f t, u

ð1
0
K t, sð Þu sð Þds

� �
,

u 0ð Þ = u 1ð Þ = 0:

8><
>:

ð17Þ

Furthermore, let x = u + ω, where ωðtÞ = Ð 1
0Gðt, sÞeðsÞds

is the unique solution of the linear boundary value problem

−u″ + ρu = e tð Þ,
u 0ð Þ = u 1ð Þ = 0:

(
ð18Þ

Then, we rewrite (17) as

−x″ + ρx = F t, x − ωð Þ,
x 0ð Þ = x 1ð Þ = 0,

(
ð19Þ

where

F t, x − λωð Þ = μ x − ωð Þ
ð1
0
K t, sð Þ x sð Þ − ω sð Þ½ �ds

+ f t, x − ω,
ð1
0
K t, sð Þ x sð Þ − ω sð Þ½ �ds

� �
+ e tð Þ

� �
:

ð20Þ

From the above discussion, then we have the following
lemma.

Lemma 5. Assume that ðF0Þ holds. Then, uðtÞ is a positive
solution of (1) if only if xðtÞ is a positive solution of the follow-
ing problem:

−x″ + ρx = F t,H x − ωð Þ x − ωð Þð Þ, ð21Þ

with xðtÞ ≥ ωðtÞ. Here, HðtÞ denotes the Heaviside function of
a single real variable:

H tð Þ =
1, t ≥ 0,
0, t < 0:

(
ð22Þ

Let E denote the Banach space C½0, 1� with the norm kxk
=maxt∈½0,1�jxðtÞj.

Define a cone K ⊂ E by

K = x tð Þ ∈ C 0, 1½ �: min
t∈ θ,1−θ½ �

x tð Þ ≥ σ xk k
� �

, ð23Þ

where θ ∈ ð0, 1/2Þ, σ =mint∈½θ,1−θ�ðσ/CÞGðt, tÞ ∈ ð0, 1Þ. Define
an operator T by

T xð Þ tð Þ =
ð1
0
G t, sð ÞF s,H x − ωð Þ x − ωð Þð Þds: ð24Þ

Lemma 6. Assume that (F0) holds. Then, TðKÞ ⊆ K , and
T : K ⟶ K is completely continuous.

Proof. For any xðtÞ ∈ K , from Lemma 3, it follows that

T xð Þ tð Þ =
ð1
0
G t, sð ÞF s,H x − ωð Þ x − ωð Þð Þds

≥ δ
ð1
0
G t, tð ÞG s, sð ÞF s,H x − ωð Þ x − ωð Þð Þds

= δ

C
G t, tð Þ

ð1
0
CG s, sð ÞF s,H x − ωð Þ x − ωð Þð Þds

≥
δ

C
G t, tð Þ

ð1
0
G t, sð ÞF s,H x − ωð Þ x − ωð Þð Þds,

ð25Þ

which implies that TðKÞ ⊆ K .
Now, we show that T : K ⟶ K is completely

continuous.
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First, we show that T maps the bounded set into itself.
Since e and f are continuous, for any given c > 0, let

L =max F t,H x − ωð Þ x − ωð Þð Þ: 0 ≤ t ≤ 1, 0 ≤ x ≤ cf g: ð26Þ

Then, for x ∈ �Kc, we have

T xð Þ tð Þj j∞ =
ð1
0
G t, sð ÞF s,H x − ωð Þ x − ωð Þð Þds

����
����
∞
≤ L max

0≤t,s≤1
G t, sð Þ,

ð27Þ

which implies that Tð�KcÞ is uniformly bounded.
Second, for t1, t2 ∈ ½0, 1�, we have

Tx t2ð Þ − Tx t1ð Þj j =
ð1
0
G t2, sð Þ −G t1, sð Þ½ �F s,H x − ωð Þ x − ωð Þð Þds

����
����

=
ð1
0
Gi t2, sð Þ −Gi t1, sð Þ½ �~f i s, u sð Þ − ω sð Þð Þds

����
����

≤ L max
0≤t,s≤1

∂G t, sð Þ
∂t

t2 − t1k
����

����,
ð28Þ

which implies that the operator T is equicontinuous.
Thus, by applying the Arzela-Ascoli theorem [17], we

obtain that TðKcÞ is relatively compact, namely, the operator
T is compact.

Finally, we claim that T : Kc ⟶ K is continuous.
Assume that fxng∞n=1 ⊂ Kc which converges to xðtÞ uniformly
on [0,1]. By Lebesgue’s dominated convergence theorem and
letting n⟶∞, we have

Txn tð Þ − Tx tð Þk k

=
ð1
0
G t, sð Þ F s,H xn − ωð Þ xn − ωð Þð Þ½

����
− F s,H xn − ωð Þ xn − ωð Þð Þ�ds

����
≤ C

ð1
0
G s, sð Þ F s,H xn − ωð Þ xn − ωð Þð Þ½

− F s,H x − ωð Þ x − ωð Þð Þ�ds⟶ 0, as n⟶ +∞:

ð29Þ

So, T is continuous on Kc. The proof is completed.
At the end of this section, let

e∗ = max
t∈ 0,1½ �

e tð Þ > 0, ω∗ = max
t∈ 0,1½ �

ω tð Þ: ð30Þ

Define the height functions

Φ∗ rð Þ =min f t, u, ϕð Þ: t, u, ϕð Þ ∈ 0, 1½ � × 0, r½ � × 0, r6
h in o

,

Φ∗ t, rð Þ =max f t, u, ϕð Þ: u, ϕð Þ ∈ 0, r½ � × 0, r6
h in o

:

ð31Þ

In addition, we need to select some suitable open
bounded sets. For any γ > 0, let

Ωγ = x ∈ E : min
t∈ θ,1−θ½ �

x tð Þ < σγ

� �
, Bγ = x ∈ E : xk k < γf g,

Ω
γ
K =Ωγ ∩ K , ∂Ωγ

K = ∂Ωγ ∩ K ,

Bγ
K = Bγ ∩ K , ∂Bγ

K = ∂Bγ ∩ K:

ð32Þ

From [19, 20], we can conclude the lemma below.

Lemma 7.

(i) Ωγ
K , B

γ
K are open relative to K

(ii) Bσγ
K ⊂Ω

γ
K ⊂ Bγ

K

(iii) x ∈ ∂Ωγ
K if and only if min

½θ,1−θ�
xðtÞ = σγ

(iv) If x ∈ ∂Ωγ
K , then σγ ≤ xðtÞ ≤ γ, for t ∈ ½θ, 1 − θ�

3. Main Results

Theorem 8. Assume that (F0) holds. In addition, the function
f satisfies the following assumption:

(F1) There exists a α > 0 such that Φ∗ðαÞ ≥ 0 and

μ
α2

6
C
ð1
0
G s, sð Þds + C

ð1
0
G s, sð Þe sð Þds + C

ð1
0
G s, sð ÞΦ∗ s, αð Þds < α:

ð33Þ

Then, we have

(i) If σα > ω∗, then (1) has at least one partly positive
solution ðu, ϕÞ, namely,

u tð Þ > 0, for t ∈ θ, 1 − θ½ � ð34Þ

(ii) If αδξ > Ce∗, then (1) has at least one positive solution
ðu, ϕÞ, which satisfies

u tð Þ > 0, for t ∈ 0, 1½ � ð35Þ

Proof. For any x ∈ ∂Bα
K , it is obvious that

H x − ωð Þ x − ωð Þ ≤ xk k = α,ð1
0
K t, sð ÞH x − ωð Þ x sð Þ − ω sð Þ½ �ds

≤
ð1
0
K s, sð ÞH x − ωð Þ x sð Þ − ω sð Þ½ �ds ≤ 1

6 α:

ð36Þ
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Then, from (F1) it follows that

T xð Þ tð Þ =
ð1
0
G t, sð ÞF s,H x − ωð Þ x − ωð Þð Þds

= μ
ð1
0
G t, sð Þ H x − ωð Þ x − ωð Þ

ð1
0
K s, τð ÞH x − ωð Þ

	

� x τð Þ − ω τð Þ½ �dτ


ds +

ð1
0
G t, sð Þ f s,H x − ωð Þð½

� x − ωð Þ
ð1
0
K s, τð ÞH x − ωð Þ x τð Þ − ω τð Þ½ �dτÞ

+ e sð Þ


ds ≤ μ

α2

6 C
ð1
0
G s, sð Þds + C

ð1
0
G s, sð Þe sð Þds

+ C
ð1
0
G s, sð Þf s,H x − ωð Þ x − ωð Þ,ðð1

0
K s, τð ÞH x − ωð Þ x τð Þ − ω τð Þ½ �dτÞds

≤ μ
α2

6 C
ð1
0
G s, sð Þds + C

ð1
0
G s, sð Þe sð Þds

+ C
ð1
0
G s, sð ÞΦ∗ s, αð Þds < α = xk k,

ð37Þ

which implies that (a) of Lemma 1 holds.
Let

Ψ ρð Þ = max
0≤x≤ρ

H x − ωð Þ x − ωð Þ ⋅
ð1−θ
θ

K τ, τð ÞH x − ωð Þ x τð Þ − ω τð Þ½ �dτ
� �

:

ð38Þ

From [21], we have that

lim
ρ→+∞

Ψ ρð Þ
ρ

= +∞: ð39Þ

Then, there exists a β > with σβ > α such that

H σβ − ωð Þ σβ − ωð Þ ⋅
ð1−θ
θ

K τ, τð ÞH σβ − ωð Þ σβ − ω τð Þ½ �dτ >Λβ,

ð40Þ

where Λ satisfies

ΛμσC
ð1−θ
θ

G s, sð ÞK s, sð Þds > 1: ð41Þ

Let ηðtÞ = 1; now we prove that x ≠ Tx + λ, for x ∈ ∂Ωβ
K

and λ > 0. On the contrary, if there exists a pair of x0 ∈ ∂Ω
β
K

and λ0 > 0 such that x0ðtÞ = Tðx0ÞðtÞ + λ0, then from (iv) of
Lemma 7, it follows that

σβ = σ x0k k ≤ x0 tð Þ ≤ β, for t ∈ θ, 1 − θ½ �: ð42Þ

Furthermore, for t ∈ ½θ, 1 − θ�, we have

x0k k ≥ min
θ≤t≤1−θ

x0 tð Þ = min
θ≤t≤1−θ

Tx0 tð Þ + λ0

= min
θ≤t≤1−θ

μ
ð1
0
G t, sð ÞH x0 − ωð Þ x0 − ωð Þ

ð1
0
K s, τð ÞH x − ωð Þ

� x τð Þ − ω τð Þ½ �dτds + min
θ≤t≤1−θ

ð1
0
G t, sð Þ

� f s,H x0 − ωð Þ x − ωð Þ,
ð1
0
K s, τð ÞH x0 − ωð Þ

�	

� x τð Þ − ω τð Þ½ �dτ
�
+ e sð Þ



ds + λ0

≥ min
θ≤t≤1−θ

μ
ð1
0
G t, sð Þ H x0 − ωð Þ x0 − ωð Þ

ð1
0
K s, τð ÞH

	

� x − ωð Þ x τð Þ − ω τð Þ½ �dτ


ds ≥ min

θ≤t≤1−θ
μδG t, tð Þ

�
ð1
0
G s, sð Þ H x0 − ωð Þ x0 − ωð Þ

ð1
0
K s, τð ÞH x − ωð Þ

	

� x τð Þ − ω τð Þ½ �dτ


ds ≥ μσC

ð1
0
G s, sð Þ

� H x0 − ωð Þ x0 − ωð Þ
ð1
0
K s, sð ÞK τ, τð ÞH x − ωð Þ

	

� x τð Þ − ω τð Þ½ �dτ


ds = μσC

ð1
0
G s, sð ÞK s, sð Þ

� H x0 − ωð Þ x0 − ωð Þ
ð1
0
K τ, τð ÞH x − ωð Þ x τð Þ − ω τð Þ½ �dτ

	 

ds

= μσC
ð1
0
G s, sð ÞK s, sð Þ H x0 − ωð Þ x0 − ωð Þ

ð1−θ
0

K τ, τð ÞH x − ωð Þ
	

� x τð Þ − ω τð Þ½ �dτ�ds = μσC
ð1
0
G s, sð ÞK s, sð Þ

� H σ x0k k − ωð Þ σ x0k k − ωð Þ
ð1−θ
θ

K τ, τð ÞH σ x0k k − ωð Þ
	

� σ x0k k − ω τð Þ½ �dτ


ds ≥ μσC

ð1
0
G s, sð ÞK s, sð Þds ⋅Λβ > β = x0k k,

ð43Þ

which contradicts with the statement (iii) of Lemma 7. So (b)
holds.

Since α < σβ, from Lemma 7, we have Bα
K ⊂ Bσβ

K ⊂Ω
β
K .

Therefore, by Lemma 1, we can get that T has at least one

positive fixed-point xðtÞ ∈Ωβ
K \ Bα

K . Hence, the inequalities
hold,

xk k ≥ α, σα ≤ min
t∈ θ,1−θ½ �

x tð Þ ≤ σβ: ð44Þ

On the other hand, since σkxk ≤ min
t∈½θ,1−θ�

xðtÞ ≤ σβ, we

have kxk ≤ β.

(i) Since

min
t∈ θ,1−θ½ �

x tð Þ ≥ σα > ω∗ > ω tð Þ =
ð1
0
G t, sð Þe sð Þds, ð45Þ
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we have

u tð Þ = x tð Þ − ω tð Þ > 0, t ∈ θ, 1 − θ½ � ð46Þ

(ii) From Lemmas 3 and 4, we have

x tð Þ ≥ δ

C
G t, tð Þ tk k = δ

C
G t, tð Þα ≥ α

δ

Ce∗
ξe∗

ð1
0
G t, sð Þds

≥ α
δ

Ce∗
ξ
ð1
0
G t, sð Þe sð Þds = α

δ

Ce∗
ξ ⋅ ω tð Þ > ω tð Þ,

ð47Þ

which implies that uðtÞ = xðtÞ − ωðtÞ > 0

Therefore, (1) has one positive solution ðu, ϕÞ = ðu, Ð 10K
ðt, sÞuðsÞdsÞ.

Theorem 9. Assume that (F0) holds. In addition, the function
f satisfies the following assumptions:

(F2) There exists a α >max fω∗/σ, Ce∗/δξg such that Φ∗
ðαÞ ≤ 0 and

μ
α2

6
C
ð1
0
G s, sð Þds + C

ð1
0
G s, sð Þe sð Þds + C

ð1
0
G s, sð ÞΦ∗ s, αð Þds < α:

ð48Þ

(F3) There exists a r∗ ∈ ð0, σα − ω∗Þ such that

μ
r∗

2

6
C
ð1
0
G s, sð Þds + C

ð1
0
G s, sð Þe sð Þds

+ C
ð1
0
G s, sð ÞΦ∗ s, r∗ð Þds < r∗:

ð49Þ

(F4) limu+ϕ→0+ð f ðt, u, ϕÞ/ðu + ϕÞÞ = +∞, uniformly for t
∈ ½0, 1�.

Then, (1) has at least two positive solutionðui, ϕiÞ ði = 1, 2Þ,
which satisfies

0 ≤ u1 tð Þ < r∗, min
t∈ θ,1−θ½ �

u2 tð Þ > σα − ω∗: ð50Þ

Proof. From (F2) and Theorem 8, it follows that there exists a
solution u2ðtÞ ≥ 0 and

min
t∈ θ,1−θ½ �

u2 tð Þ > σα − ω∗: ð51Þ

Now, we apply Lemma 1 to prove the existence of another
solution u1ðtÞ.

Since r∗ < σα − ω∗ < α and Φ∗ðαÞ, then we can define the
operator

�T uð Þ tð Þ =
ð1
0
G t, sð ÞF s, u sð Þð Þds: ð52Þ

For any u ∈ ∂Br∗
K , it is obvious that

ð1
0
K t, sð Þu sð Þds ≤

ð1
0
K s, sð Þu sð Þds ≤ 1

6 r
∗: ð53Þ

Then, we have

�T uð Þ tð Þ =
ð1
0
G t, sð ÞF s, u sð Þð Þds

≤ μ
r∗

2

6 C
ð1
0
G s, sð Þds + C

ð1
0
G s, sð Þe sð Þds + C

ð1
0
G s, sð Þf

� s,H x − ωð Þ x − ωð Þ,
ð1
0
K s, τð ÞH x − ωð Þ x τð Þ − ω τð Þ½ �dτ

� �
ds

≤ μ
r∗

2

6 C
ð1
0
G s, sð Þds + C

ð1
0
G s, sð Þe sð Þds

+ C
ð1
0
G s, sð ÞΦ∗ s, r∗ð Þds < r∗ = uk k,

ð54Þ

which implies that (a) of Lemma 1 holds.
Since limu+ϕ→0+ð f ðt, u, ϕÞ/ðu + ϕÞÞ = +∞, uniformly for

t ∈ ½0, 1�, there exists a r∗ < r∗ such that

f t, u, ϕð Þ >M u + ϕð Þ, for 0 < u + ϕ ≤ r∗, ð55Þ

where M satisfies

Mδσ ⋅max
0≤t≤1

G t, tð Þ ⋅
ð1−θ
θ

G s, sð Þ 1 +
ð1−θ
θ

K s, τð Þdτ
	 


ds > 1:

ð56Þ

Let ηðtÞ = 1, now we prove that u ≠ �Tu + λ, for u ∈ ∂
Ωr∗/2

K and λ > 0. On the contrary, if there exists a pair of u0
∈ ∂Ωr∗/2

K and λ0 > 0 such that u0ðtÞ = �Tðu0ÞðtÞ + λ0, then
from (iv) of Lemma 7, it follows that

u0 tð Þ ≤ r∗
2 , ϕ0 tð Þ =

ð1
0
K t, sð Þu0 sð Þds < r∗

12 : ð57Þ

Furthermore, we have

u0k k = ~T u0ð Þ tð Þ
��� ��� + λ0 ≥

ð1
0
G t, sð Þf s, u sð Þ,

ð1
0
K s, τð Þu τð Þdτ

� �
ds

����
����

≥ δ max
0≤t≤1

G t, tð Þ
ð1
0
G s, sð Þf s, u sð Þ,

ð1
0
K s, τð Þu τð Þdτ

� �
ds

≥ δ max
0≤t≤1

G t, tð Þ
ð1
0
G s, sð ÞM u, sð Þ +

ð1
0
K s, τð Þu τð Þdτ

	 

ds

≥ δ max
0≤t≤1

G t, tð Þ
ð1−θ
0

G s, sð ÞM u, sð Þ +
ð1−θ
0

K s, τð Þu τð Þdτ
	 


ds

≥Mδσ ⋅max
0≤t≤1

G t, tð Þ ⋅
ð1−θ
0

G s, sð Þ 1 +
ð1−θ
0

K s, τð Þdτ
	 


ds

⋅ u0k k > u0k k,
ð58Þ
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which contradicts with the statement (iii) of Lemma 7. So (b)
holds.

Therefore, from Lemma 1, we can get that ~T has at least one

positive fixed-point u1ðtÞ ∈Ωr∗
K \B

r∗/2
K . Hence, the inequalities

hold

u1k k ≥ r∗
2 , σ r∗2 ≤ min

t∈ θ,1−θ½ �
u1 tð Þ ≤ σr∗: ð59Þ

On the other hand, since σku1k ≤ min
t∈½θ,1−θ�

u1ðtÞ ≤ σr∗, we

have ku1k ≤ r∗.
Finally, since

min
t∈ θ,1−θ½ �

u2 tð Þ ≤ σα − ω∗ > r∗, u1k k ≤ r∗, ð60Þ

(1) has at least two positive solutions.

4. Examples

Example 10. Let us consider the following system:

−u″ + u = ϕu + 1
4 e

u + 1
4 cos πϕ −

1
4 t

20 < t < 1,

−ϕ″ = 1
4 u,

ϕ 0ð Þ = ϕ 1ð Þ = 0, ϕ″ 0ð Þ = ϕ″ 1ð Þ = 0,

8>>>>><
>>>>>:

ð61Þ

where μ = 1, ρ = 1, f : ½0, 1� ×ℝ2
+ ⟶ℝ is continuous, and

f = 1
4 eu + cos πϕ − t2
� �

≥ −
1
4 t

2 = −e tð Þ for t, u, ϕð Þ ∈ 0, 1½ � ×ℝ2
+:

ð62Þ

It is obvious that ðF0Þ holds. Via some computations, we
have

e∗ = 1
4 , C = 1, δ = 1

sinh 1 , J
∗
1 = J∗2 =

e1/2 − e− 1/2ð Þ

e1/2 + e− 1/2ð Þ < 1: ð63Þ

Choosing θ = 1/4 ∈ ð0, 1/2Þ, ξ = 1/2. Then, we have

σ = min
t∈ 1/4,3/4½ �

δ

C
G t, tð Þ = sinh 3/4ð Þ sinh 1/4ð Þ

sinh 1ð Þ2
,

ω∗ = sinh 1 − 2 sinh 1/2ð Þ
sinh 1 :

ð64Þ

Furthermore, we have

ω∗

σ
= sinh 1 − 2 sinh 1/2ð Þð Þ sinh 1

sinh 3/4ð Þ sinh 1/4ð Þ < 3,

Ce∗

δξ
< sin 1 J∗1 + J∗2ð Þ < 3:

ð65Þ

Choosing α = 3 >max fω∗/σ, Ce∗/δξg, r∗ = 3/10 ∈ ð0, σα
− ω∗Þ. Then,

Φ∗ 3ð Þ ≥ 0,Φ∗ t, 3ð Þ = 1
4 e3 + 1
� �

,

Φ∗
3
10

� �
≥ 0,Φ∗ t, 3

10

� �
= 1
4 e3/10 + 1
� �

:

ð66Þ

It is easy to get

μ
α2

6 C
ð1
0
G s, sð Þds + C

ð1
0
G s, sð Þe sð Þds + C

ð1
0
G s, sð ÞΦ∗ s, αð Þds

≤
3
2

e−1

2 sinh 1 + e−1

2 sinh 1 + e−1

2 sinh 1
1
4 e3 + 1
� �	 


≤ 3,

ð67Þ

μ
r∗ð Þ2
6 C

ð1
0
G s, sð Þds + C

ð1
0
G s, sð Þe sð Þds + C

ð1
0
G s, sð ÞΦ∗ s, r∗ð Þds

≤
3
200

e−1

2 sinh 1 + e−1

2 sinh 1 + e−1

2 sinh 1
1
4 e3/10 + 1
� �	 


≤
3
10 ,

ð68Þ

which implies that ðF2Þ and ðF3Þ hold.

Finally, it is obvious that

lim
u+ϕ→0+

f t, u, ϕð Þ
u + ϕ

= +∞, uniformly for t ∈ 0, 1½ �: ð69Þ

So ðF4Þ holds.
Therefore, by Theorem 9, (61) has two positive solutions.
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