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We study the nonexistence of global solutions for new classes of nonlinear fractional differential inequalities. Namely, sufficient
conditions are provided so that the considered problems admit no global solutions. The proofs of our results are based on the
test function method and some integral estimates.

1. Introduction

We first consider the problem

CD
1+α
0 u tð Þ + CD

1+β
0 u tð Þ ≥ CD

γ
0u tð Þ

��� ���p, t > 0,

u 0ð Þ, u′ 0ð Þ
� �

= u0, u1ð Þ,

8><
>: ð1Þ

where p > 1, α, β, γ ∈ ð0, 1Þ, CDκ
0, κ ∈ f1 + α, 1 + β, γg is the

Caputo fractional derivative of order κ, u0 ∈ℝ, and u1 ≥ 0.
Namely, we are interested in providing sufficient conditions
for which problem (1) admits no global solution. Next, we
study the same question for the inhomogeneous problem

CD
1∣+α
0 u tð Þ + CD

1∣+β
0 u tð Þ ≥ CD

γ
0u tð Þ

��� ���p + f tð Þ, t > 0,

u 0ð Þ, u′ 0ð Þ
� �

= u0, u1ð Þ,

8><
>:

ð2Þ

where p, q > 1, α, β, γ ∈ ð0, 1Þ, u0 ∈ℝ, u1 ≥ 0, f ∈ L1locð½0,∞ÞÞ,
f ≥ 0, and f ≠ 0.

Due to the importance of fractional calculus in applica-
tions (see e.g. [1–5]), in the past few decades, there has been

a growing interest in the study of fractional differential equa-
tions. In particular, from the theoretical point of view, the
existence of solutions for different classes of fractional differ-
ential equations was investigated in many contributions (see
e.g. [6–12] and the references therein).

For the issue of nonexistence of solutions for fractional
differential equations and inequalities, we refer to [13–22]
and the references therein. In particular, in [17], Laskri and
Tatar studied the problem

Dα
0u tð Þ ≥ tγ y tð Þj jp, t > 0,

I1−α0 u tð Þ��t=0 = b,

(
ð3Þ

where p > 1, 0 < α < 1, γ > −α, and b ≥ 0, Dα
0 is the Riemann-

Liouville fractional derivative of order α, and I1−α0 is the left-
sided Riemann-Liouville fractional integral of order 1 − α. It
was shown that, if p ≤ ðγ + 1/1 − αÞ, then problem (3) does
not admit nontrivial global solution. In [16], Kassim et al.
studied the problem

CD
α
0u tð Þ + CD

β
0u tð Þ ≥ tγ y tð Þj jp, t > 0,

u ið Þ 0ð Þ = bi, i = 0, 1,⋯, n − 1,

8<
: ð4Þ
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where p > 1, n ≥ 1 is an integer, n − 1 < β ≤ α < n, and bi ≥ 0.
It was shown that, if

p 1 − βð Þ − 1 < γ < p − 1, ð5Þ

then problem (4) does not admit nontrivial global solution.
In [15], Furati and Kirane investigated the system of nonlin-
ear fractional differential equations

u′ tð Þ+CDα
0u tð Þ = v tð Þj jq, t > 0,

v′ tð Þ+CDβ
0v tð Þ = u tð Þj jp, t > 0,

(
ð6Þ

subject to the initial conditions

u 0ð Þ, v 0ð Þð Þ = u0, v0ð Þ, ð7Þ

where 0 < α, β < 1, p, q > 1, and u0, v0 > 0. It was shown that, if

1 − 1
pq

≤max α + β

p
, β + α

q

� �
, ð8Þ

then solutions to system (6) subject to (7) blow up in a finite
time.

For the issue of nonexistence of global solutions for frac-
tional in time evolution equations, we refer to [6, 23–25] and
the references therein.

On the other hand, to the best of our knowledge, the non-
existence of global solutions for problems of types (1) and (2)
was not yet investigated.

Before stating our main results, let us mention what we
mean by global solutions to problems (1) and (2).

Definition 1. A function u ∈ AC2ð½0,∞ÞÞ is said to be a global
solution to problem (1), if u satisfies

CD1+α
0 u tð Þ+CD1+β

0 u tð Þ ≥ CDγ
0u tð Þ�� ��p, ð9Þ

for almost every where t > 0, and

u 0ð Þ, u′ 0ð Þ
� �

= u0, u1ð Þ: ð10Þ

Definition 2. A function u ∈ AC2ð½0,∞ÞÞ is said to be a global
solution to problem (2), if u satisfies

CD1+α
0 u tð Þ+CD1+β

0 u tð Þ ≥ CDγ
0u tð Þ�� ��p + f tð Þ, ð11Þ

for almost every where t > 0, and

u 0ð Þ, u′ 0ð Þ
� �

= u0, u1ð Þ: ð12Þ

We first consider problem (1). We discuss separately the
cases u1 > 0 and u1 = 0.

Theorem 3. Let α, β, γ ∈ ð0, 1Þ, and u0 ∈ℝ . If u1 > 0, then for
all p > 1, problem (1) admits no global solution.

Theorem 4. Let α, β, γ ∈ ð0, 1Þ, α ≤ β, u0 ∈ℝ, and u1 = 0.

(i) If γ ≤ α, then for all p > 1, the only global solution to
problem (1) is u ≡ u0

(ii) If γ > α, then for all

1 < p < 1
γ − α

, ð13Þ

the only global solution to problem (1) is u ≡ u0.

Next, we consider problem (2).

Theorem 5. Let α, β, γ ∈ ð0, 1Þ, u0 ∈ℝ, f ∈ L1locð½0,∞ÞÞ, f ≥ 0,
and f≡0. If u1 > 0, then for all p > 1, problem (2) admits no
global solution.

Theorem 6. Let p > 1, α, β, γ ∈ ð0, 1Þ, α ≤ β, u0 ∈ℝ, u1 = 0, f
∈ L1locð½0,∞ÞÞ, f ≥ 0, and f≡0. If

limsup
T→+∞

T α−γð Þp+1ð Þ/ p−1ð Þð Þ
ðT/2
0

f tð Þ dt = +∞, ð14Þ

then problem (2) admits no global solution.

We discuss below some special cases of Theorem 6.

Corollary 7. Let α, β, γ ∈ ð0, 1Þ, α ≤ β, u0 ∈ℝ, and u1 = 0. Let

f tð Þ = eat , t > 0, ð15Þ

where a ∈ℝ and a ≠ 0.

(i) If a > 0, then for all p > 1, problem (2) admits no
global solution

(ii) If a < 0 and γ ≤ α, then for all p > 1, problem (2)
admits no global solution

(iii) If a < 0 and γ > α, then for all

1 < p < 1
γ − α

, ð16Þ

problem (2) admits no global solution.

Corollary 8. Let α, β, γ ∈ ð0, 1Þ, α ≤ β, u0 ∈ℝ, and u1 = 0. Let

f tð Þ = tσ,  t > 0, ð17Þ

where σ > −1.
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(i) If σ ≥ 0, then for all p > 1, problem (2) admits no
global solution

(ii) Let −1 < σ < 0

(a) If γ ≤ α, then for all p > 1, problem (2) admits no
global solution

(b) If γ > α and γ − α − 1 ≤ σ < 0, then for all p > 1, prob-
lem (2) admits no global solution

(c) If γ > α and −1 < σ < γ − α − 1, then for all

1 < p < σ

σ − γ + α + 1
, ð18Þ

problem (2) admits no global solution.

The rest of the paper is organized as follows. In Section 2,
we recall briefly some standard notions on fractional calculus
and prove some properties. Section 3 is devoted to the Proofs
of Theorems 3, 4, 5, and 6 and Corollaries 7 and 8.

2. Some Preliminaries

We denote by ACð½0,∞ÞÞ the space of absolutely continuous
functions on ½0,∞Þ. Given an integer n ≥ 2, we denote by A
Cnð½0,∞ÞÞ the space of functions f which have continuous
derivatives up to order n − 1 on ½0,∞Þ such that f ðn−1Þ ∈ A
Cð½0,∞ÞÞ. Here, f ðn−1Þ denotes the derivative of order n − 1
of f .

Let T > 0 be fixed. Given ρ > 0 and f ∈ L1ð0, TÞ, the left-
sided Riemann-Liouville fractional integral of order ρ of f
is defined by

Iρ0 f
� �

tð Þ = 1
Γ ρð Þ

ðt
0
t − sð Þρ−1 f sð Þ ds, ð19Þ

for almost everywhere 0 ≤ t ≤ T . Here, Γ denotes the Gamma
function. The right-sided Riemann-Liouville fractional inte-
gral of order ρ of f is defined by

IρT f
� �

tð Þ = 1
Γ ρð Þ

ðT
t

s − tð Þρ−1 f sð Þ ds, ð20Þ

for almost everywhere 0 ≤ t ≤ T . Notice that, if f ∈ C
½0, TÞ�ð , then Iρ0 f is defined for all 0 < t ≤ T . Moreover,
one has limt→0+ðIρ0 f ÞðtÞ = 0. Similarly, if f ∈ C ½0, TÞ�ð , then
IρT f is defined for all 0 ≤ t < T . Moreover, one has
limt→T−ðIρT f ÞðtÞ = 0.

Lemma 9 (see [5]). Let ρ, κ > 0 and f ∈ Lτð0, TÞ, where 1 ≤ τ
≤∞. Then

Iρ0 Iκ0 fð Þ tð Þ = Iκ0 Iρ0 f
� �

tð Þ = Iρ+κ0 f
� �

tð Þ, ð21Þ

for almsot everywhere 0 ≤ t ≤ T .

Lemma 10 (see [5]). Let ρ > 0, τ, μ ≥ 1, and ð1/τÞ + ð1/μÞ ≤
1 + ρ (τ ≠ 1 and μ ≠ 1 in the case ð1/τÞ + ð1/μÞ = 1 + ρ). If f
∈ Lτð0, TÞ and g ∈ Lμð0, TÞ, then

ðT
0

Iρ0 f
� �

tð Þg tð Þ dt =
ðT
0

IρTg
� �

tð Þf tð Þ dt: ð22Þ

Let n − 1 < ρ < n and f ∈ ACnð½0,∞ÞÞ, where n ≥ 1 is an
integer. The (left-sided) Caputo fractional derivative of order
ρ of f is defined by

CDρ
0 f

� �
tð Þ = In−ρ0 f nð Þ

� �
tð Þ, ð23Þ

for almost everywhere t > 0. Here, for n = 1, AC1ð½0,∞ÞÞ =
ACð½0,∞ÞÞ.

For λ≫ 1 (λ is large enough), we define the function

ξ tð Þ = T−λ T − tð Þλ, 0 ≤ t ≤ T: ð24Þ

Lemma 11. Let ρ > 0 and 0 < κ < 1. Then

IρTξ
� �

tð Þ = Γ λ + 1ð Þ
Γ ρ + λ + 1ð ÞT

−λ T − tð Þλ+ρ, 0 ≤ t < T , ð25Þ

IρTξ
� �′ tð Þ = −Γ λ + 1ð Þ

Γ ρ + λð Þ T−λ T − tð Þλ+ρ−1, 0 ≤ t < T , ð26Þ

IρTξ
� �′′ tð Þ = Γ λ + 1ð Þ

Γ ρ + λ − 1ð ÞT
−λ T − tð Þλ+ρ−2, 0 ≤ t < T ,

ð27Þ

IρT I1−κT ξ
� �′′h i

tð Þ = Γ λ + 1ð Þ
Γ λ + ρ − κð ÞT

−λ T − tð Þλ+ρ−1−κ, 0 ≤ t < T:

ð28Þ
Proof.We prove only (25). Namely, differentiating (25), (26)
follows. Similarly, differentiating (26), (27) follows. More-
over, taking ρ = 1 − κ in (27) and using a similar calculation
as in the proof of (25), (28) follows.

For t ∈ ½0, TÞ, one has

IρTξ
� �

tð Þ = T−λ

Γ ρð Þ
ðT
t

s − tð Þρ−1 T − sð Þλ ds

= T−λ

Γ ρð Þ
ðT
t

s − tð Þρ−1 T − tð Þ − s − tð Þð Þλ ds

= T−λ T − tð Þλ
Γ ρð Þ

ðT
t

s − tð Þρ−1 1 − s − t
T − t

	 
λ

ds:

ð29Þ
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Using the change of variable z = ðs − t/T − tÞ, one obtains

IρTξ
� �

tð Þ = T−λ T − tð Þλ+ρ
Γ ρð Þ

ð1
0
zρ−1 1 − zð Þ λ+1ð Þ−1 dz

= T−λ T − tð Þλ+ρ
Γ ρð Þ B ρ, λ + 1ð Þ,

ð30Þ

where Bð·, · Þ is the beta function. Using the property

B a, bð Þ = Γ að ÞΓ bð Þ
Γ a + bð Þ , a, b > 0, ð31Þ

one obtains (25).

3. Proofs

The proofs of our results are based on the test function
method (see e.g. [26])and some integral estimates.

Proof of Theorem 3. Let us suppose that u ∈ AC2ð½0,∞ÞÞ is a
global solution to (1). For T > 0, multiplying the differential
inequality in (1) by ξ, where ξ is the function defined by
(24), and integrating over ð0, TÞ, one obtains
ðT
0

CDγ
0u tð Þ�� ��pξ tð Þ dt ≤

ðT
0

CD1+α
0 u tð Þξ tð Þ dt +

ðT
0

CD1+β
0 u tð Þξ tð Þ dt:

ð32Þ

Without restriction of the generality, we may suppose
that

0 < α ≤ β < 1: ð33Þ

On the other hand, using Lemma 10, one obtains

ðT
0

CD1+α
0 u tð Þξ tð Þ dt =

ðT
0

I1−α0 u′′
� �

tð Þξ tð Þ dt

=
ðT
0
u′′ tð Þ I1−αT ξ

� �
tð Þ dt:

ð34Þ

Using an integration by parts, the initial conditions and
(25), it holds that

ðT
0

CD1+α
0 u tð Þξ tð Þ dt = u′ tð Þ I1−αT ξ

� �
tð Þ

h iT
0
−
ðT
0
u′ tð Þ I1−αT ξ

� �′ tð Þ dt
= −u1 I1−αT ξ

� �
0ð Þ −

ðT
0
u′ tð Þ I1−αT ξ

� �′ tð Þ dt:
ð35Þ

On the other hand, by Lemma 9 and using the initial
conditions, one obtains

u′ tð Þ = u tð Þ − u0ð Þ′ =
ðt
0
u′ sð Þ ds

	 

= I10u′
� �

′ tð Þ

= Iγ0 I1−γ0 u′
� �h i

′ tð Þ:
ð36Þ

Therefore, by (35), one obtains

ðT
0

CD1+α
0 u tð Þξ tð Þ dt = −u1 I1−αT ξ

� �
0ð Þ

−
ðT
0

Iγ0 I1−γ0 u′
� �h i

tð Þ I1−αT ξ
� �′ tð Þ dt:

ð37Þ

Using an integration by parts, the initial conditions, (26)
and Lemma 10, it holds that

ðT
0

CD1+α
0 u tð Þξ tð Þ dt = −u1 I1−αT ξ

� �
0ð Þ − u tð Þ − u0ð Þ I1−αT ξ

� �′ tð Þh iT
0

−
ðT
0
Iγ0 I1−γ0 u′
� �

tð Þ I1−αT ξ
� �′′ tð Þ dt

= −u1 I1−αT ξ
� �

0ð Þ

−
ðT
0

I1−γ0 u′
� �

tð ÞIγT I1−αT ξ
� �′′h i

tð Þ dt

= −u1 I1−αT ξ
� �

0ð Þ −
ðT
0

CDγ
0u tð ÞIγT I1−αT ξ

� �′′h i
tð Þ dt:

ð38Þ

Similarly, one has

ðT
0

CD1+β
0 u tð Þξ tð Þ dt = −u1 I1−βT ξ

� �
0ð Þ

−
ðT
0

CDγ
0u tð ÞIγT I1−βT ξ

� �
′′

h i
tð Þ dt:

ð39Þ

Next, using (32), (38), and (39), one obtains

ðT
0

CDγ
0u tð Þ�� ��pξ tð Þ dt + u1 I1−αT ξ

� �
0ð Þ + I1−βT ξ

� �
0ð Þ

� �

≤
ðT
0

CDγ
0u tð Þ�� �� IγT I1−αT ξ

� �′′h i
tð Þ

��� ��� dt + ðT
0

CDγ
0u tð Þ�� �� IγT I1−βT ξ

� �
′′

h i
tð Þ

��� ��� dt:
ð40Þ

On the other hand, using ε-Young inequality with
0 < ε < ð1/2Þ, one obtains

ðT
0

CDγ
0u tð Þ�� �� IγT I1−αT ξ

� �′′h i
tð Þ

��� ��� dt ≤ ε
ðT
0

CDγ
0u tð Þ�� ��pξ tð Þ dt

+ C ε, pð Þ
ðT
0
ξ tð Þ −1/ p−1ð Þð Þ IγT I1−αT ξ

� �′′h i
tð Þ

��� ��� p/ p−1ð Þð Þ
dt,

ð41Þ
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where Cðε, pÞ is a positive real number that depends
only on ε and p. Similarly, one has

ðT
0

CDγ
0u tð Þ�� �� IγT I1−βT ξ

� �
′′

h i
tð Þ

��� ��� dt ≤ ε
ðT
0

CDγ
0u tð Þ�� ��pξ tð Þ dt

+ C ε, pð Þ
ðT
0
ξ tð Þ −1/ p−1ð Þð Þ IγT I1−βT ξ

� �
′′

h i
tð Þ

��� ��� p/ p−1ð Þð Þ
dt:

ð42Þ

Hence, it follows from (40), (41), and (42) that

1 − 2εð Þ
ðT
0

CDγ
0u tð Þ�� ��pξ tð Þ dt + u1 I1−αT ξ

� �
0ð Þ + I1−βT ξ

� �
0ð Þ

� �

≤ C ε, pð Þ
ðT
0
ξ tð Þ −1/ p−1ð Þð Þ IγT I1−αT ξ

� �′′h i
tð Þ

��� ��� p/ p−1ð Þð Þ
dt

	

+
ðT
0
ξ tð Þ −1/ p−1ð Þð Þ IγT I1−βT ξ

� �
′′

h i
tð Þ

��� ��� p/ p−1ð Þð Þ
dt


:

ð43Þ

Since 0 < ε < ð1/2Þ, one deduces from (43) that

u1 I1−αT ξ
� �

0ð Þ + I1−βT ξ
� �

0ð Þ
� �
≤ C ε, pð Þ

ðT
0
ξ tð Þ −1/ p−1ð Þð Þ IγT I1−αT ξ

� �′′h i
tð Þ

��� ��� p/ p−1ð Þð Þ
dt

	

+
ðT
0
ξ tð Þ −1/ p−1ð Þð Þ IγT I1−βT ξ

� �
′′

h i
tð Þ

��� ��� p/ p−1ð Þð Þ
dt


:

ð44Þ

On the other hand, by (25), one has

I1−αT ξ
� �

0ð Þ = Γ λ + 1ð Þ
Γ 2 + λ − αð ÞT

1−α, ð45Þ

and

I1−βT ξ
� �

0ð Þ = Γ λ + 1ð Þ
Γ 2 + λ − βð ÞT

1−β, ð46Þ

which yield

u1 I1−αT ξ
� �

0ð Þ + I1−βT ξ
� �

0ð Þ
� �

= Γ λ + 1ð Þu1T1−α 1
Γ 2 + λ − αð Þ + Tα−β

Γ 2 + λ − βð Þ

 !
:

ð47Þ

Since u1 > 0, one deduces that

u1 I1−αT ξ
� �

0ð Þ + I1−βT ξ
� �

0ð Þ
� �

≥ C1u1T
1−α, ð48Þ

where C1 = ðΓðλ + 1Þ/Γð2 + λ − αÞÞ > 0. Next, using (28)

with ρ = γ and κ = α, one obtains

ðT
0
ξ tð Þ −1/ p−1ð Þð Þ IγT I1−αT ξ

� �′′h i
tð Þ

��� ��� p/ p−1ð Þð Þ
dt

= Γ λ + 1ð Þ
Γ λ + γ − αð Þ
	 
 p/ p−1ð Þð Þ

T−λ
ðT
0

T − tð Þλ+ γ−1−αð Þpð Þ/ p−1ð Þð Þ dt

= Γ λ + 1ð Þ
Γ λ + γ − αð Þ
	 
 p/ p−1ð Þð Þ

T γ−1−αð Þpð Þ/ p−1ð Þð Þ
ðT
0

1 − t
T

	 
λ+ γ−1−αð Þpð Þ/ p−1ð Þð Þ
dt

= Γ λ + 1ð Þ
Γ λ + γ − αð Þ
	 
 p/ p−1ð Þð Þ

T γ−1−αð Þpð Þ/ p−1ð Þð Þ+1
ð1
0
1 − sð Þλ+ γ−1−αð Þpð Þ/ p−1ð Þð Þ ds,

ð49Þ

which yields

ðT
0
ξ tð Þ −1/ p−1ð Þð Þ IγT I1−αT ξ

� �′′h i
tð Þ

��� ��� p/ p−1ð Þð Þ
dt

= C2T
γ−1−αð Þpð Þ/ p−1ð Þð Þ+1,

ð50Þ

where

C2 =
Γ λ + 1ð Þ

Γ λ + γ − αð Þ
	 
 p/ p−1ð Þð Þð1

0
1 − sð Þλ+ γ−1−αð Þpð Þ/ p−1ð Þð Þ ds > 0:

ð51Þ

Similarly, one has

ðT
0
ξ tð Þ −1/ p−1ð Þð Þ IγT I1−βT ξ

� �
′′

h i
tð Þ

��� ��� p/ p−1ð Þð Þ
dt

= C3T
γ−1−βð Þpð Þ/ p−1ð Þð Þ+1,

ð52Þ

where

C3 =
Γ λ + 1ð Þ

Γ λ + γ − βð Þ
	 
 p/ p−1ð Þð Þð1

0
1 − sð Þλ+ γ−1−βð Þpð Þ/ p−1ð Þð Þ ds > 0:

ð53Þ

Therefore, it follows from (44), (48), (50), and (52)
that

C1u1T
1−α ≤ C ε, pð Þ C2T

γ−1−αð Þpð Þ/ p−1ð Þð Þ+1 + C3T
γ−1−βð Þpð Þ/ p−1ð Þð Þ+1

� �
,

ð54Þ

which yields

u1 ≤
C ε, pð Þ
C1

Tα+ γ−1−αð Þpð Þ/ p−1ð Þð Þ C2 + C3T
α−βð Þpð Þ/ p−1ð Þð Þ

� �
, T > 0:

ð55Þ

Notice that for all p > 1, one has

α + γ − 1 − αð Þp
p − 1 < 0,

α − βð Þp
p − 1 ≤ 0 from 33ð Þð Þ:

8>>><
>>>:

ð56Þ
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Hence, using (56) and passing to the limit as T ⟶ +∞ in
(55), one obtains u1 ≤ 0, which contradicts the fact that u1 > 0.
Therefore, one deduces that for all p > 1, problem (1) admits
no global solution.

Proof of Theorem 4. Let u1 = 0. First, one observes that in this
case u ≡ u1 is a global solution to (1). Suppose now that u ∈
AC2ð½0,∞ÞÞ is a global solution to (1). Taking u1 = 0 in
(43), one obtains

ðT
0

CDγ
0u tð Þ�� ��pξ tð Þdt

≤ C′ ε, pð Þ
ðT
0
ξ tð Þ −1/ p−1ð Þð Þ IγT I1−αT ξ

� �′′h i
tð Þ

��� ��� p/ p−1ð Þð Þ
dt

	

+
ðT
0
ξ tð Þ −1/ p−1ð Þð Þ IγT I1−βT ξ

� �
′′

h i
tð Þ

��� ��� p/ p−1ð Þð Þ
dt


,

ð57Þ

for all T > 0, where C′ðε, pÞ = ðCðε, pÞ/1 − 2εÞ and 0 < ε < ð1
/2Þ. Next, using (24) and the estimates (50) and (52), one
obtains

ðT
0

CDγ
0u tð Þ�� ��p 1 − t

T

	 
λ

dt

≤ C′ ε, pð ÞT γ−1−αð Þpð Þ/ p−1ð Þð Þ+1 C2 + C3T
α−βð Þpð Þ/ p−1ð Þð Þ

� �
:

ð58Þ

Notice that since α ≤ β, one has

α − βð Þp
p − 1 ≤ 0: ð59Þ

Moreover, if γ ≤ α, then

γ − 1 − αð Þp
p − 1 + 1 < 0: ð60Þ

Hence, passing to the infimum limit as T ⟶ +∞ in (58)
and using Fatou’s lemma, one obtains

ð∞
0

CDγ
0u tð Þ�� ��p dt = 0, ð61Þ

which yields

CDγ
0u tð Þ = 0, ð62Þ

for almost everywhere t > 0. Then, using the initial condi-
tions and Lemma 9, one deduces that

Iγ0
CDγ

0u
� �

tð Þ = Iγ0 I1−γ0 u′
� �

tð Þ = I10u′
� �

tð Þ = u tð Þ − u0 = 0,

ð63Þ

for almost everywhere t > 0. Since u is continuous

(u ∈ AC2ð½0,∞ÞÞ), it holds that uðtÞ = u0 for all t ≥ 0. This
proves part (i) of Theorem 4.

Suppose now that γ > α. In this case, if 1 < p < ð1/γ − αÞ,
then (60) holds. Hence, proceeding as above, one obtains
uðtÞ = u0 for all t ≥ 0, which proves part (ii) of Theorem 4.

Proof of Theorem 5. It is sufficient to observe that any global
solution to problem (2) is a global solution to problem (1).
Hence, using Theorem 3, one deduces that problem (2)
admits no global solution.

Proof of Theorem 6. Let us suppose that u ∈ AC2ð½0,∞ÞÞ is a
global solution to problem (2). Proceeding as in the Proof
of Theorem 4 and using that u1 = 0, one obtains

ðT
0
f tð Þξ tð Þ dt ≤ C

ðT
0
ξ tð Þ −1/ p−1ð Þð Þ IγT I1−αT ξ

� �′′h i
tð Þ

��� ��� p/ p−1ð Þð Þ
dt

	

+
ðT
0
ξ tð Þ −1/ p−1ð Þð Þ IγT I1−βT ξ

� �
′′

h i
tð Þ

��� ��� p/ p−1ð Þð Þ
dt


,

ð64Þ

for all T > 0, where C > 0 is a constant (independent on T).
On the other hand, by (24), one has

ðT
0
f tð Þξ tð Þ dt =

ðT
0
T−λ T − tð Þλ f tð Þ dt ≥ 2−λ

ðT/2
0

f tð Þ dt:

ð65Þ

Moreover, by (50) and (52), one has

ðT
0
ξ tð Þ −1/ p−1ð Þð Þ IγT I1−αT ξ

� �′′h i
tð Þ

��� ��� p/ p−1ð Þð Þ
dt

+
ðT
0
ξ tð Þ −1/ p−1ð Þð Þ IγT I1−βT ξ

� �
′′

h i
tð Þ

��� ��� p/ p−1ð Þð Þ
dt

≤ C2T
γ−1−αð Þpð Þ/ p−1ð Þð Þ+1

+ C3T
γ−1−βð Þpð Þ/ p−1ð Þð Þ+1=T γ−αð Þp−1ð Þ/ p−1ð Þð Þ C2+C3T

α−βð Þpð Þ/ p−1ð Þð Þð Þ:
ð66Þ

Next, it follows from (64), (65), and (66) that

2−λ
ðT/2
0

f tð Þ dt ≤ CT γ−αð Þp−1ð Þ/ p−1ð Þð Þ C2 + C3T
α−βð Þpð Þ/ p−1ð Þð Þ

� �
,

ð67Þ

which yields

T 1+ α−γð Þpð Þ/ p−1ð Þð Þ
ðT/2
0

f tð Þ dt ≤ 2λC C2 + C3T
α−βð Þpð Þ/ p−1ð Þð Þ

� �
:

ð68Þ

Finally, passing to the supremum limit as T ⟶ +∞ in
(68), using (14) and the fact α ≤ β, a contradiction follows.
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Proof of Corollary 7. For all a ≠ 0, one has
ðT/2
0

f tð Þdt = 1
a

eaT/2 − 1
� �

: ð69Þ

If a > 0, then
ðT/2
0

f tð Þdt ~ 1
a
eaT/2, asT ⟶ +∞, ð70Þ

which yields

lim
T→+∞

T α−γð Þp+1ð Þ/ p−1ð Þð Þ
ðT/2
0

f tð Þ dt

= lim
T→+∞

1
a
T α−γð Þp+1ð Þ/ p−1ð Þð ÞeaT/2 = +∞:

ð71Þ

Hence, by Theorem 6, one deduces that for all p > 1,
problem (2) admits no global solution, which proves part (i).

If a < 0, then
ðT/2
0

f tð Þdt ~ −1
a
, asT ⟶ +∞, ð72Þ

which yields

lim
T→+∞

T α−γð Þp+1ð Þ/ p−1ð Þð Þ
ðT/2
0

f tð Þ dt = lim
T→+∞

−1
a
T α−γð Þp+1ð Þ/ p−1ð Þð Þ:

ð73Þ

Therefore, if α ≥ γ, one has

α − γð Þp + 1 > 0, p > 1, ð74Þ

which yields

lim
T→+∞

T α−γð Þp+1ð Þ/ p−1ð Þð Þ
ðT/2
0

f tð Þ dt = +∞, p > 1: ð75Þ

Hence, by Theorem 6, one deduces that for all p > 1,
problem (2) admits no global solution, which proves part
(ii). On the other hand, if γ > α, one has

α − γð Þp + 1 > 0, 1 < p < 1
γ − α

, ð76Þ

which yields

lim
T→+∞

T α−γð Þp+1ð Þ/ p−1ð Þð Þ
ðT/2
0

f tð Þ dt = +∞, 1 < p < 1
γ − α

:

ð77Þ

Hence, by Theorem 6, one deduces that for all 1 <
p < ð1/γ − αÞ, problem (2) admits no global solution,
which proves part (iii).

Proof of Corollary 8. For all σ > −1, one has
ðT/2
0

f tð Þ dt = 1
2σ+1 σ + 1ð Þ Tσ+1 − 2σ+1

� �
, ð78Þ

which yields

ðT/2
0

f tð Þdt ~ Tσ+1

2σ+1 σ + 1ð Þ , asT ⟶ +∞: ð79Þ

Hence,

lim
T→+∞

T α−γð Þp+1ð Þ/ p−1ð Þð Þ
ðT/2
0

f tð Þ dt

= lim
T→+∞

1
2σ+1 σ + 1ð ÞT

α−γð Þp+1ð Þ/ p−1ð Þð Þ+σ+1:
ð80Þ

Notice that

α − γð Þp + 1
p − 1 + σ + 1 > 0⇔ α + 1 − γ + σð Þp > σ: ð81Þ

Hence, by Theorem 6, one deduces that for all p > 1
satisfying

α + 1 − γ + σð Þp > σ, ð82Þ

problem (2) admits no global solution.
Consider the case σ ≥ 0. In this case, for all p > 1, one has

α + 1 − γ + σð Þp > σp ≥ σ: ð83Þ

Then (82) is satisfied for all p > 1. Hence, one deduces
that for all p > 1, problem (2) admits no global solution,
which proves part (i).

Suppose now that −1 < σ < 0. If γ ≤ α, then for all p > 1,
one has

α + 1 − γ + σð Þp ≥ σ + 1ð Þp > 0 > σ: ð84Þ

Then, (82) is satisfied for all p > 1. Hence, one deduces
that for all p > 1, problem (2) admits no global solution,
which proves part (ii)(a). On the other hand, if γ > α
and −1 < γ − α − 1 ≤ σ < 0, then

α + 1 − γ + σð Þp ≥ 0 > σ: ð85Þ

Hence, (82) is satisfied for all p > 1. Therefore, for all
p > 1, problem (2) admits no global solution, which proves
part (ii)(b). Finally, if γ > α and −1 < σ < γ − α − 1, then for
all p > 1, (82) is equivalent to

1 < p < σ

α + 1 − γ + σ
: ð86Þ

Hence, for all p satisfying the above condition, prob-
lem (2) admits no global solution, which proves part
(ii)(c).
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