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The existence andmultiplicity of positive solutions for the nonlinear fractional differential equation boundary value problem (BVP)
CDα

0+yðxÞ + f ðx, yðxÞÞ = 0, 0 < x < 1, yð0Þ = y′ð1Þ = y″ð0Þ = 0 is established, where 2 < α ≤ 3, CDα
0+ is the Caputo fractional

derivative, and f : ½0, 1� × ½0,∞Þ⟶ ½0,∞Þ is a continuous function. The conclusion relies on the fixed-point index theory and
the Leray-Schauder degree theory. The growth conditions of the nonlinearity with respect to the first eigenvalue of the related
linear operator is given to guarantee the existence and multiplicity.

1. Introduction

In this paper, we concentrate on the existence and multiplic-
ity of positive solutions for the following problem:

CD
α
0+y xð Þ + f x, y xð Þð Þ = 0, 0 < x < 1, ð1Þ

y 0ð Þ = y′ 1ð Þ = y″ 0ð Þ = 0, ð2Þ

where 2 < α ≤ 3, CDα
0+ is the Caputo fractional derivative, and

f : ½0, 1� × ½0,+∞Þ⟶ ½0,+∞Þ is a continuous function.
In the past twenty years, the fractional differential equa-

tion has aroused great consideration [1–21] not only in its
application in mathematics but also in other applications in
science and engineering, for example, fluid mechanics, visco-
elastic mechanics, electroanalytical chemistry, and biological
engineering. Bai and Qiu [22, 23] have investigated the exis-
tence and multiplicity of positive solutions of (1) and (2) by
using the nonlinear alternative of the Leray-Schauder type
and Krasnoselskii’s fixed-point theorem in a cone, but they
did not consider its eigenvalue criteria.

The rest of the paper is organized as follows. In Section 2,
we recall some concepts relative to fractional calculus and
give some lemmas with respect to the corresponding Green
function. In Section 3, with the use of the fixed-point theory,

some existence and multiplicity results of positive solutions
are obtained. At last, two examples are given.

2. Background Materials

For the convenience of the reader, we give some definitions
and lemmas.

Definition 1 (see [23]). The Caputo’s fractional derivative of
order α > 0 of a continuous function y : ½0,+∞Þ⟶ℝ is
given by

CD
α
0+y xð Þ = 1

Γ n − αð Þ
ðx
0

y nð Þ tð Þ
x − tð Þα−n+1 dt, ð3Þ

where n − 1 ≤ α < n and n ∈ℕ, provided that the right-hand
side is pointwise defined on ½0, +∞Þ.

Lemma 2 (see [15]). Given h ∈ C½0, 1�, the unique solution of

CD
α
0+y xð Þ + h xð Þ = 0, 0 < x < 1,

y 0ð Þ = y′ 1ð Þ = y″ 0ð Þ = 0,
ð4Þ
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is given by

y xð Þ =
ð1
0
G x, tð Þh tð Þdt, ð5Þ

where

G x, tð Þ =

α − 1ð Þx 1 − tð Þα−2 − x − tð Þα−1
Γ αð Þ , for 0 ≤ t ≤ x ≤ 1,

x 1 − tð Þα−2
Γ α − 1ð Þ , for 0 ≤ x ≤ t ≤ 1,

8>>>><
>>>>:

ð6Þ

Lemma 3 (see [23]). The Green function Gðx, tÞ defined by (6)
satisfies the following properties:

(i) Gðx, tÞ > 0, for all x, t ∈ ð0, 1Þ
(ii) min

ð1/4Þ≤x≤ð3/4Þ
Gðx, tÞ ≥ 1/4 max

0≤x≤1
Gðx, tÞ = 1/4Gð1, tÞ, for t

∈ ð0, 1Þ

Lemma 4 (see [24]). Let K be a cone in a Banach space X, and
Ω be a bounded open set in K . Suppose that T : �Ω⟶ K is a
completely continuous operator. If there exists y0 ∈ K \ fθg
such that

y − Ty ≠ μy0, for all y ∈ ∂Ω, μ ≥ 0, ð7Þ

then the fixed-point index iðT ,Ω, KÞ = 0.

Lemma 5 (see [24]). Let K be a cone in a Banach space X.
Suppose that T : K ⟶ K is a completely continuous oper-
ator. If there exists a bounded open set Ω such that each
solution of

y = σTy, y ∈ K , σ ∈ 0, 1½ �, ð8Þ

satisfies y ∈Ω, then the fixed-point index iðT ,Ω, KÞ = 1.

Lemma 6 (see [25]). Suppose that A : C½0, 1�⟶ C½0, 1� is
a completely continuous linear operator and AðKÞ ⊂ K . If
there exist ψ ∈ C½0, 1� \ ð−KÞ and a constant c > 0 such that c
Aψ ≥ ψ, then the spectral radius rðAÞ ≠ 0 and A has a positive
eigenfunction φ∗ corresponding to its first eigenvalue λ1 =
ðrðAÞÞ−1.

3. Existence and Multiplicity

Let C½0, 1� be endowed with the maximum norm kuk =
max
0≤x≤1

juðxÞj and the ordering u ≤ v if uðxÞ ≤ vðxÞ for all x

∈ ½0, 1�. Define

K = u ∈ C 0, 1½ �ju xð Þ ≥ 0, min
1/4ð Þ≤x≤ 3/4ð Þ

u xð Þ ≥ 1
4 uk k

� �
: ð9Þ

Given f ∈ Cð½0, 1� × ½0,∞Þ, ½0,∞ÞÞ. Let T , A : K ⟶ C
½0, 1� be the operators defined by

Tuð Þ xð Þ≔
ð1
0
G x, tð Þf t, u tð Þð Þdt, u ∈ K , x ∈ 0, 1½ �, ð10Þ

and

Auð Þ xð Þ≔
ð1
0
G x, tð Þu tð Þdt, u ∈ K , x ∈ 0, 1½ �: ð11Þ

It is well known that T , A : K ⟶ K are all completely
continuous [23].

Denote

M =
ð1
0
max
0≤x≤1

G x, tð Þdt
� �−1

,

N =
ð 3/4ð Þ

1/4ð Þ
G

1
2 , t
� �

dt

 !−1

,
ð12Þ

where M,N are positive constants.

Lemma 7. Suppose A is defined by (11), then the spectral
radius rðAÞ > 0 and A has a positive eigenfunction φ1 corre-
sponding to its first eigenvalue λ1 = ðrðAÞÞ−1.

Proof. The operator A : C½0, 1�⟶ C½0, 1� is a completely
continuous linear operator and AðKÞ ⊆ K (see [23]).
Choose ψ ∈ C½0, 1� and ½x1, x2� ⊂ ð0, 1Þ such that ψðxÞ ≥ 0
for x ∈ ½0, 1�; ψðxÞ > 0 for x ∈ ðx1, x2Þ. By the use of Lemma
2, for x ∈ ½0, 1�, there holds

Aψð Þ xð Þ =
ð1
0
G x, tð Þψ tð Þdt ≥

ðx2
x1

G x, tð Þψ tð Þdt > 0: ð13Þ

So, we can choose c ∈ℝ so large that

c Aψð Þ xð Þ ≥ ψ xð Þ, for x ∈ 0, 1½ �: ð14Þ

By Lemma 6, we complete the proof.

Theorem 8. Suppose the following conditions hold:

I0ð Þlim inf
y→0+

f x, yð Þ
y

> λ1,

S∞ð Þ lim sup
y→+∞

f x, yð Þ
y

< λ1,
ð15Þ

where λ1 is the first eigenvalue of the operator A defined by
(11). Then, BVP (1) and (2) have at least one positive solution.

Proof. By condition ðI0Þ, there exists r1 > 0 small enough
such that

f x, yð Þ ≥ λ1y, for all 0 ≤ x ≤ 1, 0 ≤ y ≤ r1: ð16Þ
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Let φ∗ be the positive eigenfunction of A correspond-
ing to λ1, thus φ∗ = λ1Aφ

∗.
For every φ ∈ �Kr1

, for x ∈ ½0, 1�

Tφð Þ xð Þ =
ð1
0
G x, tð Þf t, φ tð Þð Þdt

≥ λ1

ð1
0
G x, tð Þφ tð Þdt = λ1 Aφð Þ xð Þ:

ð17Þ

Suppose without loss of generality that T has no fixed
point on ∂Kr1

(otherwise, the proof is completed). We
claim that

φ − Tφ ≠ μφ∗, for allφ ∈ ∂Kr1
, μ > 0: ð18Þ

In fact, if there exist φ1 ∈ ∂Kr1
and μ0 > 0 such that

φ1 − Tφ1 = μ0φ
∗, then

φ1 = Tφ1 + μ0φ
∗ ≥ μ0φ

∗: ð19Þ

Let

μ∗ = sup μjφ1 ≥ μφ∗f g: ð20Þ

It is easy to see that +∞>μ∗ ≥ μ0 > 0 and φ1 ≥ μ∗φ∗.
Taking into account that A is a linear positive operator,
we have

λ1Aφ1 ≥ μ∗λ1Aφ
∗ = μ∗φ∗: ð21Þ

Therefore, by (17),

φ1 = Tφ1 + μ0φ
∗ ≥ λ1Aφ1 + μ0φ

∗ ≥ μ∗ + μ0ð Þφ∗, ð22Þ

which contradicts the definition of μ∗. Hence (18) holds
and we have from Lemma 3 that

i T , Kr1
, K

� �
= 0: ð23Þ

On the other hand, by ðS∞Þ, there exist 0 < σ < 1 and
r2 > r1 such that

f x, yð Þ ≤ σλ1y, for all y ≥ r2, x ∈ 0, 1½ �: ð24Þ

DefineA1 : C½0, 1�⟶ C½0, 1� asA1φ = σλ1Aφ, φ ∈ C½0, 1�.
Then A1 is a bounded linear operator and A1ðKÞ ⊂ K .
Denote

B = max
0≤x,t≤1

G x, tð Þ
� �

sup
y∈ �Br2

ð1
0
f t, y tð Þð Þdt: ð25Þ

It is clear that B < +∞. Let

W = φ ∈ K ∣ φ = μTφ, 0 ≤ μ ≤ 1f g: ð26Þ

In the following, we firstly prove that the setW is bounded.

For any φ ∈W, set �φðxÞ =min fφðxÞ, r2g for x ∈ ½0, 1�
and denote EðφÞ = fx ∈ ½0, 1� ∣ φðxÞ > r2g, then for x ∈ ½0, 1�,

φ xð Þ = μ Tφð Þ xð Þ ≤ Tφð Þ xð Þ =
ð1
0
G x, tð Þf t, φ tð Þð Þdt

=
ð
E φð Þ

G x, tð Þf t, φ tð Þð Þdt +
ð

0,1½ �\E φð Þ
G x, tð Þf t�φ tð Þð Þdt

≤
ð1
0
G x, tð Þσλ1φ tð Þdt +

ð1
0
G x, tð Þf t, �φ tð Þð Þdt

≤ A1φð Þ xð Þ + B:

ð27Þ

Thus ððI − A1ÞφÞðxÞ ≤ B, x ∈ ½0, 1�. Since λ1 is the first
eigenvalue of A and 0 < σ < 1, the first eigenvalue of A1,
ðrðA1ÞÞ−1 > 1. Therefore, the inverse operator ðI − A1Þ−1
exists and

I − A1ð Þ−1 = I + A1 + A2
1+⋯+An

1+⋯: ð28Þ

It follows from A1ðKÞ ⊂ K that ðI − A1Þ−1ðKÞ ⊂ K . So we
have φðxÞ ≤ ðI − A1Þ−1B, x ∈ ½0, 1� and the set W is bounded.

Choose r3 > max fr2, kðI − A1Þ−1Bkg. Then by Lemma 4,
we have

i T , Kr3
, K

� �
= 1: ð29Þ

By (23) and (29), one has

i
T , Kr3
�Kr1
, K

 !
= i T , Kr3

, K
� �

− i T , Kr1
, K

� �
= 1: ð30Þ

Then, T has at least one fixed point on Kr3
\ �Kr1

. This
means that problem (1) and (2) have at least one positive
solution. The proof is complete.

Theorem 9. Suppose the following conditions are met:

I∞ð Þlim inf
y→+∞

f x, yð Þ
y

< λ1,

S0ð Þlim sup
y→0+

f x, yð Þ
y

< λ1,
ð31Þ

where λ1 is the first eigenvalue of the operator A defined by
(11). Then BVP (1) and (2) have at least one positive solu-
tion.The proof is similar to Theorem 8.

Theorem 10. Suppose there exist two numbers b > a > 0 such
that the following conditions are met:

C1ð Þ f x, yð Þ ≤Ma, for 0 ≤ x ≤ 1 and 0 ≤ y ≤ a,

C2ð Þ f x, yð Þ ≥Nb, for
1
4
≤ x ≤

3
4
and

1
4
b ≤ y ≤ b:

ð32Þ

Then, BVP (1) and (2) have at least one positive solution.
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Proof. If C1 and C2 hold, similar to Lemma 3 [6], we have

i A, Ka, Kð Þ = 1,
i A, Kb, Kð Þ = 0:

ð33Þ

Consequently, the additivity of the fixed-point index
implies

i
A, Kb
�Ka, K

� �
= i A, Kb, Kð Þ − i A, Ka, Kð Þ = −1: ð34Þ

Consequently, A has a fixed point yðxÞ in Kb \ �Ka.

Theorem 11. The problem in (1) and (2) has at least two pos-
itive solutions if conditions ðI0Þ, ðI∞Þ, and C1 hold, where λ1 is
the first eigenvalue of the operator A defined by (11).

Proof. Because ðI0Þ and ðI∞Þ hold, there exist 0 < r < a < R
such that

i A, Kr , Kð Þ = 0,
i A, KR, Kð Þ = 0:

ð35Þ

On the other hand, C1 implies iðA, Ka, KÞ = 1. So we have

i
A, Ka
�Kr , K

� �
= i A, Ka, Kð Þ − i A, Kr , Kð Þ = 1,

i
A, KR
�Ka, K

� �
= i A, KR, Kð Þ − i A, Ka, Kð Þ = −1,

ð36Þ

therefore, A has two fixed points, y1 ∈ Ka \ �Kr , y2 ∈ KR \ �Ka.

Theorem 12. The problem in (1) and (2) has at least two pos-
itive solutions if conditions ðS0Þ, ðS∞Þ, and C2 hold, where λ1
is the first eigenvalue of the operator A defined by (10).

Proof. Because ðS0Þ and ðS∞Þ hold, there exist 0 < r < b < R
such that

i A, Kr , Kð Þ = 1,
i A, KR, Kð Þ = 1:

ð37Þ

On the other hand C2 implies iðA, Kb, KÞ = 0. So we have

i
A, Kb
�Kr , K

� �
= i A, Kb, Kð Þ − i A, Kr , Kð Þ = −1,

i
A, KR
�Kb, K

� �
= i A, KR, Kð Þ − i A, Kb, Kð Þ = 1:

ð38Þ

Therefore, A has two fixed points, y1 ∈ Kb \ �Kr , y2 ∈ KR \ �Kb.

4. Example

To illustrate the main points, we give two examples.

Example 13. Let

f x, yð Þ = y 1/2ð Þ + 2 + sin x
4 : ð39Þ

Consider the BVP

CD
α
0+y xð Þ + y xð Þ½ � 1/2ð Þ + 2 + sin x

4 = 0, 0 < x < 1, ð40Þ

y 0ð Þ = y′ 1ð Þ = y″ 0ð Þ = 0: ð41Þ
It is not difficult to see that

f x, yð Þ
y

= y− 1/2ð Þ + 2 + sin x
4y : ð42Þ

Then

liminf
y→0+

f x, yð Þ
y

= +∞ > λ1,

limsup
y→+∞

f x, yð Þ
y

= 0 < λ1,
ð43Þ

where λ1 is the first eigenvalue of the operator A defined by
(11). By Theorem 11, BVP (40) and (41) have at least one
positive solution.

Example 14. Let

f x, yð Þ = y3 + y2 sin x: ð44Þ

Consider the BVP

CDα
0+y xð Þ + y xð Þ½ �3 + y xð Þ½ �2 sin x = 0, 0 < x < 1, ð45Þ

y 0ð Þ = y′ 1ð Þ = y″ 0ð Þ = 0: ð46Þ
It is not difficult to see that

f x, yð Þ
y

= y2 + y sin x: ð47Þ

Then

liminf
y→+∞

f x, yð Þ
y

= +∞ > λ1,

limsup
y→+0+

f x, yð Þ
y

= 0 < λ1,
ð48Þ

where λ1 is the first eigenvalue of the operator A defined by
(11). By Theorem 12, BVP (45) and (46) have at least one
positive solution.
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