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In this paper, we apply De Giorgi-Moser iteration to establish the Hölder regularity of quasiminimizers to generalized Orlicz
functional on the Heisenberg group by using the Riesz potential, maximal function, Calderón-Zygmund decomposition, and
covering Lemma on the context of the Heisenberg Group. The functional includes the p-Laplace functional on the Heisenberg
group which has been studied and the variable exponential functional and the double phase growth functional on the
Heisenberg group that have not been studied.

1. Introduction

In this paper, we concern the generalized Orlicz functional

ð
Ω

Φ x, ∇Huj jð Þdx: ð1Þ

on the Heisenberg group, where

Φ x, ∇Huj jð Þ ~ φ x, ∇Huj jð Þ ∈Φw Ωð Þ ð2Þ

(we say that f ~ g if and only if there exist c0 and c1 > 0 such
that c0 f ≤ g ≤ c1 f ), ∇Hu = ðX1u, X2u,⋯,X2nuÞ, ΦwðΩÞ, is the
generalized Orlicz space (see Section 2 for details). Write

φ+
B τð Þ≔ sup

x∈B
φ x, τð Þ and φ−

B τð Þ≔ inf
x∈B

φ x, τð Þ ð3Þ

and abbreviate φ± = φ±
Ω. Here, we assume that

(A1) There exists β ∈ ð0, 1Þ, such that φ+ðβÞ ≤ 1 ≤ φ−ð1Þ.
(A2) There exists β ∈ ð0, 1Þ, such that for every ball B

⊂Ω,

φ+
B βτð Þ ≤ φ−

B τð Þ for τ ∈ 1, φ−
Bð Þ−1 1

Bj j
� �� �

: ð4Þ

(A2)′ There exists β ∈ ð0, 1Þ, such that for every ball
B ⊂Ω,

φ+
B βτð Þ ≤ φ−

B τð Þ for τ ∈ 1, 1
diamB

� �
: ð5Þ

(A3) There exist γ− > 1 and λ ≥ 1, such that φðx, τÞ/τγ−
is λ-almost increasing (λ-almost increasing means that
there exists a constant λ ≥ 1 such that φðx, sÞ/sγ− ≤ λðφðx,
τÞ/τγ−Þ for all s ≤ τ) with respect to τ > 0.

(A4) There exist γ+ > 1 and λ ≥ 1, such that φðx, τÞ/τγ+ is
λ-almost decreasing with respect to τ > 0.

If φðx, τÞ/τγ− is increasing, then assumption (A3) can be
written by (A3)′. If φðx, τÞ/τγ+ is decreasing, then assump-
tion (A4) can be written by (A4)′. Note that γ+ ≥ γ−, and that
all these assumptions are invariant to equivalent generalized
N-functions and scaling (see (100) below).

It is clear that the Euler-Lagrange equation correspond-
ing to functional (1) is

divH
φ′ x, ∇Huj jð Þ

∇Huj j ∇Hu

 !
= 0, ð6Þ

Hindawi
Journal of Function Spaces
Volume 2020, Article ID 8838654, 13 pages
https://doi.org/10.1155/2020/8838654

https://orcid.org/0000-0002-5480-3525
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8838654


where φ′ðx, τÞ denotes the derivative of φðx, τÞ with
respect to τ. If for any v ∈HW1,φ

0 ðΩÞ, it holds
ð
Ω

φ′ x, ∇Huj jð Þ
∇Huj j ∇Hu · ∇Hvdx = 0, ð7Þ

then we say that u ∈HW1,φðΩÞ is a weak solution of (6).

When functional Φðx, j∇HujÞ in (1) satisfies Φðx, τÞ ~
ðΛ + τ2Þp−2/2τ, the regularity of weak solutions to the corre-
sponding Euler-Lagrange equation has been studied by many
scholars. While 0 <Λ < 1, for p not being far from 2, Man-
fredi and Mingione in [1] got the Hölder continuity of the
ordinary gradient of weak solutions and derived smoothness
of weak solutions by using the method in [2]; for 1 < p < 4,
the second order differentiability of weak solutions was
deduced by Domokos in [3], which generalized the results
in Marchi [4]. While 0 ≤Λ < 1, for p not being far from 2,
Domokos and Manfredi in [5] used the Calderón-Zygmund
theory on the Heisenberg group to study regularity of weak
solutions; for 2 ≤ p < 4, Mingione, Zatorska-Goldstein, and
Zhong in [6] concluded the C1,α regularity of weak solutions
by using a double-bootstrap method, energy estimates, and
interpolation inequalities; for 1 < p <∞, Zhong in [7] got
the C1,α regularity of weak solutions by using the energy esti-
mate, the Moser iteration, and the oscillation estimate; Zhang
and Niu in [8] proved the Γα regularity of the gradient of
weak solutions as Φðx, τÞ ~ φðτÞ, where φðτÞ belongs to the

Orlicz space including the function φðτÞ = ðΛ + τ2Þp−2/2τ.
We observe that Φðx, τÞ discussed before depends only on
the second variable τ. For the more general case depending
on two variables x and τ, there is no relevant result on
the Heisenberg group. In the Euclidean space, there are
many results about the variable exponential case (i.e., Φðx
, τÞ ~ τpðxÞ), the ðp, qÞ-growth case (i.e., c1ðτp − 1Þ ≤Φðx, τÞ
≤ c2ðτq + 1Þ, q > p), and the double phase case (i.e., Φðx, τÞ
= τp + aðxÞτq), such as [9–14]. Harjulehto, Hästö, and Klen
considered the functional

Ð
Ω
Φðx, j∇ujÞdx including the

above three cases and proved the existence of quasiminimizers
in [15]. Whereafter, Harjulehto, Hästö, and Toivanen in [16]
obtained the Hölder regularity of quasiminimizers by using
the De Giorgi-Moser iteration and some tools in harmonic
analysis.

In this paper, we consider the Hölder regularity of the
quasiminimizers of the functional (1) inspired by [16]. The
main difference is that we need to use the Sobolev inequality,
the Riesz potential, and the maximal function on the Heisen-
berg group. In addition, to derive the regularity, we prove a
covering Lemma by the Calderón-Zygmund decomposition
on the Heisenberg group.

Before stating the main results, we give the following
definition.

Definition 1. Let φ ∈ΦwðΩÞ (the generalized orlicz space, see
next section). We say that u ∈HW1,φ

loc ðΩÞ is a local quasimini-
mizer of (1), if there exists a constant K ≥ 1 such that

ð
v≠0f g

φ x, ∇Huj jð Þdx ≤ K
ð

v≠0f g
φ x, ∇H u + vð Þj jð Þdx, ð8Þ

for any v ∈HW1,φ
loc ðΩÞ with sptv ⊂Ω.

Now, we state the main results:

Theorem 2 (Harnack inequality). Assume that φ ∈ΦwðΩÞ
satisfies (A1), (A2), (A2)′, (A3), and (A4), If u ∈HW1,φ

loc ðΩÞ
is a nonnegative local quasiminimizer of (1), then for a com-
pact set K ⊂ ⊂Ω, there exists R0 as shown in Lemma 27 below
such that

esssup
QR

u ≤ c ess inf
QR

u + R
� �

, ð9Þ

for all R ∈ ð0, R0Þ and cubes Q6R ⊂ ⊂Ω with centered in K ,
where c depends only on the parameters of (A1), (A2), (A2)′,
(A3) and (A4), ℘ and kukL∞ðQ2RÞ.

Theorem 3 (Hölder continuity). Let φ ∈ΦwðΩÞ satisfy (A1),
(A2), (A2)′, (A3), and (A4). I f u ∈HW1,φ

loc ðΩÞ is a local quasi-
minimizer of (1), then u ∈ Cα

locðΩÞ for some α > 0.

This paper is organized as follows. In Section 2, we first
give the definitions and related knowledge of the Heisenberg
Group, then introduce the generalized N-function and its
related properties. Some definitions of function spaces and
some known Lemmas are given. In Section 3, we use the De
Giorgi-Moser iteration to obtain the local boundedness of
the quasiminimizer. As the result of the third section, when
the radius approaches 0, the constant will blow up; so in Sec-
tion 4, the upper bound of the solution is improved, but the
solution is needed to bounded. In Section 5, on the basis of
the results obtained in Section 4, we first prove a covering
Lemma by the Calderón-Zygmund decomposition and then
use it to obtain the Harnack inequality and Hölder
continuity.

The common generalized Orlicz functions [see [15]]
involves

φ1 x, τð Þ = τp xð Þ log 1 + τð Þ,
φ2 x, τð Þ = τp + a xð Þτq,
φ3 x, τð Þ = τp xð Þ,

φ4 x, τð Þ = 1
p xð Þ τ

p xð Þ:

ð10Þ

Then, Φðx, j∇HujÞ in (1) can have the concrete relations
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Φ x, ∇Huj jð Þ ~ φ1 x, ∇Huj jð Þ,
Φ x, ∇Huj jð Þ ~ φ2 x, ∇Huj jð Þ the double phase caseð Þ,
Φ x, ∇Huj jð Þ ~ φ3 x, ∇Huj jð Þ the variable exponential caseð Þ,

Φ x, ∇Huj jð Þ ~ φ4 x, ∇Huj jð Þ = 1
p xð Þ ∇Huj jp xð Þ:

ð11Þ

In this paper, we always denote a positive constant by c
which may vary from line to line, x = ðx1,⋯,x2n, tÞ = ðx′, tÞ.
We assume that Ω ⊂ℍn is a bounded domain, Q is a cube
whose side length is R in the x′ direction, R2 in the t direc-
tion, and its edge is parallel to the coordinate axis and denote

diamQ≔ ðð2nÞ2 + 1Þ1/4R > ð2nÞ1/2R. Let cQ be a concentric
cube whose side length is c times Q the in x′ direction and
c2 times Q in the t direction. For f ∈ L1ðΩÞ, we denote h f iΩ
= 1/jΩjÐ

Ω
f ðxÞdx.

2. Preliminaries

In this section, we first recall the related knowledge of the
Heisenberg Group, then introduce the definition of the gen-
eralized N-function and some properties related to it. Finally,
some function spaces and lemmas are given.

2.1. Heisenberg Group ℍn. The Euclidean space ℝ2n+1, n ≥ 1
with the group multiplication

x ∘ y = x1 + y1, x2 + y2,⋯,x2n + y2n, t + s + 1
2〠

n

i=1
xiyn+i − xn+iyið Þ

 !
,

ð12Þ

where x = ðx1, x2,⋯,x2n, tÞ, y = ðy1, y2,⋯,y2n, sÞ ∈ℝ2n+1

leads to the Heisenberg group ℍn. The scaling on ℍn is
defined as

δx = δx1, δx2,⋯,δx2n, δ2t
� �

: ð13Þ

The left invariant vector fields on ℍn are of the form

Xi = ∂xi −
xn+i
2 ∂t , Xn+i = ∂xn+i +

xi
2 ∂t , 1 ≤ i ≤ n, ð14Þ

and a nontrivial commutator on ℍn is

T = ∂t = Xi, Xn+i½ � = XiXn+i − Xn+iXi, 1 ≤ i ≤ n: ð15Þ

We call that X1, X2,⋯, X2n are the horizontal vector
fields on ℍn and T the vertical vector field. Denote the hori-
zontal gradient of a smooth function u on ℍn by

∇Hu = X1u, X2u,⋯,X2nuð Þ: ð16Þ

The homogeneous dimension of ℍn is ℘ = 2n + 2. The
Haar measure in ℍn is equivalent to the Lebesgue measure
in ℝ2n+1. We denote the Lebesgue measure of a measurable

set E ⊂ℍn by jEj. The Carnot-Carathèodary metric (CC-
metric) between two points in ℍn is the shortest length of
the horizontal curve joining them, denoted by d. The ball
defined by the CC-metric is

BR xð Þ = y ∈ℍn : d y, xð Þ < Rf g: ð17Þ

One has

BR xð Þj j = R℘ B1 xð Þj j: ð18Þ

For x = ðx1, x2,⋯,x2n, tÞ, its module is defined by

xk kℍn = 〠
2n

i=1
xi

2
 !2

+ t2
 !1

4

: ð19Þ

The CC-metric d is equivalent to the Korànyi metric

d x, yð Þ = x−1y
�� ��

ℍn : ð20Þ

2.2. Generalized N-Function and Its Related Properties

Definition 4 (generalized N-function). A real valued function
φðx, τÞ defined on Ω × ½0,+∞Þ is said to be a generalized N
-function, and if φðx, τÞ is a Lebesgue measurable with
respect to x, the derivative φ′ðx, τÞ of φðx, τÞ with respect
to τ exists, and φ′ðx, τÞ is right continuous, nondecreasing,
and satisfies φ′ðx, 0Þ = 0 and φ′ðx, τÞ > 0 ðτ > 0Þ.

If for any τ ≥ 0 and x ∈Ω, there exists L ≥ 1 such that

ψ x, τ
L

	 

≤ φ x, τð Þ ≤ ψ x, Lτð Þ, ð21Þ

then we say functions φ and ψ are equivalent denoted by φ
≃ ψ. If for any τ ≥ 0, there exists c1 > 0 such that

φ x, 2τð Þ ≤ c1φ x, τð Þ ; ð22Þ

then, we say that φðx, τÞ satisfies the strong Δ2-condition and
denotes the minimum constant c1 by Δ2ðφÞ. Since

φ x, τð Þ ≤ φ x, 2τð Þ, ð23Þ

the strong Δ2-condition is equivalent to φðx, τÞ ~ φðx, 2τÞ .
Obviously, if φ satisfies the strong Δ2-condition, then ~⇔
≃ . For a family of generalized N-functions, we define

Δ2 φλf gð Þ≔ sup
λ
Δ2 φλð Þ: ð24Þ

Let

φ′
	 
−1

x, τð Þ≔ sup υ ∈ 0,+∞½ Þ : φ′ x, υð Þ ≤ τ
n o

, for τ ≥ 0:

ð25Þ

If φ′ = φ′ðx, τÞ is strictly increasing with respect to τ,

then ðφ′Þ−1 is the inverse function of φ′. Writing
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φ∗ x, τð Þ≔
ðτ
0

φ′
	 
−1

x, ϑð Þdϑ, τ ≥ 0, ð26Þ

then φ∗ is also a generalized N-function and satisfies

φ∗ð Þ′ x, τð Þ = φ′
	 
−1

x, τð Þ, τ ≥ 0: ð27Þ

Note that φ∗ is the complementary function of φ and
ðφ∗Þ∗ = φ. For any δ > 0, there exists cδ depending only on
Δ2ðfφ, φ∗gÞ, such that

τυ ≤ δφ x, τð Þ + cδφ
∗ x, υð Þ ð28Þ

for any τ, υ ≥ 0, and this inequality is called Young’s
inequality ([16]). For some a, b > 0 and any τ ≥ 0, we denote

ρ x, τð Þ = aφ x, bτð Þ, ð29Þ

then

ρ∗ x, τð Þ = aφ∗ x, τ

ab

	 

: ð30Þ

If φ and ρ are generalized N-functions and satisfy
φðx, τÞ ≤ ρðx, τÞ for τ ≥ 0, then for any τ ≥ 0, it holds

ρ∗ x, τð Þ ≤ φ∗ x, τð Þ: ð31Þ

2.3. Some Function Spaces and Lemmas. We denote the real
valued measurable function space by L0ðΩÞ. If the general-
ized N-function φðx, τÞ satisfies the strong Δ2-condition on
ℍn, then

Lφ ℍnð Þ≔ f ∈ L0 ℍnð Þ:
ð
ℍn

φ x, f xð Þj jð Þdx<∞
� �

ð32Þ

is a Banach space with (Luxemburg) norm

fk kLφ ℍnð Þ ≔ inf λ > 0 :

ð
ℍn

φ x, f xð Þj j
λ

� �
dx ≤ 1

� �
: ð33Þ

We call that it is a generalized Orlicz space or Musielak-
Orlicz space denoting by ΦwðℍnÞ. For Ω ⊂ℍn, the general-
ized Orlicz-Sobolev space HW1,φðΩÞ is defined as

HW1,φ Ωð Þ≔ u : u, ∇Hu ∈ L
φ Ωð Þf g, ð34Þ

and the local generalized Orlicz-Sobolev space HW1,φ
loc ðΩÞ as

HW1,φ
loc Ωð Þ≔ u ∣ u ∈HW1,φ Ω′

	 

, for anyΩ′⊂⊂Ω

n o
: ð35Þ

The space HW0
1,φðΩÞ is the closure of C∞

0 ðΩÞ in H
W1,φðΩÞ.

IfΩ ⊂ℍn is bounded and φ ∈ΦwðΩÞ satisfies the assump-
tions (A1) and (A3), then LφðΩÞ↪Lγ

−ðΩÞ, HW1,φðΩÞ↪H
W1,γ−ðΩÞ, HW1,φ

0 ðΩÞ↪HW1,γ−
0 ðΩÞ. For their proofs, one

can refer to Lemmas 4.4, 6.2, and 6.9 in [15] with some evident
changes.

We now describe their proofs (Lemmas 5–11) that are
similar to ones in [16] with some suitable revisions.

Lemma 5. If φ ∈ΦwðΩÞ, then there exists a generalized N
-function ψ increasing strictly such that ψ ~ φ, and so, ψ is a
bijection.

Lemma 6. Let φ ∈ΦwðΩÞ, then

(1) The strong Δ2-condition is equivalent to (A4).

(2) If φðx, τÞ is convex with respect to τ, then the strong Δ2
-condition is equivalent to (A4)′.

Lemma 7. The assumption (A1) implies φ−ðx, 1Þ ~ 1.

Lemma 8. Let φ ∈ΦwðΩÞ be a bijection with respect to τ or
satisfy the strong Δ2 -condition. Then,

(1) The assumption (A4) is equivalent to that φ−1ðx, τÞ/
τ1/γ

+
is almost increasing uniformally in Ω

(2) The assumption (A3) is equivalent to that φ−1ðx, τÞ/
τ1/γ

−
is almost decreasing uniformally in Ω

If γ+ ≤ ℘, then we can get (A2)′ from (A1), (A2), and (A4).

Lemma 9. Let φ ∈ΦwðΩÞ satisfy the assumptions (A1), (A2),
and (A4). If γ+ ≤ ℘, then φðx, τÞ satisfies (A2)′.

The proof of Lemma 9 is similar to that of Lemma 12 in
[16], and a simple distinct is that we should use the fact jBR
j = R℘jB1j on the Heisenberg group.

Lemma 10. Let φ ∈ΦwðΩÞ satisfy the assumption (A2) or
(A2)′. Then, there exists β ∈ ð0, 1Þ such that for any

ffiffiffi℘p
Q ⊂

Ω, we have

φ+
Q βτð Þ ≤ φ−

Q τð Þ ð36Þ

for τ ∈ ½1,M�, where M ≔ ðφ−
QÞ−1ð1/j

ffiffiffi℘p
QjÞ under (A2) and

M ≔ 1/ ffiffiffi℘p
diamQ under (A2)′.

The proof of Lemma 10 is similar to that of Lemma 13 in
[16], but we should employ the statement in the process that
on the Heisenberg Group, if B is the smallest ball containing
Q, then Q ⊂ B ⊂ ffiffiffi℘p

Q.

Lemma 11. Let φ ∈ΦwðΩÞ satisfy the assumption (A2) and be
a bijection. Then, there exists β ∈ ð0, 1Þ such that for any cube
Q with

ffiffiffi℘p
Q ⊂Ω and j ffiffiffi℘p

Qj ≤ 1, we have
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βφ−1 y, τð Þ ≤ φ−1 x, τð Þ ð37Þ

for any τ ∈ ½1, ð1/j ffiffiffi℘p
QjÞ� and x, y ∈Q.

For the following lemma, one can refer to [17].

Lemma 12 [17]. If φ ∈ΦwðΩÞ, then φ−
B satisfies the Jensen

type inequality

φ−
B

1
2 Bj j

ð
B
f dx

� �
≤

1
Bj j
ð
B
φ−
B fð Þdx: ð38Þ

In the generalized Orlicz space, the Hölder inequality
with the constant 2 holds, see ([13], Lemma 9). It is stated
that for any f , g ∈ LφðΩÞ, it follows

ð
Ω

f gj jdx ≤ 2 fk kφ gk kφ∗ : ð39Þ

Because the Heisenberg Group is a special case of Carnot
groups, the conclusions on Carnot groups are also true onℍn

. We write some conclusions in monograph ([18], p276-280)
on ℍn. For 0 < α < ℘, f : ℍn →ℝ, we formally define the
Riesz potential operator Iα as

Iα fð Þ xð Þ =
ð
Ω

f yð Þ
d x,yð Þð Þ℘−α dy, ð40Þ

where dðx, yÞ denotes dðy−1 ∘ xÞ. We also call that Iα is the
fractional integral of order α, and I1 is abreviated to I.

Lemma 13 (Hardy-Littlewood-Sobolev inequality, [18]). Let
1 < α < ℘, 1 < p < ℘/α, q > p, and

1
q
= 1
p
−
α

℘ : ð41Þ

Then, there exists a positive constant c = cðα, pÞ such that
for every f ∈ LpðℍnÞ, we have

Iα fð Þk kq ≤ c fk kp: ð42Þ

For a function f ∈ Lpðℍn,ℂÞ, 1 < p <∞, we define the
maximal function as

M fð Þ xð Þ≔ sup
r>0

1
B x, rð Þ

ð
B x,rð Þ

f yð Þj jdy, x ∈ℍn: ð43Þ

One has the statement (maximal function theorem): if 1
< p <∞, then there exists a positive constant c = cðpÞ such
that for every f ∈ Lpðℍn,ℂÞ, we have (see [18])

M fð Þk kp ≤ c fk kp: ð44Þ

Lemma 14 (Sobolev-Stein embedding, (, p280)). Let 1 < p < ℘
. Then, there exists a constant c = cðpÞ such that

uk kq ≤ c ∇Huk kp ð45Þ

for every u ∈ C∞
0 ðℍn,ℝÞ, where

1
q
= 1
p
−

1
℘ i:e:q = ℘p

℘−p

� �
: ð46Þ

Proof. For u ∈ C∞
0 ðℍn,ℝÞ, the representation formula (5.16)

in [18] yields

u xð Þ = −
ð
ℍn

Γ x−1 ∘ y
� �

Lu yð Þdy, ð47Þ

where L =∑2n
j=1 X

2
j , X

∗
j = −Xj. By the integrating by parts,

we get

u xð Þ =
ð
ℍn

∇HΓð Þ x−1 ∘ y
� �

∇Hu yð Þdy: ð48Þ

In addition, out of the origin, one sees

∇HΓ = βd∇H d2−℘
� �

= 2−℘ð Þβdd
1−℘∇Hd: ð49Þ

Because ∇Hd is smooth in ℍn \ f0g and j∇Hdj < 1, we
obtain that for a constant c > 0,

∇HΓj j ≤ cd1−℘: ð50Þ

Using (48), it yields

u xð Þj j ≤ c
ð
ℍn

∇Hu yð Þj jd x, yð Þ1−℘dy = cI1 ∇Huj jð Þ xð Þ: ð51Þ

Then, by Lemma 13, we gain

uk kq ≤ c I1 ∇Huj jð Þk kq ≤ c ∇Huk kp, ð52Þ

where

1
q
= 1
p
−

1
℘ i:e:q = ℘p

℘−p

� �
: ð53Þ

This ends the proof.
Noting that C∞

0 ðBrÞ is dense in HW1,q
0 ðBrÞ, we have the

following result from Lemma 14.

Lemma 15 (Sobolev inequality). Let 1 ≤ q < ℘ = 2n + 2, Br ⊂
ℍn. For any u ∈HW1,q

0 ðBrÞ, it follows

1
Brj j
ð
Br

uj j ℘q℘−qdx

 !℘−q
℘q

≤ cr
1
Brj j
ð
Br

∇Huj jqdx
 !1

q

, ð54Þ

where c = cð℘,qÞ > 0:
Since C∞ðΩÞ is not dense in HW1,φðΩÞ, we need to prove.
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Lemma 16. LetΩ ⊂ℍn, φ ∈ΦwðΩÞ, satisfy (A1), (A2), and
(A4). If v ∈HW1,φðΩÞ with sptv ⊂Ω, then v ∈HW1,φ

0 ðΩÞ.

Proof. Because sptv ⊂Ω and sptv are closed, we can find Ω′
⊂Ω which is bounded, quasiconvex, and contains sptv.
Values outside Ω′ do not affect the claim, so we verify the
claim in Ω′. In order to simplify the notation, we might
assume that Ω is bounded and quasiconvex . Owing to

∇H v ∗ ηð Þ = ∇Hvð Þ ∗ η, for η ∈ C∞
0 Ωð Þ ð55Þ

similarly to the proofs of theorems 6.6 and 6.5 in [15], we
know that C∞ðΩÞ ∩HW1,φðΩÞ is dense in HW1,φðΩÞ; then
there is a sequence of fνig ∈ C∞ðΩÞ ∩HW1,φðΩÞ convergen-
cing to v. We take a cut-off function η ∈ C∞

0 ðΩÞ with 0 ≤ η
≤ 1 and η ≡ 1 in sptv and see fηνig ∈ C∞

0 ðΩÞ. Since

v − ηνik kHW1,φ Ωð Þ = η v − νið Þk kHW1,φ Ωð Þ ≤ v − νik kHW1,φ Ωð Þ → 0,
ð56Þ

it follows

v ∈HW1,φ
0 Ωð Þ: ð57Þ

Lemma 17. Let Q ⊂ℍn with jQj being finite. If φ ∈ΦwðΩÞ,
then for all v ∈HW1,φ

0 ðΩÞ, we have

ð
Q
φ vj jð Þ ℘

℘−1dx ≤ c
ð
Q
φ ∇Hvj jð Þdx

� � ℘
℘−1
, ð58Þ

where c depends only on ℘ and jQj.

The proof is similar to the proof of Lemma 24 in [16], and
it only needs to change the classical Sobolev inequality in the
Euclidean space into the Sobolev inequality (54) on ℍn.

Lemma 18. Suppose that φ ∈Φwð3QÞ satisfies (A1), (A2), and
(A3), then there exists β ∈ ð0, 1Þ such that for all f1 ∈ L

φð3QÞ
with

f1k kLφ 3Qð Þ ≤ 1, sptf1 ⊂Q × 0f g ∪ 1,∞½ Þf g, ð59Þ

we have

ð
Q
φ x, βMf1ð Þdx ≤ c

ð
Q
φ x, f1ð Þdx, ð60Þ

where c depends only on ℘ and the parameters of (A1), (A2),
and (A3).

The proof is similar to the proof of Lemma 23 in [16].

3. Local Boundedness

Unless otherwise specified, we will use the following nota-
tions. Suppose that 0 ∈Ω ⊂ℍn, 0 < R < R0 ≤ 1/2,

QR ≔Q 0, Rð Þ ð61Þ

is a cube whose side length is R in the x′ direction, R2 in the t
direction, and its edge is parallel to the coordinate axis with

centered 0 and denotes diamQ≔ ðð2nÞ2 + 1Þ1/4R > ð2nÞ1/2R,

A+
k,R ≔QR ∩ u > kf g,
u+ ≔max u, 0f g:

ð62Þ

Lemma 19 [16]. Suppose that F is a bounded nonnegative
function in ½r, R� and W satisfies the strong Δ2 -condition in
½0,∞Þ, if there exists θ ∈ ½0, 1Þ such that for any r ≤ ι < s ≤ R,

F ιð Þ ≤W
1

s − ι

� �
+ θF sð Þ, ð63Þ

then we have

F rð Þ ≤ cW
1

R − r

� �
, ð64Þ

where c depends only on θ and Δ2ðWÞ.

Lemma 20 (Caccioppoli inequality). Let φ ∈ΦwðΩÞ and u

∈HW1,φ
loc ðΩÞ be a local quasiminimizer of (1). Then for all k

∈ℝ, there holds

ð
A+
k,r

φ x, ∇H u − kð Þ+�� ��� �
dx ≤ c

ð
A+
k,R

φ x, u − k
R − r

� �
dx, ð65Þ

where c depends on K in definition 1 and R.

The proof is similar to Lemma 27 in [16].

Lemma 21. Suppose that φ ∈ΦwðΩÞ satisfies (A1), (A2), (A3),
and (A4) and define

�φ x, τð Þ≔ φ−
QR

τð Þχ 0,1½ Þ τð Þ + φ x, τð Þχ 1,∞½ Þ τð Þ: ð66Þ

If u ∈HW1,φ
loc ðΩÞ satisfies (65), R/2 ≤ ι < s ≤ R, Q3R ⊂Ω,

then there exists R0 such that

ð
Qι

�φ x, u − kð Þ+� �
dx ≤ c

ð
Qs

�φ x, u − hð Þ+� �
�φ x, k − hð Þ dx

 !αð
Qs

�φ x, u − hð Þ+
s − ι

� �
dx

ð67Þ

as R ∈ ð0, R0�, k − h ≥ s − ι, where α≔ γ−/℘2γ+ − ℘ðγ+ −
γ−Þ, c, depends only on the parameters of (A1), (A2), (A3),
and (A4), Δ2ðφÞ and ℘. Here, R0 satisfies

Ð
3QR0

φðx, j∇HujÞd
x ≤ 1.
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Though the proof is similar to Lemma 4.6 in [16], we
need to replace the results about the Riesz potential and max-
imal function with our Lemma 13 and (51). For complete-
ness, let us write the detailed proof.

Proof. Let h < k, Q≔Qι+s/2 ðι < sÞ, η ∈ C∞
0 ðQÞ, satisfy

0 ≤ η ≤ 1, ∇Hηj j ≤ 4
s − ι

and η = 1 inQι: ð68Þ

Denoting

v≔ u − kð Þ+η, A≔ v > 1f g ∩Q, B≔ v ≤ 1f g ∩Q, andD≔ u > kf g ∩Q,

ð69Þ

then we have

ð
Qι

�φ x, u − kð Þ+� �
dx ≤

ð
Q
�φ x, u − kð Þ+η� �

dx =
ð
A
�φ x, vð Þdx +

ð
B
�φ x, vð Þdx:

ð70Þ

We first estimate the integral
Ð
A
�φðx, vÞdx. If τ > 1, then

from (A3), (A4), and Lemma 7,

�φ x, τ℘/℘−1
� �

≥ cτγ
−/℘−1�φ x, τð Þ ≥ c

�φ x, τð Þ
�φ x, 1ð Þ
� �γ−/ ℘−1ð Þγ+

�φ x, τð Þ

~ �φ x, τð Þ1+γ−/ ℘−1ð Þγ+ ≔ �φ x, τð Þ1+ε,
ð71Þ

so

�φ x, τð Þ ≤ c �φ x,τ℘/℘−1
� �� �1/1+ε, ε = γ−/ ℘−1ð Þγ+: ð72Þ

We use it and the Hölder inequality to gain

ð
A
�φ x, vð Þdx ≤ c

ð
A

�φ x,v℘/℘−1
� �� �1/1+ε

dx ≤ c Aj jε/1+ε

�
ð
A
�φ x,v℘/℘−1
� �

dx
� �1/1+ε

:

ð73Þ

Denoting f1 ≔ j∇Hvjχfj∇Hvj>1g, then we know that from
(51),

v ≤ c1I ∇Hvð Þ ≤ c1I ∇Hvj jχ ∇Hv≤1j jf g
	 


+ c1I f1ð Þ: ð74Þ

If R0 is small enough, then

I ∇Hvj jχ ∇Hv≤1j jf g
	 


≤ I χQ

� �
≤ cR0 ≤

1
2c1

: ð75Þ

Because of v > 1 in the set A, it yields from (74) and (75)
that

v ≤
1
2 + c1I f1ð Þ ≤ v

2 + c1I f1ð Þ: ð76Þ

Therefore, in the set A, it implies

v ≤ 2c1I f1ð Þ: ð77Þ

Suppose that R0 is small enough such that j3QR0
j ≤ 1,

then from Lemma 13 and k f1kLφð3QÞ ≤ cMf1, we know

I f1ð Þð Þ℘/℘−1 ≤ cMf1: ð78Þ

Noting

f1k kLφ ℍnð Þ = f1k kLφ 3Qð Þ ≤ ∇Huk kLφ 3Qð Þ ≤ 1, ð79Þ

the conditions of Lemma 18 are satisfied. Now, we com-
bine (77), (78), the strong Δ2-condition and Lemma 18 to
obtain

ð
A
�φ x,v℘/℘−1
� �

dx ≤ c
ð
A
�φ x, I f1ð Þð Þ℘/℘−1
	 


dx

≤ c
ð
A
�φ x,Mf1ð Þdx ≤ c

ð
A
�φ x, ∇Hvj jð Þdx:

ð80Þ

Denoting

~φ τð Þ≔ φ−
QR

τð Þχ 0,1½ Þ τð Þ + τγ
−
φ+
QR

1ð Þχ 1,∞½ Þ τð Þ, ð81Þ

we see from (A3) that for every x,

~φ τð Þ ≤ φ−
QR

τð Þχ 0,1½ � τð Þ + φ x, τð Þ
φ x, 1ð Þφ

+
QR

1ð Þχ 1,∞ð Þ τð Þ

≤ φ−
QR

τð Þχ 0,1½ � τð Þ + φ x, τð Þχ 1,∞ð Þ τð Þ = �φ x, τð Þ:
ð82Þ

Let us estimate the measure of A. When v ∈ A, we have
χAðvÞ = 1,

φ~ vð Þ℘/℘−1 = vγ
−
φ+
QR

1ð Þ
	 
℘/℘−1

≥ φ x,vð Þð Þ℘/℘−1 ≥ 1, ð83Þ

and deduce from Lemmas 16, 17, and (82) that

Aj j ≤
ð
Q
φ~ vð Þ℘/℘−1dx ≤ c

ð
Q
φ~ ∇Hvj jð ÞdxÞ℘/℘−1

�

≤ c
ð
Q
�φ x, ∇Hvj jð Þdx

� �℘/℘−1
:

ð84Þ

On the other hand, jAj ≤ jDj, so

Aj jε/1+ε ≤ Dj jε/℘ 1+εð Þ Aj jε ℘−1ð Þ/℘ 1+εð Þ: ð85Þ
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Combining (73), (80), (85), (84), and �φ ≤ φ, we know

ð
A
�φ x, vð Þdx

≤ c Dj jε/℘ 1+εð Þ Aj jε ℘−1ð Þ/℘ 1+εð Þ
ð
A
�φ x, ∇Hvj jð Þdx

� �1/1+ε

≤ c Dj jα
ð
Q
φ x, ∇Hvj jð Þdx,

ð86Þ

where α = ε/℘ð1 + εÞ .
Next, we estimate the integral

Ð
B
�φðx, vÞdx. Observing

that �φ = ~φ and they do not depend on x in the set B, the usual
Hölder inequality yields

ð
B
�φ x, vð Þdx ≤

ð
D
~φ vð Þdx ≤ Dj j1/℘

ð
Q
φ~ vð Þ℘/℘−1dxÞ℘−1/℘:

�

ð87Þ

Because of jDj ≤ jQj ≤ 1, α = ε/℘ð1 + εÞ < 1/℘, one has
jDj1/℘ ≤ jDjα. Using Lemmas 16, 17, and c~φ ≤ �φ ≤ φ, it
deduces

ð
B
�φ x, vð Þdx ≤ Dj jα

ð
Q
φ x, ∇Hvj jð Þdx: ð88Þ

In conclusion, the integrals
Ð
A
�φðx, vÞdx and Ð B �φðx, vÞdx

have same upper bound. At present, we estimate the integralÐ
Q φðx, j∇HvjÞdx . Using the

∇Hvj j ≤ ∇H u − kð Þ+�� �� + ∇Hηj j u − kð Þ+, ∇Hηj j ≤ 4
s − ι

, ð89Þ

strong Δ2-condition and (65), we obtain

ð
Q
φ x, ∇Hvj jð Þdx ≤ c

ð
Q
φ x, ∇H u − kð Þ+�� ��� �

dx +
ð
D
φ

�

� x, u − kð Þ+
s − ι

� �
dxÞ ≤ c

ð
Qs

φ x, u − kð Þ+
s − ι

� �
dx:

ð90Þ

Note that u > k in D, so u − h > k − h ≥ s − ι. Thus,

φ x, u − kð Þ+
s − ι

� �
≤ φ x, u − hð Þ+

s − ι

� �
χD ≤ �φ x, u − hð Þ+

s − ι

� �
:

ð91Þ

Since �φ is increasing, it follows

Dj j =
ð
Qs

χDdx ≤
ð
Qs

�φ x, u − hð Þ+� �
�φ x, k − hð Þ+� � dx: ð92Þ

Combining (86)–(92), we get

ð
Q
�φ x, vð Þdx ≤ c

ð
Qs

�φ x, u − hð Þ+� �
�φ x, k − hð Þ+� � dx

 !αð
Qs

�φ x, u − hð Þ+
s − ι

� �
dx:

ð93Þ

Returning to (70), it reaches (67).

Lemma 22 [16]. Let α > 0 and fΘig be a sequence of real
numbers satisfying

Θi+1 ≤DℓiΘ1+α
i ð94Þ

for D > 0, ℓ > 1. If

Θ0 ≤D−1
αℓ−

1
α2 , ð95Þ

then Θi → 0 as i→∞.

Lemma 23. Let φ ∈ΦwðΩÞ satisfy (A1), (A2), (A3), and (A4).
If u ∈HW1,φ

loc ðΩÞ satisfies (65) and R0 ∈ ð0, 1Þ as shown in
Lemma 21, then for 0 < R ≤ R0 and any k0 ∈ℝ, we have

esssup
QR/2

u ≤ k0 + 1 + cR− γ+
αγ−

ð
QR

φ x, u − k0ð Þ+� �
dx

 !1/γ−

, ð96Þ

where α as shown in Lemma 21, c depends only on the
parameters of (A1), (A2), (A3), and (A4), Δ2ðφÞ and ℘.

The proof is similar to Theorem 4.11 in [16].

We use (96) for u and −u to immediately obtain the
following.

Theorem 24 (local boundedness). Let φ ∈ΦwðΩÞ satisfy (A1),
(A2), (A3), and (A4), then every local quasiminimizer of (1) is
locally bounded.

4. Improvement of the Upper Bound of
Bounded Solutions

Lemma 25. Let φ ∈ΦwðΩÞ satisfy (A1) and (A4) and define

~φ x, τð Þ≔ τγ
+
φ− 1ð Þχ 0,1½ Þ τð Þ + φ x, τð Þχ 1,∞½ Þ τð Þ: ð97Þ

If u ∈HW1,φ
loc ðΩÞ satisfies (65), R/2 ≤ ι < s ≤ R, QR ⊂Ω,

then we have

ð
Qι

~φ−
QR

u − kð Þ+� �
dx ≤ c

ð
Qs

~φ x, u − hð Þ+� �
~φ x, k − hð Þ dx

 !1
℘ð

Qs

~φ x, u − hð Þ+
s − ι

� �
dx

ð98Þ

as k − h ≥ s − ι, where c depends only on the parameters of
(A1) and (A4), Δ2ðφÞ and ℘.
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The proof is similar to the proof of Lemma 31 in [16], and a
necessary change is to replace the Sobolev inequality in the
Euclidean space to the inequality in Lemma 17.

For s > 0, define

us xð Þ≔ u sxð Þ
s

= u sx1,⋯,sx2n, s2t
� �

s
, ð99Þ

φs x, f xð Þð Þ≔ φ sx, f xð Þð Þ: ð100Þ

Note that

∇H us xð Þð Þ = ∇Hu sxð Þ, Δ2 φsð Þ = Δ2 φð Þ ð101Þ

and the constants of (A2) and (A2)′ will be changed under
this scaling (100).

Lemma 26. Let φ ∈ΦwðΩÞ . If u ∈HW1,φ
loc ðΩÞ is a local quasi-

minimizer of (1) in QsR with s ∈ ð0, 1�, QsR ⊂ ⊂Ω, then us is
a local quasiminimizer of the functional

Ð
φsðx, j∇HujÞdx

in QR.

Proof. Suppose vs ∈HW1,φðQRÞ and sptvs ⊂QR, obviously, we
have

v ≠ 0f g = s vs ≠ 0f g ⊂QsR: ð102Þ

Using the transformation of variable and the quasimi-
nimality of u in QsR, it implies

ð
vs≠0f g

φs x, ∇Hus xð Þj jð Þdx =
ð

vs≠0f g
φs x, ∇Hu sxð Þj jð Þdx

= s−℘
ð

v≠0f g
φ z, ∇Hu zð Þj jð Þdz ≤ Ks−℘

ð
v≠0f g

φ

� z, ∇H u + vð Þ zð Þj jð Þdz
= K
ð

vs≠0f g
φs x, ∇H us + vsð Þ xð Þj jð Þdx:

ð103Þ

Lemma 27. Let φ ∈ΦwðΩÞ satisfy (A1), (A2)′, and (A4). If u

∈HW1,φ
loc ðΩÞ is a bounded local quasiminimizer of (1) in QsR

, then for 0 < R < R0 < 1/3 ffiffiffiffiffiffiffiffi
2n℘p kuk∞,s ∈ ð0, 1�, QsR ⊂ ⊂Ω, k0

> −2kuskL∞ðQRÞ, we have

esssup
QR/2

us − k0 ≤ c
ð
QR

us − k0ð Þ+� �γ+dx
 !1/γ+

+ R

0
@

1
A,

ð104Þ

where R0 depends only on ℘ and kukL∞ðQsRÞ, c depends only on
the parameters of (A1), (A2)′, and (A4), ℘, R, Δ2ðφÞ, and
kukL∞ðQsRÞ does not depend on s.

Proof. The proof follows the line proving proposition 28 in
[16]. Writing

~φ x, τð Þ≔ τγ
+
φ− 1ð Þχ 0,1½ Þ τð Þ + φ x, τð Þχ 1,∞½ Þ τð Þ: ð105Þ

Assuming τ0 ∈ ½0, ð3kuk∞/sÞ�, we claim

~φsð Þ+QR
βτ0ð Þ ≤ ~φsð Þ−QR

τ0ð Þ⇔ ~φ+
QsR

βτ0ð Þ ≤ ~φ−
QsR

τ0ð Þ: ð106Þ

In fact, obviously, it holds

~φsð Þ+QR
τð Þ = sup

x∈QR

~φs x, τð Þ = sup
x∈QR

τγ
+
φ−
s 1ð Þχ 0,1½ Þ τð Þ + φs x, τð Þχ 1,∞½ Þ τð Þ

	 


= τγ
+ inf
x∈QR

φs x, 1ð Þχ 0,1½ Þ τð Þ + sup
x∈QR

φs x, τð Þχ 1,∞½ Þ τð Þ
	 


= 1
s

τγ
+ inf
x∈QsR

φ x, 1ð Þχ 0,1½ Þ τð Þ + sup
x∈QsR

φ x, τð Þχ 1,∞½ Þ τð Þ
	 
 !

= 1
s
~φ+
QsR

τð Þ:
ð107Þ

Similarly, we have ð~φsÞ−QR
ðτÞ = ð1/sÞ~φ−

QsR
ðτÞ, so two

inequalities in (106) are equivalent.
In the sequel, we prove the latter of (106). Let us consider

cases τ0 < 1/β and τ0 ≥ 1/β.

(1) If τ0 < 1/β, then

~φ+
QsR

βτ0ð Þ = βτ0ð Þγ+φ− 1ð Þ: ð108Þ

On one hand, ðβτ0Þγ
+
φ−ð1Þ ≤ τ

γ+

0 φ−ð1Þ; on the other
hand, (A4) and definition 4 yield

βτ0ð Þγ+φ− 1ð Þ ≤ φ− βτ0ð Þ ≤ φ− τ0ð Þ, ð109Þ

so

~φ+
QsR

βτ0ð Þ ≤ τ0
γ+φ− 1ð Þχ 0,1½ Þ τ0ð Þ + φ−

QsR
τ0ð Þχ 1,∞½ Þ τ0ð Þ = ~φ−

QsR
τ0ð Þ:
ð110Þ

(2) If τ0 ≥ 1/β, then

~φ+
QsR

βτ0ð Þ = φ+
QsR

βτ0ð Þ, ~φ−
QsR

τ0ð Þ = φ−
QsR

τ0ð Þ: ð111Þ

By Lemma 10, for τ0 ∈ ½1, ð1/ ffiffiffi℘p diamQsRÞ�, we have
φ+
QsR

ðβτ0Þ ≤ φ−
QsR

ðτ0Þ; so when 3kuk∞/s ≤ 1/ ffiffiffi℘p diamQsR < 1/ffiffiffiffiffiffiffiffi2n℘p
sR (i.e., R0 < 1/3 ffiffiffiffiffiffiffiffi2n℘p kuk∞), it holds

φ+
QsR

βτ0ð Þ ≤ φ−
QsR

τ0ð Þ: ð112Þ

Thus, the latter of (106) is proved.
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Denote

d0 ≔max
ð
QR

us − k0ð Þ+� �γ+dx
 !1/γ+

, R

8<
:

9=
;, d ≔Md0, ð113Þ

whereM ≥ 1 is to be determined. Note d0 ∈ ½0, ð3kuk∞/sÞ� by
using k0 > −2kuskL∞ðQRÞ. Denoting

ψ≔ ~φsð Þ+QR
, ð114Þ

it deduces by the almost increasing of φðx, τÞ, (106), and the
strong Δ2-condition that

~φs x, dð Þ ≥ LM~φs x, d0ð Þ ≥ LMψ βd0ð Þ ≥ cLMψ d0ð Þ: ð115Þ

For i ∈ℕ, we take

ki ≔ k0 + d 1 − 2−i
� �

, σi ≔
R
2 1 + 2−i
� �

, ð116Þ

and see ki+1 − ki ≥ σi+1 − σi. Defining

ϕi ≔
ð
Qσi

~φs x, us − kið Þ+� �
dx ð117Þ

and applying the strong Δ2-condition and (106), we get

ϕi+1 =
ð
Qσi+1

~φs x, us − ki+1ð Þ+� �
dx ≤ c

ð
Qσi+1

~φs x, β us − ki+1ð Þ+� �
dx

≤ c
ð
Qσi+1

~φsð Þ+QR
β us − ki+1ð Þ+� �

dx ≤ c
ð
Qσi+1

~φsð Þ−QR
us − ki+1ð Þ+� �

dx:

ð118Þ

By Lemma 26, us is a local quasiminimizer, so we know
from Lemma 20 that us satisfies (65). Hence, using (118)
and Lemma 25 yields

ϕi+1 ≤ c
ð
Qσi+1

~φsð Þ−QR
us − ki+1ð Þ+� �

dx ≤ c

�
ð
Qσi

~φs x, us − kið Þ+� �
~φs x, ki+1 − kið Þ dx

 !1/℘ð
Qσi

~φs x, us − kið Þ+
σi − σi+1

� �
dx

= c
ð
Qσi

~φs x, us − kið Þ+� �
~φs x, d2−i−1
� � dx

 !1/℘ð
Qσi

~φs x, us − kið Þ+
R2−i−2

� �
dx:

ð119Þ

By (A4), definition 4, (106), and the strong Δ2-condition,
we have

~φs x,Md02−i−1
� �

≥ cM2− i+1ð Þγ+~φs x, d0ð Þ ≥ cM2− i+1ð Þγ+~φ−
s d0ð Þ

≥ cM2− i+1ð Þγ+~φ+
s βd0ð Þ ≥ cM2− i+1ð Þγ+ψ d0ð Þ,

~φs x, us − kið Þ+
R2−i−2

� �
≤ c R2−i−2
� �−γ+

~φs x, us − kið Þ+� �
, ð120Þ

so it deduces from (119) that

ϕi+1 ≤ c
ð
Qσi

~φs x, us − kið Þ+� �
M2− i+1ð Þγ+ψ d0ð Þ dx

 !1/℘ð
Qσi

� R2−i−2
� �−γ+

~φs x, us − kið Þ+� �
dx

= c 2− i+1ð Þγ+Mψ d0ð Þ
h i−1/℘

R2−i−2
� �−γ+

ϕi
1+1/℘

= c2iγ+ 1+1/℘ð ÞM−1/℘ψ d0ð Þ−1/℘R−γ+ϕi
1+1/℘:

ð121Þ

Select α≔ 1/℘, D≔ cR−γ+M−αψðd0Þ−α, ℓ≔ 2ð1+αÞγ+ in
Lemma 22. If

ϕ0 ≤ c2−1+α
α2 γ

+
R

γ+
α Mψ d0ð Þ, ð122Þ

then we have by Lemma 22 that

us ≤ k∞ = k0 +Md0 ð123Þ

almost everywhere in Qσ∞
=QR/2.

The remaining job is to prove (122). We will point out
that ϕ0/ψðd0Þ has a bound not depending on s and then
choose M such that (4.9) holds. Since τ−γ

+
~φsðx, τÞ is almost

decreasing, it follows that τ−γ
+
ψðτÞ is also almost decreasing,

and τ−1ψ−1ðτÞγ+ is almost increasing by Lemma 8. Then, we

know from ([15], Lemma 5) that ðψ−1Þγ+ is equivalent to a
convex function ς. Because of ~φs ≤ ψ, it yields by the Jensen
inequality that

ψ−1 ϕ0ð Þ = ψ−1
ð
QR

~φs x, us − k0ð Þ+� �
dx

 !

≤ ψ−1
ð
QR

ψ us − k0ð Þ+� �
dx

 !

~ ς
ð
QR

ψ us − k0ð Þ+� �
dx

 ! !1/γ+

≤
ð
QR

ς ψ us − k0ð Þ+� �� �
dx

 !1/γ+

~
ð
QR

us − k0ð Þ+� �γ+dx
 !1/γ+

≤ d0:

ð124Þ

Since ψ satisfies the strong Δ2-condition, we have

ϕ0 ≤ ψ cd0ð Þ ≤ cψ d0ð Þ, ð125Þ

and (122) is proved.

Theorem 28. Let φ ∈ΦwðΩÞ satisfy (A1), (A2)′ and (A4), and
u ∈HW1,φ

loc ðΩÞ be a bounded local quasiminimizer of (1).
When 0 < r < R0, k ∈ℝ, we have
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esssup
Qr/2

u − k ≤ c
1
Qrj j
ð
Qr

u − kð Þ+� �γ+dx
 ! 1

γ+

+ r

0
@

1
A, ð126Þ

where c depends only on the parameters of (A1), (A2)′, and
(A4), Δ2ðφÞ, ℘, R0 and kukL∞ðQrÞ.

The proof is similar to Theorem 5.7 in [16] by using
Lemma 27 here. We omit it and describe two interesting
corollaries.

Corollary 29. Let φ ∈ΦwðΩÞ satisfy (A1), (A2)′, and (A4)
and u ∈HW1,φ

loc ðΩÞ be a bounded local quasiminimizer of
(1). When 0 < r < R0, k ∈ℝ, we have for any ε ∈ ð0, 1Þ,

esssup
QεR

u − k ≤ c
1

1 − εð Þ℘ QRj j
ð
QR

u − kð Þ+� �γ+dx
 ! 1

γ+

+ R

0
@

1
A,

ð127Þ

where c does not depend on R and ε.
The proof is similar to Corollary 5.8 in [16].

Corollary 30. Let φ ∈ΦwðΩÞ satisfy (A1), (A2)′, and (A4)
and u ∈HW1,φ

loc ðΩÞ be a bounded local quasiminimizer of
(1). When 0 < r < R0, k ∈ℝ, we have for any q ∈ ð0,∞Þ,

esssup
QR/2

u − k ≤ c
1
QRj j

ð
QR

u − kð Þ+� �qdx
 !1

q

+ R

0
@

1
A, ð128Þ

where c does not depend on R and depends only on the param-
eters of (A1), (A2)′, and (A4), Δ2ðφÞ, ℘, R0, and kukL∞ðQrÞ.

The proof is similar to Corollary 5.9 in [16].

5. Weak Harnack Inequality and the Proof of
the Main Result

Denote

Dθ ≔ u < θf g ∩QR: ð129Þ

Lemma 31. If u ≥ 0, −u satisfies (128) with q = 1, c = c1, k =
−θ, and for some θ > 0,

Dθj j ≤ 1
2c1

QRj j, ð130Þ

then

ess inf
QR

2

u + c1R ≥
θ

2
: ð131Þ

The proof is similar to Lemma 6.1 in [16].

Lemma 32. Let φ ∈ΦwðΩÞ satisfy (A1), (A2), (A2)′, (A4), and
(A3), and u ∈HW1,φ

loc ðΩÞ be a bounded local quasiminimizer

of (1), R0 as shown in Lemma 27. If u ≥ 0, and for all r ∈ ð0,
R0Þ, θ > 0, and κ ∈ ð0, 1Þ, there exists μ > 0 such that

Dθj j ≤ κ QRj j ; ð132Þ

then, we have

ess inf
QR

2

u + cR ≥ μθ: ð133Þ

The proof is similar to the proof of Lemma 6.2 in [16]. It
only needs to replace theorem 3.16 in [19] with Lemma 15 in
this paper.

Lemma 33 (covering Lemma). Suppose that QR ⊂ℍn, E and
G ( E ⊂G ⊂QR) are measurable sets, if there exists 0 < δ < 1
such that

Ej j ≤ δ QRj j ; ð134Þ

(1) For any cube Q with jQ ∩ Ej ≥ δjQj, it holds Q′ ⊂G,
where Q′ is a subset of Q

Then,

Ej j ≤ δ Gj j: ð135Þ

Proof. From the Calderón-Zygmund decomposition Theo-
rem ([20], p17), we know that for every f ∈ L1ðQRÞ and 0 <
δ < 1, there is a sequence of disjoint cubes fQjg such that
for almost all x ∈QR \ ∪j Qj, we have

f xð Þj j ≤ δ and δ ≤ 1
Qj

�� ��
ð
Qj

fj jdx < 2℘δ: ð136Þ

If we take f = χE , then

E ⊂ ∪
j
Qj

� �
∪N , Nj j = 0 and δ ≤

E ∩Qj

�� ��
Qj

�� �� < 2℘δ: ð137Þ

Let us decompose Qj until the cube ~Qj satisfies jE ∩ ~Qjj/
j~Qjj < δ; so,

E \N ⊂ ∪
j
~Qj ⊂ G: ð138Þ

Hence, it follows

Ej j ≤〠
j

E ∩ ~Qj

�� �� ≤ δ〠
j

~Qj

�� �� ≤ δ Gj j: ð139Þ

Lemma 34. Suppose u ≥ 0 and for all R ∈ ð0, R0Þ and every κ
> 0, there exists μ > 0 such that if

Dθj j ≤ κ QRj j, ð140Þ
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then

ess inf
QR

2

u + R ≥ μθ ; ð141Þ

then, there exists q > 0 such that for every R ∈ ð0, R0Þ, we have

1
QRj j

ð
QR

uqdx

 !1
q

≤ c ess inf
QR

2

u + R

 !
: ð142Þ

Proof. The proof is similar to the proof of Lemma 6.3 in [16],
and the key difference is that we replace the covering lemma
there with Lemma 5.3. Fix 0 < δ < 1, κ≔ 1 − δ and write

E sμi, z, R
� �

≔ y ∈QR zð Þ: u yð Þ + R > sμi
� �

: ð143Þ

Take

E = Ei
s ≔ y ∈QR : u yð Þ + R > sμi
� �

, G = Ei+1
s ð144Þ

in Lemma 5.3, where μ is the constant in (141) with respect to
κ. Suppose that for some r < R and z ∈QR, we have

Qr zð Þ ∩ Ei
s

�� �� ≥ δ Qr zð Þj j: ð145Þ

Therefore, it follows under (145) that

δ Qrj j ≤ Qr zð Þ ∩ Ei
s

�� �� = Qr zð Þ ∩QR ∩ u yð Þ + R > sμi
� ��� ��

= QR ∩Qr zð Þ ∩ u yð Þ + R > sμi
� ��� �� = QR ∩ E sμi, z, r

� ��� ��
≤ E sμi, z, r

� ��� ��,
D sμi, z, r
� ��� �� = u yð Þ < sμi

� �
∩Qr zð Þ�� �� ≤ u yð Þ + r < sμi

� �
∩Qr zð Þ�� ��

≤ Qrj j − E sμi, z, r
� ��� �� ≤ 1 − δð Þ Qrj j = κ Qrj j,

ð146Þ

so (140) holds. Thus,

ess inf
Q z,r2ð Þ

u + r ≥ sμi+1: ð147Þ

From the above discussion, we can infer (147) from the
hypothesis (145), so Qr/2ðzÞ ∩QR ⊂ Ei+1

s . It deduces that (2)
in Lemma 33 holds. Hence, we know that from Lemma 33
that if (1) in Lemma 33 does not holds, then Ei+1

s =QR, which
implies

u + R ≥ ess inf
QR/2

u + R ≥ sμi+1: ð148Þ

If (1) in Lemma 33 holds, then jEi+1
s j ≥ δ−1jEi

sj, which
gives

Ej
s

�� �� ≥ δ−1 Ej−1
s

�� �� ≥ δ−2 Ej−2
s

�� �� ≥⋯≥ δ−j E0
s

�� ��: ð149Þ

If jE0
s j > 0, we choose j to be the smallest integral satisfy-

ing j ≥ ð1/log δÞ log ðjE0
s j/jQRjÞ, and then

δj QRj j ≤ δ
1

log δ
log E0sj j

QRj j QRj j = δ
log E0sj j−log QRj j

log δ QRj j = E0
s

�� �� ≤ δj Ej
s

�� ��,
ð150Þ

so jEj
sj ≥ jQRj, i.e., Ej

s =QR, Thus, as (1), we have

ess inf
QR/2

u + R ≥ sμj: ð151Þ

Combining (1) and (2), we obtain

ess inf
QR/2

u + R ≥ sμj+1 = csμ
1

log δ
log E0sj j

QRj j = csμ
log E0sj j

QRj j

	 
 1
log δ

= cs
E0
s

�� ��
QRj j

 !log μ
log δ

:

ð152Þ

If we write ξ = ess inf
QR/2

u + R, a = log δ/log μ, then

E0
s

�� �� ≤ c QRj jξas−a: ð153Þ

Taking 0 < q < a, it gets

ð
QR

u + Rð Þqdx = q
ð∞
0
sq−1 E0

s

�� ��ds = q
ðξ
0
sq−1 E0

s

�� ��ds + q
ð∞
ξ

sq−1 E0
s

�� ��ds

= q
ðξ
0
sq−1 QRj jds + q

ð∞
ξ

sq−1 E0
s

�� ��ds
≤ QRj jξq + c QRj jξa

ð∞
ξ

sq−a−1ds = c QRj jξq,

ð154Þ

so

1
QRj j

ð
QR

uqdx

 !1/q

≤ c ess inf
QR/2

u + R
� �

: ð155Þ

Thus, (142) is proved.

Lemma 35 (weak Harnack inequality). Let φ ∈ΦwðΩÞ satisfy
(A1), (A2), (A2)′, (A4), and (A3). If u ∈HW1,φ

loc ðΩÞ is a non-
negative local quasiminimizer of (1), R0 as shown in Lemma
27, then for all R ∈ ð0, R0Þ and k ∈ℝ, we have

1
QRj j

ð
QR

uqdx

 !1
q

≤ c ess inf
QR

2

+ R

 !
, ð156Þ

where c depends only on the parameters of (A1), (A2), (A2)′,
(A4), and (A3), ℘, R0, and kukL∞ðQRÞ.

Proof. According to Lemma 32, we see that the conditions of
Lemma 34 are satisfied, so (156) is true by using Lemma 34.

Proof of Theorem 2. Combining Corollary 30 and Lemma 35,
we prove immediately Theorem 2.
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Proof of Theorem 3. The Harnack inequality in Theorem 2
implies the Hölder continuity.
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