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In this article, we consider the new results for the Kirchhoff-type p-Laplacian Dirichlet problem containing the Riemann-Liouville
fractional derivative operators. By using the mountain pass theorem and the genus properties in the critical point theory, we get
some new results on the existence and multiplicity of nontrivial weak solutions for such Dirichlet problem.

1. Introduction

In this paper, we are concerned with the existence and mul-
tiplicity of nontrivial weak solutions for the Kirchhoff-type
fractional Dirichlet problem with p-Laplacian of the form

a + b
ðT
0

0D
α
t u tð Þj jpdt

� �p−1

tD
α
Tϕp 0D

α
t u tð Þð Þ = f t, u tð Þð Þ, t ∈ 0, Tð Þ,

u 0ð Þ = u Tð Þ = 0,

8><
>:

ð1Þ

where a, b > 0, and p > 1 are constants, 0Dt
α and tDT

α are the
left and right Riemann-Liouville fractional derivatives of
order α ∈ ð1/p, 1�, respectively, and ϕp : ℝ⟶ℝ is the
p-Laplacian [1] defined by

ϕp sð Þ = sj jp−2s, s ≠ 0, ϕp 0ð Þ = 0, ð2Þ

and f ∈ Cð½0, T� ×ℝ,ℝÞ. It should be pointed out that
the weak solutions of the boundary value problem
(BVP for short) (1) mean the critical points of the asso-
ciated energy functional.

The fractional derivative 0D
α
t is nonlocal and reduces to

the local first-order differential operator when α = 1. More-
over, the p-Laplacian ϕp is nonlinear and reduces to the linear

identity operator when p = 2. If b = 0, BVP (1) reduces to the
following fractional p-Laplacian BVP [2]:

tD
α
Tϕp 0D

α
t u tð Þð Þ = f t, u tð Þð Þ, t ∈ 0, Tð Þ,

u 0ð Þ = u Tð Þ = 0:

(
ð3Þ

In contrast to BVP (3), if b ≠ 0, another nonlocal term,

ðT
0

0D
α
t u tð Þj jpdt, ð4Þ

makes BVP (1) rough when one deals with it by the varia-
tional methods.

Recently, many important results on the fractional differ-
ential equations [3–18] and the Kirchhoff equations [19–24]
have been obtained. Motivated by the above works, we study
the solvability of BVP (1). More precisely, we prove that BVP
(1) possesses at least one nontrivial weak solution when
f ðt, xÞ is ðp2 − 1Þ-superlinear or ðp2 − 1Þ-sublinear in x at
infinity and possesses infinitely many nontrivial weak solu-
tions when f ðt, xÞ is ðp2 − 1Þ-sublinear in x at infinity. The
main ingredients used here are the mountain pass theorem
and the genus properties in the critical point theory.

Note that, since the Kirchhoff-type p-Laplacian is a non-
linear operator, it is usually difficult to verify the Palais-Smale
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condition ((PS)-condition for short). Now, we make the fol-
lowing assumptions on the nonlinearity f .

(H11). There exist two constants μ > p2, R > 0 such that

0 < μF t, xð Þ ≤ xf t, xð Þ, ∀t ∈ 0, T½ �, x ∈ℝwith xj j ≥ R, ð5Þ

where Fðt, xÞ = Ð x0 f ðt, sÞds.
(H12). f ðt, xÞ = oðjxjp−1Þ as jxj⟶ 0 uniformly for ∀t ∈ ½0, T�.

(H21). There exists a constant 1 < r1 < p2 and a function d ∈
L1ð½0, T�,ℝ+Þ such that

f t, xð Þj j ≤ r1d tð Þ xj jr1−1, ∀ t, xð Þ ∈ 0, T½ � ×ℝ: ð6Þ

(H22). There exists an open interval I ⊂ ½0, T� and three con-
stants η, δ > 0, 1 < r2 < p2 such that

F t, xð Þ ≥ η xj jr2 , ∀ t, xð Þ ∈ I × −δ, δ½ �: ð7Þ

(H23). f ðt, xÞ = −f ðt,−xÞ, ∀ðt, xÞ ∈ ½0, T� ×ℝ.

We are now to state our main results.

Theorem 1. Let (H11) and (H12) be satisfied. Then, BVP (1)
possesses at least one nontrivial weak solution.

Theorem 2. Let (H21) and (H22) be satisfied. Then, BVP (1)
possesses at least one nontrivial weak solution.

Theorem 3. Let (H21)–(H23) be satisfied. Then, BVP (1) pos-
sesses infinitely many nontrivial weak solutions.

2. Preliminaries

2.1. Fractional Sobolev Space. In this subsection, we present
some basic definitions and notations of the fractional calcu-
lus [25, 26]. Moreover, we introduce a fractional Sobolev
space and some properties of this space [14].

Definition 4 (see [25]). For β > 0, the left and right
Riemann-Liouville fractional integrals of order β of a func-
tion u : ½a, b�⟶ℝ are given by

aD
−β
t u tð Þ = 1

Γ βð Þ
ðt
a
t − sð Þβ−1u sð Þds,

tD
−β
b u tð Þ = 1

Γ βð Þ
ðb
t
s − tð Þβ−1u sð Þds,

ð8Þ

respectively, provided that the right-hand-side integrals are
pointwise defined on ½a, b�, where Γð⋅Þ is the gamma function.

Definition 5 (see [25]). For n − 1 ≤ β < n (n ∈ℕ), the left
and right Riemann-Liouville fractional derivatives of
order β of a function u : ½a, b�⟶ℝ are given by

aD
β
t u tð Þ = dn

dtn aD
β−n
t u tð Þ,

tD
β
bu tð Þ = −1ð Þn dn

dtn tD
β−n
b u tð Þ:

ð9Þ

Remark 6. When β = 1, one can obtain from Definitions
4 and 5 that

aDt
1u tð Þ = u′ tð Þ,

tDb
1u tð Þ = −u′ tð Þ,

ð10Þ

where u0 is the usual first-order derivative of u.

Definition 7 (see [14]). For 0 < α ≤ 1 and 1 < p<∞, the
fractional derivative space Eα,p

0 is defined by the closure of
C∞
0 ðð0, TÞ,ℝÞ with respect to the following norm:

uk kEα,p = uk kpLp + 0D
α
t uk kpLp

� �1/p, ð11Þ

where kukLp = ðÐ T0 juðtÞjpdtÞ1/p is the norm of Lpðð0, TÞ,ℝÞ.

Remark 8. It is obvious that, for u ∈ Eα,p
0 , one has

u,0Dt
αu ∈ Lp 0, Tð Þ,ℝð Þ, u 0ð Þ = u Tð Þ = 0: ð12Þ

Lemma 9 (see [14]). Let 0 < α ≤ 1 and 1 < p<∞. The frac-
tional derivative space Eα,p

0 is a reflexive and separable Banach
space.

Lemma 10 (see [14]). Let 0 < α ≤ 1 and 1 < p<∞. For u ∈ Eα,p
0 ,

one has

uk kLp ≤ Cp 0D
α
t uk kLp , ð13Þ

where

Cp =
Tα

Γ α + 1ð Þ > 0, ð14Þ

is a constant. Moreover, if α > 1/p, then

uk k∞ ≤ C∞ 0D
α
t uk kLp , ð15Þ

where kuk∞ =maxt∈0,T juðtÞj is the norm of Cð½0, T�,ℝÞ,

C∞ = Tα− 1/pð Þ

Γ αð Þ αq − q + 1ð Þ1/q > 0, q = p
p − 1

> 1: ð16Þ

Remark 11. By (13), we can consider the space Eα,p
0 with norm

uk kEα,p = 0D
α
t uk kLp , ð17Þ

in what follows.
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Lemma 12 (see [14]). Let 1/p < α ≤ 1 and 1 < p<∞. The
imbedding of Eα,p

0 in Cð½0, T�,ℝÞ is compact.

2.2. Critical Point Theory. Now, we present some necessary
definitions and theorems of the critical point theory [27, 28].

Let X be a real Banach space, and I ∈ C1ðX,ℝÞ which
means that I is a continuously Fréchet differentiable func-
tional. Moreover, let Bρð0Þ be an open ball in X and ∂Bρð0Þ
denote its boundary.

Definition 13 (see [27]). Let I ∈ C1ðX,ℝÞ. If any sequence
fukg ⊂ X for which fIðukÞg is bounded and I ′ðukÞ⟶ 0
as k⟶∞ possesses a convergent subsequence in X, then
we say that I satisfies the (PS)-condition.

Lemma 14 (see [28]). Let X be a real Banach space, and
I ∈ C1ðX,ℝÞ satisfying the (PS)-condition. Suppose that I
ð0Þ = 0 and ðC1Þ, there are constants ρ, σ > 0 such that
Ij∂Bρð0Þ ≥ σ; ðC2Þ there is an e ∈ X \ Bρð0Þ such that IðeÞ ≤ 0.

Then, I possesses a critical value c ≥ σ. Moreover, c can be
characterized as

c = inf
γ∈Γ

max
s∈ 0,1½ �

I γ sð Þð Þ, ð18Þ

where

Γ = γ ∈ C 0, 1½ �, Xð Þ γ 0ð Þ = 0j , γ 1ð Þ = ef g: ð19Þ

Lemma 15 (see [27]). Let X be a real Banach space, and
I ∈ C1ðX,ℝÞ satisfies the (PS)-condition. If I is bounded
from below, then c = infX I is a critical value of I.

In order to find the infinitely many critical points of I, we
introduce the following genus properties. Let

Σ = A ⊂ X − 0f g Aj is closed inX and symmetric with respect to 0f g,
Kc = u ∈ X I uð Þ = cj , I ′ uð Þ = 0

n o
,

Ic = u ∈ XjI uð Þ ≤ cf g:
ð20Þ

Definition 16 (see [28]). For A ∈ Σ, we say that the genus of A
is n denoted by γðAÞ = n if there is an odd map G ∈ CðA,
ℝn \ f0gÞ and n is the smallest integer with this property.

Lemma 17 (see [28]). Let I be an even C1 functional on X and
satisfy the (PS)-condition. For any n ∈ℕ, set

Σn = A ∈ Σ γ Að Þ ≥ njf g,
cn = inf

A∈〠
n

sup
u∈A

I uð Þ: ð21Þ

(i) If Σn ≠ 0 and cn ∈ℝ, then cn is a critical value of I

(ii) If there exists l ∈ℕ such that cn = cn+1 =⋯ = cn+l =
c ∈ℝ, and c ≠ Ið0Þ, then γðKcÞ ≥ l + 1

Remark 18. From Remark 7.3 in [28], we know that if Kc ∈ Σ
and γðKcÞ > 1, then Kc contains infinitely many distinct
points; that is, I has infinitely many distinct critical points
in X.

3. Proof of Theorem 1

In this section, we discuss the existence of nontrivial
weak solutions of BVP (1) when the nonlinearity f ðt, xÞ
is ðp2 − 1Þ-superlinear in x at infinity.

Define the functional I : Eα,p
0 ⟶ℝ by

I uð Þ = 1
bp2

a + b
ðT
0

0D
α
t u tð Þj jpdt

� �p

−
ðT
0
F t, u tð Þð Þdt − ap

bp2

= 1
bp2

a + b uk kpEα,p −
ðT
0
F t, u tð Þð Þdt − ap

bp2

� �
:

ð22Þ

It is easy to verify from (15), (17), and f ∈ Cð½0, T� ×
ℝ,ℝÞ that the functional I is well defined on Eα,p

0 and is
a continuously Fréchet differentiable functional; that is,
I ∈ C1ðEα,p

0 ,ℝÞ. Furthermore, we have

I ′ uð Þ, v
D E

= a + b uk kpEα,p
� �p−1ðT

0
ϕp 0D

α
t u tð Þð Þ0Dα

t v tð Þdt

−
ðT
0
f t, u tð Þð Þv tð Þdt, ∀u, v ∈ Eα,p

0 ,

ð23Þ

which yields

I ′ uð Þ, u
D E

= a + b uk kpEα,p
� �p−1

uk kpEα,p −
ðT
0
f t, u tð Þð Þu tð Þdt:

ð24Þ

In the following, for simplicity, let

Mpk = a + b ukk kpEα,p ,

Mp = a + b uk kpEα,p :
ð25Þ

Lemma 19. Assume that (H11) holds. Then, I satisfies the
(PS)-condition in Eα,p

0 .

Proof. Let fukg ⊂ Eα,p
0 be a sequence such that

I ukð Þj j ≤ K ,
I ′ ukð Þ⟶ 0 as k⟶∞,

ð26Þ

where K > 0 is a constant. We first prove that fukg is
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bounded in Eα,p
0 . From the continuity of μFðt, xÞ − xf ðt, xÞ

and (H11), we obtain that there exists a constant c > 0 such
that

F t, xð Þ ≤ 1
μ
xf t, xð Þ + c, ∀ t, xð Þ ∈ 0, T½ � ×ℝ: ð27Þ

Thus, by (22) and (24), we have

K ≥ I ukð Þ ≥ 1
bp2

Mp
pk −

1
μ

ðT
0
f t, uk tð Þð Þuk tð Þdt − cT −

ap

bp2

= 1
bp2

Mp
pk −

1
μ
Mp−1

pk ukk kpEα,p +
1
μ

I ′ ukð Þ, uk
D E

− cT −
ap

bp2
≥Mp−1

pk

1
p2

−
1
μ

� �
ukk kpEα,p + a

bp2

� �

−
1
μ

I ′ ukð Þ�� ��
Eα,p0ð Þ∗ ukk kEα,p − cT −

ap

bp2
,

ð28Þ

which together with I ′ðukÞ⟶ 0 as k⟶∞ yields

K ≥Mp−1
pk

1
p2

−
1
μ

� �
ukk kpEα,p +

a

bp2

� �

− ukk kEα,p − cT −
ap

bp2
as k⟶∞:

ð29Þ

Then, it follows from μ > p2 that fukg is bounded in Eα,p
0 .

Since Eα,p
0 is a reflexive Banach space (see Lemma 9), going

if necessary to a subsequence, we can assume uk ⟶ u in Eα,p
0 .

Hence, from I ′ðukÞ⟶ 0 as k⟶∞ and the definition of
weak convergence, we have

I ′ ukð Þ − I ′ uð Þ, uk − u
D E

= I ′ ukð Þ, uk − u
D E

− I ′ uð Þ, uk − u
D E

≤ I ′ ukð Þ�� ��
Eα,p0ð Þ∗ uk − uk kEα,p

− I ′ uð Þ, uk − u
D E

⟶ 0 as k⟶∞:

ð30Þ

In addition, we obtain from (15), (17), and Lemma 12 that
fukg is bounded in Cð½0, T�,ℝÞ and kuk − uk∞ ⟶ 0 as
k⟶∞. Thus, there exists a constant c1 > 0 such that

f t, uk tð Þð Þ − f t, u tð Þð Þj j ≤ c1, ∀t ∈ 0, T½ �, ð31Þ

which yields

ðT
0

f t, uk tð Þð Þ − f t, u tð Þð Þð Þ uk tð Þ − u tð Þð Þdt
����

����
≤ c1T uk − uk k∞ ⟶ 0 as k⟶∞:

ð32Þ

Moreover, by the boundedness of fukg in Eα,p
0 , one

has

Mp−1
pk −Mp−1

p

� 	ðT
0
ϕp 0D

α
t u tð Þð Þ 0D

α
t uk tð Þ − 0D

α
t u tð Þð Þdt

= Mp−1
pk −Mp−1

p

� 	
I1′ uð Þ, uk − u
D E

⟶ 0 as k⟶∞,

ð33Þ

where I1′ is the Fréchet derivative of I1 : E
α,p
0 →ℝ defined

by

I1 uð Þ = 1
p

ðT
0

0D
α
t u tð Þj jpdt: ð34Þ

From (23), we have

I ′ ukð Þ − I ′ uð Þ, uk − u
D E

+
ðT
0

f t, uk tð Þð Þ − f t, u tð Þð Þð Þ uk tð Þ − u tð Þð Þ

� dt =Mp−1
pk

ðT
0
ϕp 0D

α
t uk tð Þð Þ 0D

α
t uk tð Þ − 0D

α
t u tð Þð Þ

� dt −Mp−1
p

ðT
0
ϕp 0D

α
t u tð Þð Þ 0D

α
t uk tð Þ − 0D

α
t u tð Þð Þ

� dt =Mp−1
pk

ðT
0

ϕp 0D
α
t uk tð Þð Þ − ϕp 0D

α
t u tð Þð Þ

� 	

� 0D
α
t uk tð Þ − 0D

α
t u tð Þð Þdt + Mp−1

pk −Mp−1
p

� 	ðT
0
ϕp 0D

α
t u tð Þð Þ

� 0D
α
t uk tð Þ − 0D

α
t u tð Þð Þdt,

ð35Þ

which together with (30)–(33) yields

ðT
0

ϕp 0D
α
t uk tð Þð Þ − ϕp 0D

α
t u tð Þð Þ

� 	
0D

α
t uk tð Þ − 0D

α
t u tð Þð Þdt⟶ 0,

ð36Þ

as k⟶∞.
Following (2.10) in [29], there exist two constants c2,

c3 > 0 such that

ðT
0

ϕp 0D
α
t uk tð Þð Þ − ϕp 0D

α
t u tð Þð Þ

� 	
0D

α
t uk tð Þ − 0D

α
t u tð Þð Þ

� dt ≥
c2

ðT
0

0D
α
t uk tð Þ − 0D

α
t u tð Þ pdt,jj p ≥ 2,

c3

ðT
0

0D
α
t uk tð Þ − 0D

α
t u tð Þj j2

0D
α
t uk tð Þj j + 0D

α
t u tð Þj jð Þ2−p dt, 1 < p < 2:

8>>>><
>>>>:

ð37Þ
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When 1 < p < 2, based on the Hölder inequality, we get

ðT
0

0D
α
t uk tð Þ − 0D

α
t u tð Þj jp

� dt ≤
ðT
0

0D
α
t uk tð Þ − 0D

α
t u tð Þj j2

0D
α
t uk tð Þj j + 0D

α
t u tð Þj jð Þ2−p dt

 !p/2

⋅
ðT
0

0D
α
t uk tð Þj j + 0D

α
t u tð Þj jð Þpdt

� � 2−pð Þ/2

≤ c4 ukk kpEα,p + uk kpEα,p
� � 2−pð Þ/2

�
ðT
0

0D
α
t uk tð Þ − 0D

α
t u tð Þj j2

0D
α
t uk tð Þj j + 0D

α
t u tð Þj jð Þ2−p dt

 !p/2

,

ð38Þ

where c4 = 2ðp−1Þð2−pÞ/2 > 0 is a constant, which together
with (37) implies

ðT
0

ϕp 0D
α
t uk tð Þð Þ − ϕp 0D

α
t u tð Þð Þ

� 	
� 20D

α
t uk tð Þ − 0D

α
t u tð Þð Þ

� dt ≥ c3c
−2/p
4 ukk kpEα,p + uk kpEα,p
� � p−2ð Þ/p

uk − uk k2Eα,p ,
 1 < p < 2:

ð39Þ

When p ≥ 2, by (37), we have

ðT
0

ϕp 0D
α
t uk tð Þð Þ − ϕp 0D

α
t u tð Þð Þ

� 	
0D

α
t uk tð Þ − 0D

α
t u tð Þð Þ

� dt ≥ c2 uk − uk kpEα,p , p ≥ 2:
ð40Þ

Then, it follows from (36), (39), and (40) that

uk − uk kEα,p ⟶ 0 as k⟶∞: ð41Þ

Hence, I satisfies the (PS)-condition.

Proof of Theorem 1. From (H12), there exist two constants
0 < ε < 1, δ > 0 such that

F t, xð Þ ≤ 1 − εð Þap−1
pCp

p

xj jp, ∀t ∈ 0, T½ �, x ∈ℝwith xj j ≤ δ,

ð42Þ

where Cp > 0 is a constant defined in (13). Let ρ = δ/C∞
and σ = εαp−1ρp/p, where C∞ > 0 is a constant defined in
(15). Then, by (15) and (17), we have

uk k∞ ≤ C∞ uk kEα,p = δ, ∀u ∈ Eα,p
0 with uk kEα,p = ρ, ð43Þ

which together with (13), (17), (22), and (42) implies

I uð Þ = 1
bp2

a + b uk kpEα,p
� �p − ðT

0
F t, u tð Þð Þ

� dt − ap

bp2
≥
ap−1

p
uk kpEα,p −

1 − εð Þap−1
pCp

p

ðT
0
u tð Þj jp

� dt ≥ ap−1

p
uk kpEα,p −

1 − εð Þap−1
p

uk kpEα,p =
εap−1

p
uk kpEα,p = σ,

 ∀u ∈ Eα,p
0 with uk kEα,p = ρ,

ð44Þ

which means that the condition ðC1Þ in Lemma 14 is
satisfied.

From (H11), a simple argument using the very defini-
tion of the derivative shows that there exist two constants
c1, c2 > 0 such that

F t, xð Þ ≥ c1 xj jµ − c2, ∀ t, xð Þ ∈ 0, T½ � ×ℝ: ð45Þ

Then, for any u ∈ Eα,p
0 \ f0g, ξ ∈ℝ+, we can obtain

from (22) and μ > p2 that

I ξuð Þ = 1
bp2

a + b ξuk kpEα,p
� �p − ðT

0
F t, ξu tð Þð Þ

� dt − ap

bp2
≤

1
bp2

a + b ξuk kpEα,p
� �p

− c1

ðT
0
ξu tð Þj jμdt + c2T −

ap

bp2

= 1
bp2

a + bξp uk kpEα,p
� �p − c1ξ

μ uk kμLμ

+ c2T −
ap

bp2
⟶ −∞as ξ⟶∞:

ð46Þ

Thus, taking ξ0 large enough and letting e = ξ0u, we
have IðeÞ ≤ 0. Hence, the condition ðC2Þ in Lemma 14 is
also satisfied.

Finally, by Ið0Þ = 0, Lemmas 14 and 19, we get a critical
point u∗ of I satisfying Iðu∗Þ ≥ σ > 0, and so u∗ is a nontrivial
solution of BVP (1).

4. Proofs of Theorems 2 and 3

In this section, we discuss the existence and multiplicity of
nontrivial weak solutions of BVP (1) when the nonlinearity
f ðt, xÞ is ðp2 − 1Þ-sublinear in x at infinity.

Lemma 20. Suppose that (H21) is satisfied. Then, I is bounded
from below in Eα,p

0 .

Proof. From (H21), one has

F t, uð Þj j ≤ d tð Þ uj jr1 , ∀ t, uð Þ ∈ 0, T½ � ×ℝ, ð47Þ
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which together with (15)–(22) yields

I uð Þ ≥ 1
bp2

a + b uk kpEα,p
� �p − ðT

0
d tð Þ u tð Þj jr1

� dt − ap

bp2
≥

1
bp2

a + b uk kpEα,p
� �p − dk kL1 uk kr1∞

−
ap

bp2
≥

1
bp2

a + b uk kpEα,p
� �p − Cr1

∞ dk kL1 uk kr1Eα,p −
ap

bp2
:

ð48Þ

Since 1 < r1 < p2, (48) yields IðuÞ⟶∞ as jujEα,p⟶∞.
Hence, I is bounded from below.

Lemma 21. Assume that (H21) holds. Then, I satisfies the
(PS)-condition in Eα,p

0 .

Proof. Let be a sequence such that

I ukð Þj j ≤ K ,
I ′ ukð Þ⟶ 0 as k⟶∞,

ð49Þ

where K > 0 is a constant. Then, (48) implies that fukg is
bounded in Eα,p

0 . The remainder of proof is similar to the
proof of Lemma 19, so we omit the details.

Proof of Theorem 2. From Lemmas 15, 20, and 21, we obtain
c = infEα,p

0
IðuÞ which is a critical value of I; that is, there exists

a critical point u∗ ∈ Eα,p
0 such that Iðu∗Þ = c.

Now, we show u∗ ≠ 0. Let u0 ∈ ðW1,2
0 ðI,ℝÞ ∩ Eα,p

0 Þ \ f0g
and ku0k∞ = 1, from (22) and (H22), we get

I su0ð Þ = 1
bp2

a + b su0k kpEα,p
� �p − ðT

0
F t, su0 tð Þð Þ

� dt − ap

bp2
= 1
bp2

a + bsp u0k kpEα,p
� �p − ð

I

F , su0 tð Þð Þ

� dt − ap

bp2
≤

1
bp2

a + bsp u0k kpEα,p
� �P − ηsr2

ð
I

u0 tð Þj jr2

� dt − ap

bp2
, 0 < s ≤ δ:

ð50Þ

Since 1 < r2 < p2, (50) implies I(su0) < 0 for s > 0 small
enough. Then, Iðu∗Þ = c < 0; hence, u∗ is a nontrivial critical
point of I, and so u∗ is a nontrivial solution of BVP (1).

Proof of Theorem 3. From Lemmas 20 and 21, we obtain that
I ∈ C1ðEα,p

0 ,ℝÞ is bounded from below and satisfies the (PS)-
condition. In addition, (22) and (H23) show that I is even and
Ið0Þ = 0.

Fixing n ∈ℕ, we take n disjoint open intervals Ii such that
∪n
i=1Ii ⊂ I.

Let ui ∈ ðW1,2
0 ðIi,ℝÞ ∩ Eα,p

0 Þ \ f0g and kuikEα,p = 1, and

En = span u1, u2,⋯,unf g,
Sn = u ∈ En uk kEα,p = 1

��
 �
:

ð51Þ

For u ∈ En, there exists λi ∈ℝ, such that

u tð Þ = 〠
n

i=1
λiui tð Þ, ∀t ∈ 0, T½ �: ð52Þ

Thus, we get

uk kpEα,p =
ðT
0

0D
α
t u tð Þj jpdt = 〠

n

i=1
λij jp
ð
Ii

0D
α
t ui tð Þj jp

� dt = 〠
n

i=1
λij jp
ðT
0

0D
α
t ui tð Þj jpdt = 〠

n

i=1
λij jp uik kpEα,p

= 〠
n

i=1
λij jp, ∀u ∈ En:

ð53Þ

From (15)–(22), (52), and (H22), for u ∈ Sn, one has

I suð Þ = 1
bp2

a + b suk kpEα,p
� �p − ðT

0
F t, su tð Þð Þ

� dt − ap

bp2
= 1
bp2

a + bsp
� �p − 〠

n

i=1

ð
Ii

F t, sλiui tð Þð Þ

� dt − ap

bp2
≤

1
bp2

a + bsp
� �p − ηsr2 〠

n

i=1
λij jr2

ð
Ii

ui tð Þj jr2

� dt − ap

bp2
, 0 < s ≤

δ

C∞λ ∗
,

ð54Þ

where λ∗ =maxi∈f1,2,⋯,ngjλij > 0 is a constant. Since 1 < r2 <
p2, it follows from (54) that there exist constants ϵ, σ > 0 such
that

I σuð Þ < −ε, ∀u ∈ Sn: ð55Þ

Let

Sσn = σu u ∈ Snjf g,

Λ = λ1, λ2,⋯,λnð Þ ∈ℝn 〠
n

i=1
λij jp < σp

�����
( )

:
ð56Þ

Then, we obtain from (55) that

I uð Þ < −ε, ∀u ∈ Sσn , ð57Þ

which, together with the fact that I is even and Ið0Þ = 0, yields

Sσn ⊂ I−ε ∈〠: ð58Þ
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From (53), it is seen that the mapping ðλ1, λ2,⋯,
λnÞ⟶∑n

i=1λiuiðtÞ from ∂Λ to Sσn is odd and homeo-
morphic. Hence, by some properties of the genus
(Propositions 7.5 and 7.7 in [28]), we deduce that

γ I−∈ð Þ ≥ γ Sσnð Þ = n: ð59Þ

Thus, I−ε ∈ ∑n and so Σn ≠ 0. Let

cn = inf
A∈〠

n

sup
u∈A

I uð Þ: ð60Þ

It follows from I is bounded from below that −∞<cn≤
−ε < 0. That is, for any n ∈ℕ, cn is a real negative number.
Hence, by Lemma 17, I admits infinitely many nontrivial
critical points, and so BVP (1) possesses infinitely many
nontrivial negative energy solutions.

Obviously the following assumption implies (H21)–(H23).

(H24). f ðt, xÞ = rgðtÞjxjr−2x, where 1 < r < p2 is a constant, g
∈ Cð½0, T�,ℝÞ, and there exists an open interval I ⊂ ½0, T�
such that gðtÞ > 0,∀t ∈ I.

As a direct result, we have the following result.

Corollary 22. Let (H24) be satisfied. Then, BVP (1) possesses
infinitely many nontrivial weak solutions.
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