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In this paper, we propose a fractional optimal control model of anti-HBV infection based on saturation incidence and logistic
proliferation of uninfected cells for the first time. We derive the basic reproduction number R0 and the cytotoxic T lymphocyte
immune response reproductive number R1 and give the stable analysis based on R0 and R1. We analyse the optimal control
condition and give two optimal control strategies about entecavir monotherapy and combination therapy of traditional Chinese
medicine and entecavir with different fractional orders by simulation. The simulation shows that combination therapy may be a
good choice in anti-HBV infection therapy. We also compare the objective function values of the optimal control strategies with
other constant control strategies; the comparison shows that the optimal therapy can get similar or better treatment effect with
less drug dose and side effects.

1. Introduction

Hepatitis B virus infection is a major global public health
problem. Based on the information published by the World
Health Organization on World Hepatitis Day 2019, hepati-
tis B is the second deadly epidemic, and the number of peo-
ple infected with the hepatitis virus is 9 times that of HIV
[1]. The prevalence of chronic hepatitis B has brought a
huge medical burden on society. At present, the most
widely used drugs for chronic hepatitis B are nucleot(s)ide
analogues (NUCs), such as tenofovir and entecavir, which
are used to inhibit viral DNA polymerase and reverse tran-
scriptase activity [2]. The combined therapy of NUCs plus
Chinese herbal medicine (CHM) is widely accepted in
China, which has been recognized as a prospective alterna-
tive approach [3, 4].

In order to better understand the transmission mecha-
nism of various infectious diseases, many mathematical
models were set up to enhance our understanding of the
dynamics of infectious diseases and chronic viral infections
[5–8]. Mathematic models are also used in the study of

anti-HBV infection treatment. The initial model of HBV
infection was proposed in 1996 by Zeuzem et al. [9]:

dx
dt

= λ − dx − βxv,

dy
dt

= βxv − ay,

dv
dt

= ky − μv,

8>>>>>>><
>>>>>>>:

ð1Þ

where xðtÞ, yðtÞ, and vðtÞ represent the concentration of
uninfected cells, infected cells, and viruses at time t,
respectively. Uninfected cells are assumed to be produced at
the constant rate λ, die at the rate of dx, and become infected
at the rate of βxv. Infected cells are thus produced at the rate
of βxv and die at the rate ay. Free virions are generated from
infected cells at the rate of ay and decay at the rate of μv.

The infection rate in model (1) is assumed to be linear
with respect to the virus. However, the basic reproduction
number of model (1) is given by R0 = ðβk/aμÞx̂, where x̂
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represents the number of total liver cells, which implies that
an individual with a larger liver will be more difficult to be
cured than a person with a smaller one. Paper [10] changed
βxv in (1) to βxv/ðx + vÞ and gave the following model:

dx
dt

= λ − dx −
βxv
x + v

,

dy
dt

= βxv
x + v

− ay,

dv
dt

= ky − μv:

8>>>>>>><
>>>>>>>:

ð2Þ

The reproductive numberR0 of (2) is βk/aμ which seems
more reasonable because it is no more dependent on the total
number of liver cells. On the other hand, when modelling
virus infection, the host’s immune response should not be
ignored; Nowak and Bangham [11] proposed the following
immune model:

dx
dt

= λ − dx − βxv,

dy
dt

= βxv − ay − pyz,

dv
dt

= ky − μv,

dz
dt

= cyz − bz,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3Þ

where z represents the number of CTL cells, cyz means the
activated rate of the immune cells, and pyz indicates the rate
at which infected liver cells are eliminated by CTL immune
cells. Then, Su et al. changed βxv into βxv/ðx + vÞ and gave
the model as follows [12]:

dx
dt

= λ − dx −
βxv
x + v

,

dy
dt

= βxv
x + v

− ay − pyz,

dv
dt

= ky − μv,

dz
dt

= cyz − bz:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4Þ

Perelson and Nelson [13] added logistic function in his
HIV model, that is dx/dt = λ − dx − pxð1 − ðx/xmaxÞÞ − βxv.
Based on paper [13], Song and Neumann proposed a HIV
viral infectionmodel with logistic function and saturatedmass
action incidence [14]. Then, Yu et al. gave a HBV model with
logistic function and standard mass action incidence [15]:

dx
dt

= λ − dx + px 1 − x
xmax

� �
−

βxv
x + y

,

dy
dt

= βxv
x + y

− ay,

dv
dt

= ky − μv:

8>>>>>>>><
>>>>>>>>:

ð5Þ

In recent years, more and more fractional order models
were used in the biological immune system, because the frac-
tional order model has thememory, while the characteristic of
the immune response contains the memory [16, 17]. So, when
we set the virus immune model, fractional mathematical
models have become an important choice. Many fractional
order HIV infection models were set up [18, 19].

So far, some fractional order models about HBV have
been set up [20–25]. Papers [20–22] considered the epidemic
transmission SEIR model of HBV. In paper [23], a within-
host fractional order HBV model was proposed:

Dαx = λ − dx − βxv + δy,
Dαy = βxv − a + δð Þy,
Dαv = ky − μv:

8>><
>>: ð6Þ

In this model, xðtÞ, yðtÞ, and vðtÞ have the same meaning
of (1); infected hepatocytes are cured by noncytolytic pro-
cesses at a constant rate δ per cell. But the model still used
the bilinear mass action incidence βxv. Paper [24] also con-
sidered the HBV models based on the bilinear mass action
incidence βxv. Paper [25] added δy to the first equation in
(4) and changed it to fractional order. The model is given
as follows:

Dαx = λ − dx −
βxv
x + v

+ δy,

Dαy = βxv
x + v

− ay − δy − pyz,

Dαv = ky − μv,
Dαz = cyz − bz:

8>>>>>>>><
>>>>>>>>:

ð7Þ

On the other hand, in the process of anti-HBV treatment,
we hope not only to lower the levels of HBV and the infected
hepatocytes during and at the end of therapy but also to min-
imize the therapeutic side effects and the cost of drugs, so it is
very important to use optimal control theory to study the
anti-HBV treatment model.

Paper [26] provided a control model, which uses the lin-
ear incidence. Here, uðtÞð0 ≤ uðtÞ ≤ 1Þmeans the control and
μð0 ≤ μ ≤ 1Þ is the efficacy of the antiviral drug:

dx
dt

= λ − dx − βxv,

dy
dt

= βxv − ay,

dv
dt

= 1 − μu tð Þ½ �y − cv:

8>>>>>>><
>>>>>>>:

ð8Þ

For the fractional order model, paper [27] gave the anal-
ysis of the control model. Here, xðtÞ, yðtÞ, and vðtÞ have the
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same meaning of (1) and u1 and u2 represent the drug effect
on HBV by interferon (IFN) and lamivudine (LAM):

Dαx =Π − δx − 1 − u1ð Þ βxv
1 + ax

+ py,

Dαy = 1 − u1ð Þ βxv
1 + ax

− b + pð Þy,
Dαv = cy − γv − u2v:

8>>>>><
>>>>>:

ð9Þ

Based on the above discussion, according to the clinical
anti-HBV combination therapy of traditional Chinese and
western medicine [4], we consider a HBV fractional order
model as follows:

Dαx = λ − dx −
βxv
x + v

+ δy + qx 1 − x
xmax

� �
,

Dαy = βxv
x + v

− ay − δy − 1 + u3ð Þpyz,
Dαv = 1 − u1ð Þky − 1 + u2ð Þμv,
Dαz = 1 + u3ð Þcyz − bz:

8>>>>>>>>><
>>>>>>>>>:

ð10Þ

Here, x, y, v, and z have the same meaning as those in
model (3). 0 < α < 1:u1ð0 ≤ u1 ≤ 1Þ represents the treatment
effect of entecavir (ETV), which can block the replication of
virus. u2ð0 ≤ u2 ≤ 1Þ represents the treatment effect of Tiao-
gan Jianpi Jiedu Granules (TGJPJD), which can accelerate
the death of virus. u3ð0 ≤ u3 ≤ 1Þ represents the treatment
effect of Tiaogan-Yipi Granule (TGYP) which can enhance
immunity.

The structure of this paper is given as follows. In Section
2, we show some definitions of fractional order and related
lemmas. In Section 3, the existence and uniqueness of the
positive solution are discussed. In Section 4, we give the sta-
ble analysis of our system. The necessary conditions for an
optimal control are derived in Section 5. The numerical sim-
ulation and the conclusion are given, respectively, in Sections
6 and 7.

2. Basic Concepts and Lemmas

First of all, we give some basic definitions and inferences
about fractional order. There are several definitions of frac-
tional derivatives, but we only consider the Caputo deriva-
tion used in this paper.

Definition 1. The Caputo fractional derivative of order αðα
> 0Þ of a function f ð f : ½0,∞�⟶ RÞ is given:

Dα f = 1
Γ n − αð Þ

ðt
a

f nð Þ

t − sð Þα−n+1 ds: ð11Þ

Here, n = ½α� + 1, and Γð·Þ is the Euler gamma function.
In this paper, we only discuss the situation that 0 < α < 1.
Function (11) will become

Dα f = 1
Γ 1 − αð Þ

ðt
a

f ′
t − sð Þα ds: ð12Þ

Lemma 2 (see [28] (Laplace transform). The Laplace trans-
form of formula (12) is

L Dα f tð Þ½ � = sαF sð Þ − 〠
n−1

k=0
f kð Þ 0ð Þsα−k−1: ð13Þ

Lemma 3 (see [29] (Generalized mean value theorem). Sup-
pose that f ðxÞ ∈ C½a, b� and Dα f ðxÞ ∈ C½a, b�, for 0 < α < 1,
we have

f xð Þ = f að Þ + 1
Γ αð ÞD

α f ξð Þ x − að Þα: ð14Þ

Notice. Suppose that f ðtÞ ∈ C½a, b� and Dα f ðtÞ ∈ C½a, b�,
for 0 < α < 1, we have the following:

(1) If Dα f ðtÞ > 0, t0 ∈ ða, bÞ, then neighbourhood N sat-
isfies f ðtÞ > f ðaÞ, ∀t ∈N

(2) If Dα f ðtÞ < 0, t0 ∈ ða, bÞ, then neighbourhood N sat-
isfies f ðtÞ < f ðaÞ, ∀t ∈N

Lemma 4 (see [30]). For a fractional order system (15) of
which 0 < α < 1 and x ∈ Rn,

Dαx tð Þ = f t, x tð Þð Þ,
x t0ð Þ = x0:

(
ð15Þ

Assume f ðt, xÞ: R+ × Rn ⟶ Rn satisfies the following
conditions:

(1) f ðt, xðtÞÞ is Lebesgue measurable with respect to t on
R+

(2) f ðt, xðtÞÞ and ∂f ðt, xðtÞÞ/∂x are continuous for all x
∈ Rn

(3) k f ðt, xðtÞÞk ≤ ω + λkxk, ∀t ∈ R+, X ∈ Rn; here, ω, λ >
0 are two positive constants

Then, the initial problem (15) has unique and positive
solution on ½t0,∞�.

Lemma 5 (see [31]). For the system (15), the equilibrium
point is locally asymptotically stable, if all eigenvalues λi of
Jacobian matrix J = ∂f /∂x evaluated at the equilibrium point
satisfies

arg λið Þj j > α
π

2
: ð16Þ

Lemma 6. For the discriminant Dð f Þ of polynomial equation

f xð Þ = xn + a1x
n−1 + a2x

n−2+⋯+an ð17Þ

is defined by Dð f Þ = ð−1Þnðn−1Þ/2Rð f , f ′Þ. Here, Rð f · f ′Þ
represents the determinant for the corresponding ð2n − 1Þ ⊗
ð2n − 1Þ Sylvester matrix.
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Lemma 7. For the polynomial equation

P λð Þ = λn + d1λ
n−1 + d2λ

n−2+⋯+dn, ð18Þ

the conditions which make all the roots of (18) satisfy (16) are
displayed as follows:

(1) For n = 1, the condition is d > 1

(2) For n = 2, the conditions are either Routh-Hurwitz
conditions or

d1 < 0, 4d2 > d1
2, tan−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2 − d1

2
p

d1

 !�����
����� > απ

2

ð19Þ

For n = 3

(a) If the discriminant DðPÞ of (18) is positive, then
Routh-Hurwitz conditions are the necessary and
sufficient conditions, that is d1 > 0, d3 > 0, d1d2 >
d3

(b) If DðPÞ < 0,d1 > 0, d2 > 0, and d3 > 0, then (16)
holds when α < 2/3

(c) If DðPÞ < 0,d1 < 0, d2 < 0, and d3 ≥ 0, then (16)
holds when α > 2/3

(d) IfDðPÞ < 0,d1 > 0, d2 > 0, and d1d2 = d3, then (16)
holds for all α ∈ ½0, 1�

(4) When n > 3, suppose Δ1, Δ2,⋯, Δn is the Routh-
Hurwitz discriminant, that is,

Δ1 = a1 > 0,

Δ2 =
a1 1

a3 a2

�����
����� > 0,

Δ3 =
a1 1 0

a3 a2 a1

a5 a4 a3

��������

��������
> 0:

ð20Þ

For α ∈ ð0, 1�, (16) is sufficient but not necessary.

3. The Existence and Uniqueness of
Positive Solutions

We first analyse the system (10) without control, that is,
u1 = u2 = u3 = 0.

Theorem 8. The solution of system (10) is always nonnegative.

Proof. For system (10), we can get that

Dαxjx=0 = λ + δy ≥ 0,

Dαyjy=0 =
βxv
x + v

≥ 0,

Dαvjv=0 = ky ≥ 0,
Dαzjz=0 = 0:

8>>>>>><
>>>>>>:

ð21Þ

Based on Lemma 2, we can prove that xðtÞ, yðtÞ, vðtÞ ≥ 0
for t ∈ ½t0,∞Þ. For zðtÞ, assume that there exists t1 satisfying
that

z t1ð Þ = 0,
z tð Þ > 0, ∀t ∈ t0, t1½ Þ:

(
ð22Þ

We can find that Dαz ≥ −bz, t ∈ ½t0, t1Þ and zðtÞ ≥ zð0Þ
Eα½−btα�, t ∈ ½t0, t1Þ, which implies zðt1Þ > 0. This result is
contradicted with the assumption, so zðtÞ > 0 for any t ≥ t0.

Theorem 9. There exists an M > 0, such that xðtÞ, yðtÞ, vðtÞ,
zðtÞ <M, for any t ∈ ½0,∞Þ.

Proof. Let

N tð Þ = x tð Þ + y tð Þ + p
c
z tð Þ,

N 0ð Þ =N0 = x0 + y0 +
p
c
z0:

8><
>: ð23Þ

Calculate the α-order derivatives on both sides, respec-
tively,

DαN tð Þ = λ − dx − ay −
pb
c
z + qx 1 − x

xmax

� �
≤ λ + qxmax

4

− dx − ay −
pb
c
z ≤ h1 − h2 x + y + p

c
z

� �
:

ð24Þ
Here, h1 = λ + ðqxmax/4Þ and h2 = min fd, a, bg. So, we

can get

N tð Þ ≤ h1t
αEα,α+1 −h2t

αð Þ +N0Eα,1 −h2t
αð Þ

= −
h1
h2

+N0

� �
Eα −h2t

αð Þ + h1
h2

:
ð25Þ

Eαð−xÞ is completely monotonic for x > 0 [32], lim
t→∞

Eα

ð−μtαÞ = 0 and Eαð0Þ = 1. Here, we assume M1 = max fðh1/
h2Þ,N0g: So, NðtÞ ≤M1, xðtÞ ≤M1, yðtÞ ≤M1, and zðtÞ ≤
M1. Similarly, we can have the following inequation:

v tð Þ ≤ −
M1k
μ

+ v0

� �
Eα −μtαð Þ + M1k

μ
: ð26Þ

Assume that M2 = max fðM1k/μÞ, v0g, vðtÞ ≤M2.
Let M =max fM1,M2g, so xðtÞ, yðtÞ, vðtÞ, zðtÞ <M.

Theorem 10. System (10) has a unique positive solution on
½0,∞Þ.
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Proof. Let R+
4 = fðx, y, v, zÞ, x, y, v, zg ≥ 0. Suppose XðtÞ =

ðxðtÞ, yðtÞ, vðtÞ, zðtÞÞ, system (10) can be transformed into
the following form:

f t, Xð Þ =

λ − dx −
βxv
x + v

+ δy + qx 1 − x
xmax

� �
βxv
x + v

− ay − δy − pyz

ky − μv

cyz − bz

0
BBBBBBBB@

1
CCCCCCCCA
:

ð27Þ
Obviously, (27) satisfies conditions (1) and (2) of Lemma

4. We only prove that system (33) satisfies condition (3) of
Lemma 4. Let

η =

λ + qx 1 − x
xmax

� �
0
0
0

0
BBBBBBB@

1
CCCCCCCA
,

A1 =

−d 0 0 0
0 −a 0 0
0 0 −μ 0
0 0 0 −b

0
BBBBB@

1
CCCCCA,

C =

−β 0 0 0
β 0 0 0
0 0 0 0
0 0 0 0

0
BBBBB@

1
CCCCCA,

A3 =

0 0 0 0
0 −p 0 0
0 0 0 0
0 0 0 0

0
BBBBB@

1
CCCCCA,

A4 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 c

0
BBBBB@

1
CCCCCA,

A5 =

0 δ 0 0
0 −δ 0 0
0 k 0 0
0 0 0 0

0
BBBBB@

1
CCCCCA,

X tð Þ =

x tð Þ
y tð Þ
v tð Þ
z tð Þ

0
BBBBB@

1
CCCCCA:

ð28Þ

So, we can get

f t, Xð Þk k = A1X tð Þ + v tð Þ
x tð Þ + v tð ÞA2X tð Þ

����
+ z tð ÞA3X tð Þ + y tð ÞA4X tð Þ + A5y tð Þ + η

����
≤ A1X tð Þ + A2X tð Þ +MA3X tð Þ
����
+ c
p
MA4X tð Þ + A5X tð Þ + η

����
≤
�

A1k k + A2k k +M A3k k

+ c
p
M A4k k + A5k k

�
X tð Þ + h1:

ð29Þ

Here, h1 = λ + ðqxmax/4Þ, and M is a bound value men-
tioned in Theorem 9. By Lemma 4, system (10) has a unique
solution on ½0,∞Þ.

4. Stable Analysis

In this section, we will discuss the stability of the system (10).
The system always has an infection-free equilibrium E0 =
ðx0, 0, 0, 0Þ, where

x0 =
xmax
2q q − d +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q − dð Þ2 + 4qλ

xmax

s" #
: ð30Þ

Here, we have the basic reproduction number as

R0 =
βk

μ a + δð Þ : ð31Þ

When R0 > 1, the system (10) will have an immune-
absence equilibrium E1 = ðx1, y1, v1, 0Þ; here, N1 = ððq − dÞ/
R0 − 1ð ÞÞ − ðμq/kÞ and

x1 =
1

R0 − 1 v1,

y1 =
μ

k
v1,

v1 =
R0 − 1ð Þxmax

2q −N1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

1 +
4qλ

R0 − 1ð Þ2xmax

s" #
,

ð32Þ

which means that the infected cells and virus coexist but the
immune response is not activated yet, that is, cy1 < b. Further,
we will have the cytotoxic T lymphocyte immune response
reproductive number
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R1 =
μc
kb

R0 − 1ð Þxmax
2q −N1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

1 +
4qλ

R0 − 1ð Þ2xmax

s" #
:

ð33Þ

When R1 > 1, it means that immune response is activated;
the system (10) will have an immune-response equilibrium
E2 = ðx2, y2, v2, z2Þ, where

x2 =m + n −
a2
3a1

,

y2 =
b
c
,

v2 =
kb
μc

,

z2 =
λ − dx2 − ay2 + qx2 1 − x2/xmaxð Þð Þ

py2
:

ð34Þ

Here m, n are given as follows:

a1x2
3 + a2x2

2 + a3x2 + a4 = 0,

a1 = −
q

xmax
,

a2 = q − d + v2q
xmax

,

a3 = q − d − βð Þv2 + λ + δy2,
a4 = v2 λ + δy2ð Þ,

uu = 9a1a2a3 − 27a21a4 − 2a32
54a31

,

vv =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 4a1a33 − a22a

2
3 − 18a1a2a3a4 + 27a21a24 + 4a4a32

	 
q
18a21

,

m =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uu + vv3

p
,

n = a22 − 3a1a3
9a1m

:

ð35Þ

Theorem 11. For the model of (10): when R0 < 1, the infection-
free equilibrium point E0 is locally asymptotically stable; when
R0 > 1, E0 is unstable.

Proof. The Jacobi matrix for equilibrium E0 = ðx0, 0, 0, 0Þ is
shown as

JE0 =

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q − dð Þ2 + 4qλ

xmax

s
δ −β 0

0 − a + δð Þ β 0
0 k −μ 0
0 0 0 −b

0
BBBBBBBB@

1
CCCCCCCCA
: ð36Þ

So, the characteristic equation for E0 is

lE − JE0

�� �� = l +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q − dð Þ2 + 4qλ

xmax

s !
l + bð Þ

� l2 + a + δ + μð Þl − βk 1 − 1
R0

� �� �
= 0:

ð37Þ

Suppose that B = a + δ + μ, C = −βkð1 − ð1/R0ÞÞ, we can

have the four characteristic roots: l1 = −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq − dÞ2 + ð4qλ/xmaxÞ

q
< 0, l2 = −b < 0, l3,4 = −ðB/2Þ ±ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðB2 − 4CÞ/4p

. When R0 < 1, −ðB/2Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðB2 − 4CÞ/4p
< 0,

from Lemma 5, E0 is locally asymptotically stable. When R0
> 1, −ðB/2Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðB2 − 4CÞ/4p

> 0, from Lemma 5, E0 is
unstable.

Theorem 12. When R0 > 1 and R1 < 1, if DðPÞ > 0, E1 is
locally asymptotically stable for 0 < α < 1:If DðPÞ < 0, then
E1 is locally asymptotically stable for 0 < α < 2/3. If R1 > 1,
E1 is unstable.

Proof. The characteristic equation for E1 is given as follows:

lE − JE1

�� �� = l − cy1 + bð Þ l3 + a1l
2 + a2l + a3


 �
= 0: ð38Þ

Let

N1 =
q − d

R0 − 1 −
μq
k
,

N2 =N2
1 +

4qλ
R0 − 1ð Þ2xmax

,

a1 = a + δ + μ + βv21
x1 + v1ð Þ2 + R0 − 1ð Þ −N1 +

ffiffiffiffiffiffi
N2

ph i
> 0,

a2 = μ a + δð Þ 1 − 1
R0

� �
+ βv21

x1 + v1ð Þ2 μ + kð Þ

+ a + δ + μð Þ R0 − 1ð Þ −N1 +
ffiffiffiffiffiffi
N2

ph i
> 0,

a3 = μ a + δð Þ R0 − 1ð Þ −N1 +
ffiffiffiffiffiffi
N2

ph i
1 − 1

R0

� �

+ aβv21μ

x1 + v1ð Þ2 > 0:

ð39Þ

When R1 < 1, the characteristic root l1 = cy1 − b < 0.
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Let N3 = ðR0 − 1Þ½−N1 +
ffiffiffiffiffiffi
N2

p �, we have

a1a2 − a3 =
βkx21

x1 + v1ð Þ2 + μ2 N3 +
βv21

x1 + v1ð Þ2
 !

+ a + δ + βv21
x1 + v1ð Þ2 +N3

 !

· μ N3 +
βv21

x1 + v1ð Þ2
 ! 

+ βv21
x1 + v1ð Þ2 +N3 a + δð Þ

+ μ a + δð Þ 1 − 1
R0

� �!
> 0:

ð40Þ

From Lemma 6, the discriminant DðPÞ of the polynomial
equation l3 + a1l

2 + a2l + a3 is as follows:

D Pð Þ = 18a1a2a3 − a1a2ð Þ2 − 4a12 − 4a22 − 27a13: ð41Þ
According to Lemma 7, when R1 < 1, if DðPÞ > 0,E1 is

locally asymptotically stable for 0 < α < 1:If DðPÞ < 0, then
E1 is locally asymptotically stable for 0 < α < 2/3. If R1 > 1,
the equilibrium E1 is unstable.

Theorem 13. When R0 > 1 and R1 > 1, E2 is locally asymptot-
ically stable for 0 < α < 1:

Proof. The characteristic equation for E2 is given as follows:

lE − JE2

�� �� = l4 + a1l
3 + a2l

2 + a3l + a3 = 0: ð42Þ

Here, let ðd − q + 2qðx2/xmÞÞ =N4 ≥ 0,

a1 = a + δ + μ +N4 + pz2 +
βv22

x2 + v2ð Þ2 ,

a2 =N4δ + N4 +
βv22

x2 + v2ð Þ2
 !

μ + a + pz2ð Þ

+ μ + bð Þpz2 + βk
1
R0

−
x22

x2 + v2ð Þ2
 !

,

a3 = bpz2 μ +N4ð Þ +N4μpz2

+ βv22
x2 + v2ð Þ2 bpz2 + aμ + μpz2ð Þ

+N4βk
1
R0

−
x22

x2 + v2ð Þ2
 !

,

a4 = μbpz2 N4 +
βv22

x2 + v2ð Þ2
 !

:

ð43Þ

WhenR0 > 1, R1 > 1, we have x22/ðx2 + v2Þ2 < 1/R0, which
ensures an ≥ 0, n = 1, 2, 3. So,

Δ2 = a2 N4 +
βv22

x2 + v2ð Þ2
 !

+ δ + μð Þ
 
βk

1
R0

−
x22

x2 + v2ð Þ2
 !

+N4 δ + μ +N4ð Þ
!
+ pz2

 
N2

4 + βk
1
R0

−
x22

x2 + v2ð Þ2
 !

+ 2 N4 + μð Þ δ + μð Þ + bδ

!
+ p2z22 N4 + μ + bð Þ

+ βv22
x2 + v2ð Þ2

 
βk

1
R0

−
x22

x2 + v2ð Þ2
 !

+ μ + pz2ð Þ

� δ + μ + pz2ð Þ +N4 δ + 2 μ + pz2ð Þð Þ

+ a

 
N2

4 + βk
1
R0

−
x22

x2 + v2ð Þ2
 !

+ βv22
x2 + v2ð Þ2

� βv22
x2 + v2ð Þ2 + βv22

x2 + v2ð Þ2
 !

+ pz2
2βv22

x2 + v2ð Þ2 + μ + c

 !

+ 2N4
βv22

x2 + v2ð Þ2 + δ + μ + pz2

 !!

+ βv22
x2 + v2ð Þ2

 !2

μ + pz2ð Þ ≥ 0,
!

Δ3 > a3
βv22

x2 + v2ð Þ2 N4 +
βv22

x2 + v2ð Þ2
 !

+ a2
βv22μ

x2 + v2ð Þ2 N2
4 + 2N4

βv22
x2 + v2ð Þ2 + δ + μ

 ! ! 

+ b N4 +
βv22

x2 + v2ð Þ2
 !2

+ pz2

 
μ

 
bβv22

x2 + v2ð Þ2
 

+ N4 +
βv22

x2 + v2ð Þ2
 !

N4 + 3 βv22
x2 + v2ð Þ2

 !!

+ βv22μ
2

x2 + v2ð Þ2
!!

+ a

 
βv22μ

x2 + v2ð Þ2
 
N4 +

βv21
x2 + v2ð Þ2

+ δ + μ

!
βv22μ

x2 + v2ð Þ2 +N4 δ + μð Þ
 !!

≥ 0:

ð44Þ

According to Lemma 7, Theorem 13 can be proofed.

5. Optimal Control Problem for Combination of
Traditional Chinese and Western Medicines

In this section, we analyse the optimal control problem for
system (10). Considering the high cost and side effects of
long-term use of the highest dose drugs and in order to
achieve the treatment effect, we need to analyse the optimal
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control model to find optimal treatment strategy. Here, u1,
u2, and u3 represent the effects of the drugs ETV, TGJPJD,
and TGYP, respectively. Let t f be the endpoint of treatment,
we choose the objective function of the optimal control as
follows [33]:

J uð Þ = 1
2 a2y

2 + a3v
2	 


+ 1
2

ðt f
0

	
b2y

2 + b3v
2

+ c1u1
2 + c2u2

2 + c3u3
2dt


:

ð45Þ

Here, a2, a3, b2, b3, c1, c2, c3 represent the corresponding
weight of each variable. LetXðtÞ = ðxðtÞ, yðtÞ, vðtÞ, zðtÞÞT ,
uðtÞ = ðu1ðtÞ, u2ðtÞ, u3ðtÞÞT , Xð0Þ = ðx0, y0, v0, z0ÞT , then (9)
can be rewritten as follows:

DαX tð Þ = f X tð Þ, u tð Þ, tð Þ,
X 0ð Þ = X0:

"
ð46Þ

Then, its Hamilton function of JðuÞ can be expressed as

H = p1 λ − dx −
βxv
x + v

+ δy + qx 1 − x
xmax

� �� �

+ p2
βxv
x + v

− ay − δy − 1 + u3ð Þpyz
� �

+ p4 1 + u3ð Þcyz − bzð Þ + p3 1 − u1ð Þky − 1 + u2ð Þμvð Þ
+ b2y

2 + b3v
2 + c1u1

2 + c2u2
2 + c3u3

2	 

:

ð47Þ

Using Pontryagin’s minimum principle, the necessary
conditions for the existence of the optimal solution of sys-
tem (10) are shown as follows:

Dαx = λ − dx −
βxv
x + v

+ δy + qx 1 − x
xmax

� �
,

Dαy = βxv
x + v

− ay − δy − 1 + u3ð Þpyz,
Dαv = 1 − u1ð Þky − 1 + u2ð Þμv,
Dαz = 1 + u3ð Þcyz − bz,

8>>>>>>>>><
>>>>>>>>>:

X 0ð Þ = X0,

Dαp1 = p1 q − d −
βv2

x + vð Þ2 −
2qx
xmax

 !
+ βv2

x + vð Þ2 p2,

Dαp2 = δp1 − a + δ + 1 + u3ð Þpzð Þp2 + 1 − u1ð Þkp3 + 1 + u3ð Þczp4,

Dαp3 = −
βx2

x + vð Þ2 p1 +
βx2

x + vð Þ2 p2 − 1 + u2ð Þμp3,

Dαp4 = 1 + u3ð Þpyp2 − cy − bð Þp4,

8>>>>>>>>>><
>>>>>>>>>>:

−kyp3 + c1u1 = 0,
−μp3v + c2u2 = 0,
c3u3 − p2pyz + p4cyz = 0,

8>><
>>:

p1 t f
	 


= 0,

p2 t f
	 


= a2y t f
	 


,

p3 t f
	 


= a3v t f
	 


,

p4 t f
	 


= 0: ð48Þ

So, we get the optimal control as

u1 = min max kyp3
c1

, 0
� �

, 1
� �

,

u2 = min max μp3v
c2

, 0
� �

, 1
� �

,

u3 = min max p2pyz − p4cyz
c3

, 0
� �

, 1
� �

:

8>>>>>>>><
>>>>>>>>:

ð49Þ

6. Simulation

In this section, we use the numerical method provided in [34]
to simulate our system (10). The parameters are given in
Table 1.

According to the clinical trials [4], we choose 108 weeks
as a treatment period, that is, the initial time t0 = 0 and the
end time t f = 7 × 108 (days). u1, u2, u3 ∈ ½0, 1�, by which 0
means no medicine treatment and 1 means the medicine is
fully functional. Due to the fact that the human body cannot
fully absorb all of the medicine, we assume a maximum drug
effect of 0.98. In this simulation, we assume that there is a

Table 1: The numerical value of the parameters for system.

Parameters Value Reference Parameters Value Reference

λ 6:67 × 106 × d [35] p 1 × 10−4 [35]

d 3:785 × 10−3 [37] k 1 [35]

β 1 × 10−4 [10] μ 0.35 [35]

δ 3:8 × 10−3 [23] c 0:95 × 10−7 [35]

a 3:38 × d [35] b 4:5 × 10−3 [35]

q 0.3 [15] xm 1 × 108 [36]
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positive correlation between the efficacy and the dose in a
certain range. As α⟶ 1, the influence of memory decreases
[37]. Here, we choose α = 0:95, 0:9, and 0:85 to see the differ-
ence between different fractional orders with the lower
memory effect.

In the following part, we will give optimal control strate-
gies according to different treatment protocols.

Strategy 1. ETV monotherapy ði:e:,u1 ≠ 0, u2 = u3 = 0Þ.

In this case, the objective function (45) is trans-
formed to

J uð Þ = 1
2 a2y

2 + a3v
2	 


+ 1
2

ðt f
0

b2y
2 + b3v

2 + c1u1
2	 

dt: ð50Þ

The initial condition is ðx0 = 6:6 × 106, y0 = 2:3 × 106,
v0 = 2:3 × 107, z0 = 200Þ. We give the simulation with differ-
ent orders ðα = 0:95, 0:9, 0:85Þ; the corresponding dynamic
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Figure 1: State dynamics of uninfected and infected cells, free virus, and CTL cells with Strategy 1.
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route simulation is shown in Figure 1, and the optimal control
strategy is shown in Figure 2.

From the simulation in Figure 1, we can see that the
change rate and the terminal value of infected cells, virus,
and CTL are obviously different with different order α even
with the same initial condition and the same change trend,
which is consistent with the clinical fact that there do exist
individual difference, so individual difference may be reflected
by different α, and the fractional order model should be a good
tool to describe HBV infection.

From the simulation in Figure 2, we find that the maxi-
mum dose should only be used at the earlier stage of treat-
ment. And the drug dose can be lowered after a period of
high-dose treatment. But the time point of lowering the drug
dose is different with different order α. If we use constant
control u1 = 0:98 (maximum effect) and u1 = 0:5 (minimum
effect), we give the objective function value of the optimal
control and constant control with different orders in
Table 2. We can see that the objective function values are
lower than those of the maximum and minimum constant
control, which shows that the optimal therapy can get similar
or better treatment effect with less drug dose and side effects.

Strategy 2. Combination of ETV and CHM ði:e:,u1 ≠ 0, u2 ≠
0, u3 ≠ 0Þ:

In this section, we will give the optimal control strate-
gies of combination therapy of ETV and Chinese medicine
with different orders as α = 0:95, 0:9, 0:85. We choose the
same initial condition and the same parameters as those
of Strategy 1 and the objective function (45). As mentioned
before, ETV can block the replication of virus; we use u1 to

represent ETV treatment effect, and u2 represents the treat-
ment effect of TGJPJD, which can accelerate the death of
virus. u3 represents the treatment effect of TGYP which
can enhance immunity. The simulations are shown in
Figures 3 and 4.

From the simulation in Figure 3, we can see that
dynamic routes are similar as that in Figure 1. But the termi-
nal values of infected cells and virus are obviously lower than
those in Figure 1, which show that the Chinese medicine can
enhance the death of infected cells and virus. The simulation
can also show that the individual difference may be reflected
by different α.

From the simulation in Figure 4, we also find that the
maximum dose should only be used at the earlier stage of
treatment. The drug dose can be lowered after a period of
high-dose treatment with different order α. And the time
point of lowering the drug dose is also different with differ-
ent order α. We also find that the time point of lowering the
drug dose is different with different medicine; that is, ETV
can be lowered at the earliest time, and then, TGJPJD and
TGYP need to be taken at the maximum dose for the lon-
gest time which shows the importance of enhancing the
immune in anti-HBV therapy. Moreover, for Strategy 1,
the time point of lowering the ETV drug dose is about
100 days, but for strategy 2, the time point is only about
60 days.

We also compared the objective function values of con-
stant control u1 = u2 = u3 = 0:98 (maximum effect) and
u1 = u2 = u2 = 0:5 (minimum effect) with the optimal con-
trol. The results are shown in Table 3. We can see that the
optimal objective function values are always the lowest for
different orders. By comparing the optimal objective function
values in Table 2 with those in Table 3, we find that combina-
tion of ETV and CHM can greatly reduce objective function
values, which show that combination of ETV and CHM may
be a good choice in anti-HBV infection therapy.

7. Conclusion and Discussion

In this paper, based on the combination therapy of tradi-
tional Chinese medicine andWestern medicine, we proposed
a fractional optimal control model of anti-HBV infection
based on saturation incidence and logistic proliferation of
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Figure 2: Optimal control Strategy 1 with ETV monotherapy and α = 0:95, 0:9, 0:85.

Table 2: The corresponding number of objective function of
Strategy 1 with different order and control strategies.

α Optimal control Maximum effect Minimum effect

0.95 3:27 × 108 3:59 × 108 4:76 × 108

0.9 2:06 × 108 2:36 × 108 2:87 × 108

0.85 1:22 × 108 1:55 × 108 1:52 × 108
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uninfected cells for the first time. After giving the stable
analysis of our system, we discussed the necessary conditions
of the optimal control problem. Two optimal control strate-
gies about ETV monotherapy and combination therapy of
ETV and CHM with different fractional orders were given
by simulation.

In the simulation, we suppose that there is a positive cor-
relation between drug use and effectiveness. From the simu-
lations, we know that the dynamic routes were different
with different orders even with the same parameters, which

may show that the individual difference could be reflected
by different α.

By comparing the dynamic routes between ETV mono-
therapy and combination therapy of ETV and CHM, we
found that combination therapy can not only obtain better
treatment effect but also reduce the taking time and dose of
ETV. The simulation shows that combination therapy may
be a good choice in anti-HBV infection therapy. We also
compared the objective function values of the optimal con-
trol strategies with other constant control strategies; the
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Figure 3: State dynamics of uninfected and infected cells, free virus, and CTL cells with Strategy 2.
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comparison showed the optimal therapy can get similar or
better treatment effect with less drug dose and side effects.
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