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Let L = −Δℍn + V be a Schrödinger operator on the Heisenberg group ℍn, where Δℍn is the sub-Laplacian on ℍn and the
nonnegative potential V belongs to the reverse Hölder class Bq with q ∈ ½Q/2,∞Þ. Here, Q = 2n + 2 is the homogeneous

dimension of ℍn. Assume that fe−tLgt>0 is the heat semigroup generated by L . The semigroup maximal function related to the
Schrödinger operator L is defined by T ∗

Lð f ÞðuÞ≔ supt>0je−tL f ðuÞj. The Riesz transform associated with the operator L is
defined by RL = ∇ℍnL−1/2, and the dual Riesz transform is defined by R∗

L =L−1/2∇ℍn , where ∇ℍn is the gradient operator on
ℍn. In this paper, the author first introduces a class of Morrey spaces associated with the Schrödinger operator L on ℍn. Then,
by using some pointwise estimates of the kernels related to the nonnegative potential, the author establishes the boundedness
properties of these operators T ∗

L , RL , and R∗
L acting on the Morrey spaces. In addition, it is shown that the Riesz transform

RL = ∇ℍnL−1/2 is of weak-type ð1, 1Þ. It can be shown that the same conclusions are also true for these operators on
generalized Morrey spaces.

1. Introduction

1.1. The Heisenberg Group ℍn. The Heisenberg group is the
most well-known example from the realm of nilpotent Lie
groups and plays an important role in several branches of
mathematics, such as the representation theory, partial dif-
ferential equations, several complex variables, and harmonic
analysis. It is a remarkable fact that the Heisenberg group, an
important example of the simply connected nilpotent Lie
group, naturally arises in two fundamental but different
settings in modern analysis. On the one hand, it can be
naturally identified with the group of translations of the
Siegel upper half-space in ℂn+1 and plays an important
role in our understanding of several problems in the com-
plex function theory of the unit ball. On the other hand, it
can also be realized as the group of unitary operators gen-
erated by the position and momentum operators in the
context of quantum mechanics.

We begin by recalling some notions and well-known
results from [1–3]. We write ℕ = f1, 2, 3,⋯g for the set of
natural numbers. The sets of real and complex numbers are
denoted by ℝ and ℂ, respectively. Let ℍn be a Heisenberg
group of dimension 2n + 1, that is, a two-step nilpotent Lie
group with underlying manifold ℂn ×ℝ. The group opera-
tion is given by

z, tð Þ∙ w, sð Þ≔ z +w, t + s + 2 Im z∙�wð Þð Þ, ð1Þ

where z = ðz1, z2,⋯, znÞ, w = ðw1,w2,⋯,wnÞ ∈ℂn, and z∙
�w≔∑n

j=1zjwj.
Under this group operation, ℍn becomes a nilpotent

unimodular Lie group. It can easily be seen that the inverse
element of u = ðz, tÞ ∈ℍn is u−1 = ð−z,−tÞ, and the identity
element of this group is the origin 0 = ð0, 0Þ. The correspond-
ing Lie algebra Hn of left-invariant vector fields on ℍn is
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spanned by

Xj ≔
∂
∂xj

+ 2yj
∂
∂t

; Y j ≔
∂
∂yj

− 2xj
∂
∂t

; j = 1, 2,⋯, n, T ≔
∂
∂t

:

ð2Þ

All nontrivial commutation relations are given by

Xj, Y j

� �
= −4T , j = 1, 2,⋯, n: ð3Þ

Here, ½·, · � is the usual Lie bracket. The sub-Laplacian
Δℍn and the gradient ∇ℍn are defined, respectively, by

Δℍn ≔ 〠
n

j=1
X2

j + Y2
j

� �
,

∇ℍn ≔ X1,⋯, Xn, Y1,⋯, Ynð Þ:
ð4Þ

The Heisenberg group has a natural dilation structure
which is consistent with the Lie group structure mentioned
above. For each positive number a > 0, we define the dilation
on ℍn by

δa z, tð Þ≔ az, a2t
� �

,  z, tð Þ ∈ℍn: ð5Þ

Observe that δaða > 0Þ is an automorphism of the group
ℍn. For any given u = ðz, tÞ ∈ℍn, the homogeneous norm of
u is given by the following form:

uj j = z, tð Þj j≔ zj j4 + t2
� �1/4

: ð6Þ

Observe that ∣ðz, tÞ−1 ∣ = ∣ðz, tÞ∣ and

δa z, tð Þj j = azj j4 + a2t
� �2� �1/4

= a z, tð Þj j, a > 0: ð7Þ

In addition, this norm j·j satisfies the triangle inequality
and then leads to a left-invariant distance dðu, vÞ = ju−1 · vj
for any u = ðz, tÞ, v = ðw, sÞ ∈ℍn. If r > 0 and u ∈ℍn, let
Bðu, rÞ = fv ∈ℍn : dðu, vÞ < rg be the (open) ball with center
u ∈ℍn and radius r ∈ ð0,∞Þ. Both left and right Haar mea-
sures on ℍn coincide with the Lebesgue measure dzdt on
ℂn ×ℝ. For any measurable set E ⊂ℍn, the Lebesgue mea-
sure of E is denoted by jEj. For ðu, rÞ ∈ℍn × ð0,∞Þ, it can
be proved that the volume of Bðu, rÞ is

B u, rð Þj j = rQ B 0, 1ð Þj j, ð8Þ

where Q≔ 2n + 2 is the homogeneous dimension of ℍn and
|Bð0, 1Þ ∣ is the volume of the unit ball inℍn. A simple calcu-
lation shows that

B 0, 1ð Þj j = 2πn+ 1/2ð ÞΓ n/2ð Þ

n + 1ð ÞΓ n + 1ð Þ/2ð Þ : ð9Þ

Given a ball B = Bðu, rÞ ⊂ℍn and λ > 0, we adopt the
notation λB to denote the ball with the same center u and

radius λr. Clearly, by (8), we have

B u, λrð Þj j = λQ B u, rð Þj j, u, rð Þ ∈ℍn × 0,∞ð Þ, λ ∈ 0,∞ð Þ:
ð10Þ

For a radial function F onℍn, we have the following inte-
gration formula:ð

ℍn
F uð Þdu = Cn

ð∞
0
F ϱð ÞϱQ−1dϱ,Q = 2n + 2, ð11Þ

where Cn is a positive constant which is independent of F.
For more information about harmonic analysis on the Hei-
senberg group, the reader is referred to [2, 4, 5] and the refer-
ences therein.

1.2. The Schrödinger Operator L . We recall some standard
notation and definitions.

Definition 1. A nonnegative locally Lq integrable function V
on ℍn is said to belong to the reverse Hölder class Bq for
some exponent 1 < q<∞, if there exists a positive constant
C = Cðq ; VÞ such that the reverse Hölder inequality

1
Bj j
ð
B
V wð Þqdw

� 	1/q
≤ C

1
Bj j
ð
B
wð Þdw

� 	
, ð12Þ

holds for every ball B in ℍn.

In this article, we will always assume that 0≡V ∈ Bq with
q ∈ ½Q/2,∞Þ and Q = 2n + 2. We now consider the Schrödin-
ger operator with the potential V ∈Bq on the Heisenberg
group ℍn (see [3]):

L ≔ −Δℍn +V : ð13Þ

In recent years, there has been a lot of attention paid to
the study of various function spaces associated with the
Schrödinger operators, which has been an active research topic
in harmonic analysis. For the investigation of Schrödinger
operators on the Euclidean space ℝn with nonnegative
potentials that belong to the reverse Hölder class, see, for
example, [6–10]. Concerning the weighted case, one can see
[11–16] for more details. The extension to the setting of the
Heisenberg group has been given by Lin and Liu in [3]. For
further details, we refer the reader to [17–19], among others.
Regarding the Schrödinger operators in a more general
setting (such as the nilpotent Lie group), see, for example,
[20, 21]. As in [3, 22], we introduce the following
definition.

Definition 2. Suppose that V ∈Bq with q ∈ ½Q/2,∞Þ. For any
given u ∈ℍn, the critical radius function ρðuÞ = ρðu ; VÞ is
defined by

ρ uð Þ≔ r ∈ 0,∞ð Þ: 1
rQ−2

ð
B u,rð Þ

V wð Þdw ≤ 1
( )

, ð14Þ
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where Bðu, rÞ denotes the ball in ℍn centered at u and with
radius r.

It should be pointed out that the auxiliary function ρ
ðu ; V Þ on the Euclidean space ℝn was introduced by Shen
in [10]. Later, Li [21] defined it on the (simply connected)
nilpotent Lie group. It is well known that the auxiliary
function ρðuÞ determined by V ∈Bq satisfies

0 < ρ uð Þ <∞, ð15Þ

for any given u ∈ℍn (see [3, 22]). In particular, ρðuÞ = 1
with VðwÞ ≡ 1, and ρðuÞ ≈ 1/ð1 + jujÞ with VðwÞ = jwj2
(Hermite operator).

It is easy to check that ifQ/2 ≤ q2 < q1, thenBq1
⊂Bq2

by
the Hölder inequality. Furthermore, it can be shown that the
Bq class has a property of self-improvement. More precisely,
if V ∈Bq, then V ∈Bq+ε for some ε > 0. By this fact, we
know that the assumption q >Q/2 is equivalent to q ≥Q/2.

When q ∈ ½Q/2,QÞ, we also write

δ≔ 2 − Q
q
∈ 0, 1ð Þ: ð16Þ

Let us give some elementary properties of the Bq class.
Assume that V ∈Bq with q ∈ ½Q/2,∞Þ.

Lemma 3. The measure VðwÞdw satisfies the doubling condi-
tion; that is, there exists a constant C0 > 0 such that

ð
B u0 ,2rð Þ

V wð Þdw ≤ C0

ð
B u0 ,rð Þ

V wð Þdw, ð17Þ

for all balls Bðu0, rÞ in ℍn.

Lemma 4. If r = ρðu0Þ, then

1
rQ−2

ð
B u0 ,rð Þ

V wð Þ dw = 1, ð18Þ

for any u0 ∈ℍn.

Lemma 5. For 0 < r < R <∞, we have

1
rQ−2

ð
B u0 ,rð Þ

V wð Þ dw ≤ C
r
R

� �δ 1

RQ−2

ð
B u0 ,Rð Þ

V wð Þdw, ð19Þ

for any u0 ∈ℍn.

For more details, the reader may consult [3, 22].
We also need the following technical lemma concerning

the critical radius function (14).

Lemma 6. Let ρðuÞ be the auxiliary function determined byV .
For any u and v inℍn, there exist constants C1 ≥ 1 andN0 > 0

such that

1
C1

1 + v−1u


 


ρ uð Þ

" #−N0

≤
ρ vð Þ
ρ uð Þ ≤ C1 1 + v−1u



 


ρ uð Þ

" #N0/ N0+1ð Þ
:

ð20Þ

Here, and in what follows, v−1 · u is simply denoted by
v−1u. Lemma 6 has been proved by Lu [22] (see also [3],
Lemma 4). In the setting of ℝn, this result was first given by
Shen in [10] (Lemma 1.4). As a direct consequence of (20),
we can see that for each fixed k ∈ℕ, the following estimate

1 + 2kr
ρ uð Þ

� �
1 + r

ρ uð Þ
� �−N0/ N0+1ð Þ

≤ C1 1 + 2kr
ρ vð Þ

� �
, ð21Þ

holds for any v ∈ Bðu, rÞwith u ∈ℍn and r ∈ ð0,∞Þ, where C1
is the same as in (20). Let us verify (21). An application of
(20) yields

ρ vð Þ ≤ C1 · ρ uð Þ 1 + v−1u


 


ρ uð Þ

" #N0/ N0+1ð Þ

≤ C1 · ρ uð Þ 1 + r
ρ uð Þ

� �N0/ N0+1ð Þ
,

ð22Þ

which further implies that for each fixed k ∈ℕ,

2kr
ρ vð Þ ≥

1
C1

· 2kr
ρ uð Þ 1 + r

ρ uð Þ
� �−N0/ N0+1ð Þ

: ð23Þ

Hence,

1 + 2kr
ρ vð Þ

� �
≥ 1 + 1

C1
· 2kr
ρ uð Þ 1 + r

ρ uð Þ
� �−N0/ N0+1ð Þ

≥
1
C1

1 + r
ρ uð Þ

� �−N0/ N0+1ð Þ
+ 1
C1

· 2kr
ρ uð Þ 1 + r

ρ uð Þ
� �−N0/ N0+1ð Þ

= 1
C1

1 + 2kr
ρ uð Þ

� �
1 + r

ρ uð Þ
� �−N0/ N0+1ð Þ

,

ð24Þ

which is the desired estimate. This estimate will often be used
in the sequel.

1.3. Semigroup Maximal Functions and Riesz Transforms. Let
L = −Δℍn + V be a Schrödinger operator on the Heisenberg
groupℍn, where Δℍn is the sub-Laplacian and the nonnega-
tive potential V belongs to the reverse Hölder class Bq for
q ∈ ½Q/2,∞Þ, and Q is the homogeneous dimension of ℍn.
Since V is nonnegative and belongs to LqlocðℍnÞ,L generates
a ðC0Þ contraction semigroup fT L

t gt>0 = fe−tLgt>0. Let P t
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ðu, vÞ denote the kernel of the semigroup fe−tLgt>0.

T L
t f uð Þ≔ e−tL f uð Þ =

ð
ℍn
P t u, vð Þf vð Þdv, f ∈ L2 ℍnð Þ, t > 0:

ð25Þ

We also denote by HtðuÞ the convolution kernel of the
heat semigroup fTtgt>0 = fetΔℍn gt>0. Namely,

Tt f uð Þ≔ etΔℍn f uð Þ =
ð
ℍn
Ht v−1u
� �

f vð Þ dv: ð26Þ

For any u = ðz, sÞ ∈ℍn, it is well known that the heat ker-
nel HtðuÞ has the explicit expression:

Ht z, sð Þ = 2πð Þ−1 4πð Þ−n
ð
ℝ

� λj j
sinh λj jt
� 	n

exp −
λj j zj j2
4 coth λj jt − iλs

 �
dλ:

ð27Þ

We consider the heat equation associated with the sub-
Laplacian

∂t F u, tð Þ = Δℍn F u, tð Þ,  u, tð Þ ∈ℍn × 0,∞ð Þ, ð28Þ

with the initial condition Fðu, 0Þ = f ðuÞ. In fact, the function
HtðuÞ stated the above exists as a solution to the heat equa-
tion. Moreover, by [23] (Theorem 2), we know that the heat
kernel Ht satisfies the Gaussian upper bound estimate:

0 <Ht uð Þ ≤ C · t−Q/2 exp −
uj j2
At

� 	
, ð29Þ

where the positive constants C and A are independent of t
∈ ð0,∞Þ and u ∈ℍn. By the Trotter product formula (see
[24] for instance) and (29), one has

0 ≤P t u, vð Þ ≤Ht v−1u
� �

≤ C · t−Q/2 exp −
v−1u


 

2
At

 !
, ð30Þ

where C and A are positive constants independent of u, v,
and t. Furthermore, by using the estimates of the fundamen-
tal solution for the Schrödinger operator L on ℍn, this esti-
mate (30) can be significantly improved when V belongs to
the reverse Hölder class Bq for some q ∈ ½Q/2,∞Þ. The aux-
iliary function ρðuÞ arises naturally in the present situation.

Lemma 7. Let ρðuÞ be the auxiliary function determined byV .
For every positive integer N ∈ℕ, there exists a positive con-

stant CN > 0 such that, for any u and v in ℍn,

0 ≤P t u, vð Þ

≤ CN · t−Q/2 exp −
v−1u


 

2
At

 !
1 +

ffiffiffi
t

p
ρ uð Þ +

ffiffiffi
t

p
ρ vð Þ

" #−N
, t > 0:

ð31Þ

Remark 8. This estimate of P tðu, vÞ is much better than (30),
which was given by Lin and Liu in [3] (Lemma 7). In the set-
ting of ℝn, this result can be found in [9] (Proposition 2).

In this article, we investigate the semigroup maximal
function related to the Schrödinger operator L , which is
defined by (see [3])

T ∗
L fð Þ uð Þ≔ sup

t>0
T L

t f uð Þ

 

 = sup
t>0

e−tL f uð Þ

 

, u ∈ℍn: ð32Þ

We shall establish the strong-type and weak-type esti-
mates of the operator T ∗

L . Some other maximal functions
will be discussed at the end of Section 3.

Let us also consider the Riesz transformsRj and the dual
Riesz transforms R∗

j for the Schrödinger operator L , which
are defined, respectively, by (see [3])

Rj = XjL
−1/2,Rj+1 = Y jL

−1/2, j = 1, 2,⋯, n,

R∗
j =L−1/2Xj,R∗

j+1 =L−1/2Y j, j = 1, 2,⋯, n,

8<
: ð33Þ

where the Xj are left-invariant vector fields that generate the
Lie algebra of ℍn. Let

RL ≔∇ℍnL−1/2 = R1,R2,⋯,R2nð Þ,
R∗

L ≔L−1/2∇ℍn = R∗
1 ,R∗

2 ,⋯,R∗
2nð Þ:

ð34Þ

Here, ∇ℍn is the gradient operator on ℍn. We shall be
interested in the behavior of the (vector-valued) operators
RL and R∗

L associated with the Schrödinger operator L

on ℍn.
For any p ∈ ½1,∞Þ, the Lebesgue space LpðℍnÞ is defined

to be the set of all measurable functions f on ℍn such that

fk kLp ℍnð Þ ≔
ð
ℍn

f uð Þj jp du
� 	1/p

<∞: ð35Þ

The weak Lebesgue space WL1ðℍnÞ consists of all mea-
surable functions f on ℍn such that

fk kWL1 ℍnð Þ ≔ sup
λ>0

λ · u ∈ℍn : f uð Þj j > λf gj j <∞: ð36Þ

Recently, Lin and Liu ([3], Theorem 6 and Remark 3)
established the strong-type and weak-type estimates of the
operator T ∗

L on the Lebesgue spaces.
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Theorem 9. Let 1 ≤ p <∞. Then, the following statements are
true:

(1) If p > 1, then the operator T ∗
L is bounded on LpðℍnÞ

(2) If p = 1, then the operator T ∗
L is bounded from

L1ðℍnÞ into WL1ðℍnÞ

Remark 10.

(i) It was also shown by Lin and Liu that this operator is
bounded on BMOLðℍnÞ

(ii) On the Euclidean space ℝn, this maximal operator
was studied by Dziubański et al. [9] (see also [11, 25])

As for the (vector-valued) dual Riesz transform R∗
L

defined above, we have the following estimate given in [21]
(see also [19]).

Theorem 11. Let V ∈Bq with q ∈ ½Q/2,QÞ, and let p0 be a
number such that 1/p0 = 1/q − 1/Q. Then, the (vector-valued)
dual Riesz transform R∗

L is bounded on LpðℍnÞ for ðp0Þ′ <
p <∞.

By duality, we could obtain the following result.

Theorem 12. Let V ∈Bq with q ∈ ½Q/2,QÞ, and let p0 be a
number such that 1/p0 = 1/q − 1/Q. Then, the (vector-valued)
Riesz transform RL is bounded on LpðℍnÞ for 1 < p < p0.

Moreover, it will be proved in Section 4 that RL is of
weak-type ð1, 1Þ on the Heisenberg group. The case where
q ∈ ½Q,∞Þ is also considered in Section 4.

Remark 13.

(i) It can be shown that the range of p in the above the-
orems is optimal (see [3]). In this paper, the authors
also proved that the dual Riesz transform R∗

L is
bounded on BMOLðℍnÞ and gave the Fefferman-
Stein-type decomposition of BMOL functions with
respect to R∗

j , j = 1, 2,⋯, 2n

(ii) It was shown in [26] that when V ≡ 0, the operators
R≔∇ℍnð−ΔℍnÞ−1/2 and R∗ = ð−ΔℍnÞ−1/2∇ℍn are
uniformly bounded on LpðℍnÞ with respect to n.
More specifically, for every 1 < p <∞, there exists a
constant Cp > 0 such that for every n ∈ℕ

R fð Þk kLp ℍnð Þ + R∗ fð Þk kLp ℍnð Þ ≤ Cp fk kLp ℍnð Þ: ð37Þ

(iii) Recall that in the setting of ℝn, the Riesz transform
and its dual form were originally studied by Shen
in [10]. It can be proved that the analog of Theorem
11 (also Theorem 12) on the Euclidean space is also

true by the same argument (see [10, 27]). For the cor-
responding estimates for commutators generated by
BMO functions, the reader is referred to [11, 12, 28]
for more details

The paper is organized as follows. In Section 2, we intro-
duce the Morrey space and weak Morrey space associated
with the Schrödinger operator L on ℍn and state our main
results: Theorems 18, 19, 22, 23, and 24. Section 3 is devoted
to Proofs of Theorems 18 and 19, which establish the strong-
type and weak-type estimates for the semigroup maximal
function T ∗

L in the framework of Morrey spaces. The corre-
sponding estimates for some other maximal functions are
also proved in this section. Section 4 is devoted to proving
the boundedness properties of the Riesz transform RL and
its dual form R∗

L . In Section 5, we extend the above results
to the generalized Morrey spaces.

Throughout this paper, C > 0 denotes a universal con-
stant which may change from line to line, and a subscript is
added when we wish to make clear its dependence on the
parameter in the subscript. The notation X ≲ Y means that
X ≤ CY for some positive constant C. If X ≲ Y and Y ≲X,
then we write X ≈ Y to denote the equivalence of X and Y.
For any p ∈ ½1,∞Þ, the notation p′ denotes its conjugate
number, namely, 1/p + 1/p′ = 1 and 1′ =∞.

2. Definitions and Main Theorems

A few historic remarks are in order. The classical Morrey
space Mp,λðℝnÞ was originally introduced and studied by
Morrey in [29] to deal with the local behavior of solutions
to second-order elliptic partial differential equations. Since
then, this space was systematically developed by a number
of authors. Nowadays, this space has been investigated exten-
sively and widely used in analysis, geometry, mathematical
physics, and other related fields. We denote by Mp,λðℝnÞ
the Morrey space, which consists of all p-locally integrable
functions f on ℝn such that

fk kMp,λ ℝnð Þ ≔ sup
x∈ℝn ,r>0

r−λ/p fk kLp B x,rð Þð Þ

= sup
x∈ℝn ,r>0

r−λ/p
ð
B x,rð Þ

f yð Þj jp dy
 !1/p

<∞,
ð38Þ

where 1 ≤ p <∞ and 0 ≤ λ ≤ n. It is known that Mp,λðℝnÞ is
an extension of LpðℝnÞ in the sense that Mp,0ðℝnÞ = LpðℝnÞ.
Note that Mp,nðℝnÞ = L∞ðℝnÞ by the Lebesgue differentia-
tion theorem. If λ < 0 or λ > n, then Mp,λðℝnÞ =Θ, where Θ
is the set of all functions equivalent to 0 on ℝn. We also
denote by WM1,λðℝnÞ the weak Morrey space, which con-
sists of all measurable functions f on ℝn such that

fk kWM1,λ ℝnð Þ ≔ sup
x∈ℝn ,r>0

r−λ fk kWL1 B x,rð Þð Þ

= sup
x∈ℝn ,r>0

r−λ sup
σ>0

σ y ∈ B x, rð Þ: f yð Þj j > σf gj j <∞:

ð39Þ
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For the properties of classical Morrey spaces, we refer the
readers to [30–34] and the references therein. Moreover, the
Morrey spaces were found to have many important applica-
tions to the Navier-Stokes equations, the Schrödinger equa-
tions, the elliptic equations with discontinuous coefficients,
and the potential analysis (one can see [30, 35–38]).

In this section, we introduce some types of Morrey spaces
associated with the Schrödinger operatorL onℍn (see [39])
and then give our main results.

Definition 14. Let ρ be the auxiliary function determined by
V ∈Bq with q ∈ ½Q/2,∞Þ. Let 1 ≤ p <∞ and 0 ≤ κ < 1. For
each given 0 < θ <∞, the Morrey space Lp,κρ,θðℍnÞ is defined
to be the set of all p-locally integrable functions f on ℍn

such that

1
B u0, rð Þj jκ

ð
B u0,rð Þ

f uð Þj jp du
 !1/p

≤ C · 1 + r
ρ u0ð Þ

� �θ
, ð40Þ

holds for every ball Bðu0, rÞ in ℍn, where u0 and r denote
the center and radius of Bðu0, rÞ, respectively. The smallest
constant appearing in (40) is called the norm of f , which is
denoted by k f kLp,κ

ρ,θðℍnÞ. It is a Banach space with respect to

the norm k·kLp,κ
ρ,θðℍnÞ. Define

Lp,κρ,∞ ℍnð Þ≔
[

0<θ<∞
Lp,κρ,θ ℍnð Þ: ð41Þ

Definition 15. Let ρ be the auxiliary function determined by
V ∈Bq with q ∈ ½Q/2,∞Þ. Let p = 1 and 0 ≤ κ < 1. For each
given 0 < θ <∞, the weak Morrey space WL1,κρ,θðℍnÞ is

defined to be the set of all measurable functions f on ℍn

such that

1
B u0, rð Þj jκ sup

λ>0
λ · u ∈ B u0, rð Þ: f uð Þj j > λf gj j ≤ C · 1 + r

ρ u0ð Þ
� �θ

,

ð42Þ

holds for every ball Bðu0, rÞ in ℍn. The smallest constant
appearing in (42) is called the (quasi-)norm of f , which is
denoted by k f kWL1,κ

ρ,θðℍnÞ. It is a (quasi-)Banach space with

respect to the (quasi-)norm k·kWL1,κ
ρ,θðℍnÞ. Correspondingly,

we define

WL1,κρ,∞ ℍnð Þ≔
[

0<θ<∞
WL1,κρ,θ ℍnð Þ: ð43Þ

Remark 16.

(i) Obviously, if we take θ = 0 or V ≡ 0, then this Morrey
space Lp,κρ,θðℍnÞ (or weakMorrey spaceWL1,κρ,θðℍnÞ) is
just the Morrey space Lp,κðℍnÞ (or weak Morrey
space WL1,κðℍnÞ), which was defined and studied
by Guliyev et al. [40]

(ii) According to the above definitions, one has

Lp,κ ℍnð Þ ⊂ Lp,κρ,θ1 ℍnð Þ ⊂ Lp,κρ,θ2 ℍnð Þ, ð44Þ

WL1,κ ℍnð Þ ⊂WL1,κρ,θ1 ℍnð Þ ⊂WL1,κρ,θ2 ℍnð Þ, ð45Þ

whenever 0 < θ1 < θ2 <∞. Hence,

Lp,κ ℍnð Þ ⊂ Lp,κρ,∞ ℍnð Þ,
WL1,κ ℍnð Þ ⊂WL1,κρ,∞ ℍnð Þ,

ð46Þ

for all ðp, κÞ ∈ ½1,∞Þ × ½0, 1Þ. When κ = 0, the spaces Lp,κ

ðℍnÞ and WL1,κðℍnÞ reduce to LpðℍnÞ and WL1ðℍnÞ,
respectively.

(iii) It follows directly from Chebyshev’s inequality that
k f kWL1,κ

ρ,θðℍnÞ ≤ k f kL1,κ
ρ,θðℍnÞ, and hence,

L1,κρ,θ ℍnð Þ ⊂WL1,κρ,θ ℍnð Þ,
L1,κρ,∞ ℍnð Þ ⊂WL1,κρ,∞ ℍnð Þ:

ð47Þ

Moreover, the inclusion is strict.

Remark 17.

(i) We can define a norm on the space Lp,κρ,∞ðℍnÞ (see
[39]), which makes it into a Banach space. In view
of (44), for any given f ∈ Lp,κρ,∞ðℍnÞ, let

θ∗ ≔ inf θ > 0 : f ∈ Lp,κρ,θ ℍnð Þ
n o

: ð48Þ

Now define the functional k·kå by

fk k⋆ = fk kLp,κρ,∞ ℍnð Þ ≔ fk kLp,κ
ρ,θ∗ ℍnð Þ: ð49Þ

It is easy to check that the functional k·k⋆ defined by (49)
is indeed a norm on Lp,κρ,∞ðℍnÞ provided ðp, κÞ ∈ ½1,∞Þ ×
ð0, 1Þ; i.e., it satisfies the following conditions:

(a) It is positive definite: k f k⋆ ≥ 0, and k f k⋆ = 0 if and
only if f = 0

(b) It is multiplicative: kλf k⋆ = jλjk f k⋆, for any λ ∈ℝ
(c) It satisfies the triangle inequality: k f + gk⋆ ≤ k f k⋆ +

kgk⋆, for any f , g ∈ Lp,κρ,∞ðℍnÞ
(ii) In view of (45), for any given f ∈WL1,κρ,∞ðℍnÞ, let

θ∗∗ ≔ inf θ > 0 : f ∈WL1,κρ,θ ℍnð Þ
n o

: ð50Þ
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Similarly, we define the functional k·k⋆⋆ by

fk k⋆⋆ = fk kWL1,κρ,∞ ℍnð Þ ≔ fk kWL1,κ
ρ,θ∗∗ ℍnð Þ: ð51Þ

It is easily checked that the functional k·k⋆⋆ defined by
(51) is a (quasi-)norm on WL1,κρ,∞ðℍnÞ for all 0 < κ < 1; i.e.,
it satisfies the following conditions:

(a) It is positive definite: k f k⋆⋆ ≥ 0, and k f k⋆⋆ = 0 if and
only if f = 0

(b) It is multiplicative: kλf k⋆⋆ = ∣λ ∣ k f k⋆⋆, for any λ ∈ℝ
(c) It satisfies the inequality: k f+gk⋆⋆ ≤ 2ðk f k⋆⋆+

kgk⋆⋆Þ, for any f , g ∈WL1,κρ,∞ðℍnÞ

The space WL1,κρ,∞ðℍnÞ is a (quasi-)Banach space with
respect to the (quasi-)norm k·k⋆⋆.

Since Morrey space Lp,κρ,θðℍnÞ (or weak Morrey space W

L1,κρ,θðℍnÞ) could be viewed as an extension of the Lebesgue

space (or the weak Lebesgue space) on ℍn (when κ = θ = 0,
or κ = 0,V ≡ 0), it is natural to study the boundedness prop-
erties of the operators T ∗

L , RL , and R∗
L in the context of

Morrey spaces. In this paper, we will extend Theorems 9,
11, and 12 to the Morrey spaces on ℍn. Let ρ be the same
as before. Now let us formulate our main results as follows.

Theorem 18. Let 1 < p <∞, 0 < κ < 1, and 0 < θ <∞. If V
∈Bq with q ∈ ½Q/2,∞Þ, then the semigroup maximal func-

tion T ∗
L is a bounded sublinear operator on Lp,κρ,θðℍnÞ.

Theorem 19. Let p = 1, 0 < κ < 1, and 0 < θ <∞. If V ∈Bq

with q ∈ ½Q/2,∞Þ, then the semigroup maximal function
T ∗

L is a bounded sublinear operator from L1,κρ,θðℍnÞ into

WL1,κρ,θðℍnÞ.

As an immediate consequence of Theorems 18 and 19
and Remark 17, we have the following results.

Corollary 20. Let 1 < p <∞ and 0 < κ < 1. If V ∈Bq with q
∈ ½Q/2,∞Þ, then the semigroup maximal function T ∗

L is a
bounded sublinear operator on Lp,κρ,∞ðℍnÞ.

Corollary 21. Let p = 1 and 0 < κ < 1. If V ∈Bq with q ∈ ½Q/
2,∞Þ, then the semigroup maximal functionT ∗

L is a bounded
sublinear operator from L1,κρ,∞ðℍnÞ into WL1,κρ,∞ðℍnÞ.

Theorem 22. Let 0 < κ < 1 and 0 < θ <∞. If V ∈Bq with q
∈ ½Q/2,QÞ, and p0 is a number such that 1/p0 = 1/q − 1/Q,
then the dual Riesz transform R∗

L is a bounded linear opera-
tor on Lp,κρ,θðℍnÞ provided that ðp0Þ′ < p <∞.

Theorem 23. Let 0 < θ <∞. If V ∈Bq with q ∈ ½Q/2,QÞ, and
p0 is a number such that 1/p0 = 1/q − 1/Q, then the Riesz
transform RL is a bounded linear operator on Lp,κρ,θðℍnÞ pro-
vided that 1 < p < p0 and 0 < κ < 1/s′ with s≔ p0/p.

It is worth pointing out that we cannot use Theorem 22 to
prove Theorem 23 in a direct way by duality, since the
predual to Lp,κρ,θðℍnÞ is unknown. Motivated by the ideas in

[30, 31], it is an interesting and natural problem to investigate
the dual theory for the Morrey space Lp,κρ,θðℍnÞ through a geo-
metric analysis of the Hausdorff capacity and Choquet inte-
grals, which will be treated in a subsequent paper. In
addition, we will prove that the operator RL is of weak-
type ð1, 1Þ. Based on this result, we can further prove the
following.

Theorem 24. Let 0 < θ <∞. If V ∈Bq with q ∈ ½Q/2,QÞ, and
p0 is a number such that 1/p0 = 1/q − 1/Q, then the Riesz
transform RL is a bounded linear operator from L1,κρ,θðℍnÞ
into WL1,κρ,θðℍnÞ provided that 0 < κ < 1/ðp0Þ′.

As a straightforward consequence of Theorems 22–24
and Remark 17, we obtain the following estimates.

Corollary 25. Let 0 < κ < 1. If V ∈Bq with q ∈ ½Q/2,QÞ, and
p0 is a number such that 1/p0 = 1/q − 1/Q, then the dual Riesz
transformR∗

L is a bounded linear operator on Lp,κρ,∞ðℍnÞ pro-
vided that ðp0Þ′ < p <∞.

Corollary 26. If V ∈Bq with q ∈ ½Q/2,QÞ, and p0 is a number
such that 1/p0 = 1/q − 1/Q, then the Riesz transform RL is a
bounded linear operator on Lp,κρ,∞ðℍnÞ provided that 1 < p <
p0 and 0 < κ < 1/s′ with s≔ p0/p.

Corollary 27. If V ∈Bq with q ∈ ½Q/2,QÞ, and p0 is a number
such that 1/p0 = 1/q − 1/Q, then the Riesz transform RL is a
bounded linear operator from L1,κρ,∞ðℍnÞ into WL1,κρ,∞ðℍnÞ
provided that 0 < κ < 1/ðp0Þ′.

3. Boundedness of the Semigroup
Maximal Functions

In this section, we will prove the conclusions of Theorems 18
and 19. LetP tðu, vÞ denote the integral kernel of e−tL related
to the Schrödinger operator L (see [3]). Then, we can write
T ∗

L as follows:

T ∗
L fð Þ uð Þ = sup

t>0
e−tL f uð Þ

 

 = sup

t>0

ð
ℍn
P t u, vð Þf vð Þdv










, u ∈ℍn:

ð52Þ

Proof of Theorem 18. For any given f ∈ Lp,κρ,θðℍnÞ with ðp, κÞ
∈ ð1,∞Þ × ð0, 1Þ and θ ∈ ð0,∞Þ, by definition, we only need
to show that for any given ball B = Bðu0, rÞ of ℍn, the
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following inequality

1
B u0, rð Þj jκ

ð
B u0,rð Þ

T ∗
L fð Þ uð Þj jp du

 !1/p

≲ 1 + r
ρ u0ð Þ

� �θ
,

ð53Þ

holds true. By a standard argument, we decompose the func-
tion f as

f = f1 + f2 ∈ L
p,κ
ρ,θ ℍnð Þ,

f1 = f · χ2B,
f2 = f · χ 2Bð Þ∁ ,

8>><
>>: ð54Þ

where 2B denotes the open ball centered at u0 of radius 2r, χE

denotes the characteristic function of the set E, and ð2BÞ∁ =
ℍn \ ð2BÞ denotes its complement. Then, by the sublinearity
of T ∗

L , we write

1
B u0, rð Þj jκ

ð
B u0,rð Þ

T ∗
L fð Þ uð Þj jp du

 !1/p

≤
1

B u0, rð Þj jκ
ð
B u0,rð Þ

T ∗
L f1ð Þ uð Þj jp du

 !1/p

+ 1
B u0, rð Þj jκ

ð
B u0,rð Þ

T ∗
L f2ð Þ uð Þj jp du

 !1/p

≔ I1 + I2:

ð55Þ

Let us consider the first term I1. Making use of the first
part of Theorem 9, we have

I1 =
1

B u0, rð Þj jκ
ð
B u0,rð Þ

T ∗
L fð Þ uð Þj jp du

 !1/p

≤ C · 1
Bj jκ/p

ð
ℍn
jjf1 uð Þp du

� 	1/p

= C · 1
Bj jκ/p

ð
2B

f uð Þj jp du
� 	1/p

≤ C fk kLp,κ
ρ,θ ℍnð Þ ·

2Bj jκ/p
Bj jκ/p · 1 + 2r

ρ u0ð Þ
� �θ

:

ð56Þ

Moreover, note that for any fixed θ ∈ ð0,∞Þ,

1 ≤ 1 + 2r
ρ u0ð Þ

� �θ
≤ 2θ 1 + r

ρ u0ð Þ
� �θ

: ð57Þ

This, combined with (10), yields

I1 ≤ Cθ,n fk kLp,κ
ρ,θ ℍnð Þ 1 + r

ρ u0ð Þ
� �θ

: ð58Þ

We now turn to estimate the second term I2. We first
assert that the following inequality

T ∗
L f2ð Þ uð Þ ≤ CN ,A

ð
2Bð Þ∁

1 + v−1u


 


ρ uð Þ

" #−N 1
v−1uj jQ

∙ f vð Þj jdv,

ð59Þ

holds for any u ∈ Bðu0, rÞ, where N and A are given as in
Lemma 7. Indeed, this can be done by considering the follow-
ing two cases: 0 < t ≤ jv−1uj2 and jv−1uj2 < t <∞. It follows
directly from Lemma 7 that

T ∗
L f2ð Þ uð Þ = sup

t>0

ð
ℍn
P t u, vð Þf2 vð Þ dv












≤ sup
t>0

ð
ℍn

CN

tQ/2
· exp −

v−1u


 

2
At

 !





� 1 +

ffiffiffi
t

p
ρ uð Þ

" #−N
f2 vð Þj j dv







≤ sup

v−1uj j2<t<∞

ð
ℍn

CN

tQ/2
· exp −

v−1u


 

2
At

 !





� 1 +

ffiffiffi
t

p
ρ uð Þ

" #−N
f2 vð Þj jdv






 + sup
0<t≤ v−1uj j2

ð
ℍn

CN

tQ/2






· exp −

v−1u


 

2
At

 !
1 +

ffiffiffi
t

p

ρ uð Þ

" #−N
f2 vð Þj j dv







≔T ∗

∞ f2ð Þ uð Þ +T ∗
0 f2ð Þ uð Þ:

ð60Þ

When t > jv−1uj2, then ffiffiffi
t

p
> ∣v−1u ∣ , and hence,

T ∗
∞ f2ð Þ uð Þ ≤ sup

v−1uj j2<t<∞

ð
ℍn

CN ,A
tQ/2

· v−1u


 

2

t

 !−Q/2

1 +
ffiffiffi
t

p

ρ uð Þ

" #−N

� ∣f2 vð Þ∣dv

= sup
v−1uj j2<t<∞

ð
ℍn

CN ,A
v−1uj jQ

· 1 +
ffiffiffi
t

p
ρ uð Þ

" #−N
f2 vð Þj j dv














≤ CN ,A

ð
2Bð Þ∁

1 + ∣v−1u ∣
ρ uð Þ

� �−N 1
v−1uj jQ

· ∣f vð Þ∣ dv:

ð61Þ
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On the other hand, we can easily see that

T ∗
0 f2ð Þ uð Þ ≤ sup

0<t≤ v−1uj j2

ð
ℍn

CN ,A
tQ/2

· v−1u


 

2

t

 !− Q/2+N/2ð Þ

� 1 +
ffiffiffi
t

p
ρ uð Þ

" #−N
f2 vð Þj jdv

= sup
0<t≤ v−1uj j2

ð
ℍn

CN ,A
v−1uj jQ

·
ffiffiffi
t

p
∣v−1u ∣

 !N

1 +
ffiffiffi
t

p
ρ uð Þ

" #−N

� f2 vð Þj j dv:
ð62Þ

When 0 < t ≤ jv−1uj2, then ffiffiffi
t

p
≤ jv−1uj. In this case, it is

easy to check that for any N ∈ℕ,

ffiffiffi
t

p
v−1uj j

 !N

≤
ffiffiffi
t

p
+ ρ uð Þ

v−1uj j + ρ uð Þ

" #N
: ð63Þ

From this, it follows immediately that

T ∗
0 f2ð Þ uð Þ ≤ sup

0<t≤ v−1uj j2

ð
ℍn

CN ,A
v−1uj jQ

·
ffiffiffi
t

p
+ ρ uð Þ

v−1uj j + ρ uð Þ

" #N

�
ffiffiffi
t

p
+ ρ uð Þ
ρ uð Þ

" #−N
f2 vð Þj jdv

≤ CN ,A

ð
2Bð Þ∁

1 + ∣v−1u ∣
ρ uð Þ

� �−N 1
v−1uj jQ

· ∣f vð Þ∣dv:

ð64Þ

Putting all together produces the required inequality
(59). Notice that for any u ∈ Bðu0, rÞ and v ∈ ð2BÞ∁, one
has

v−1u


 

 = v−1u0

� �
∙ u−10 u
� �

 

 ≤ v−1u0



 

 + u−10 u


 

,

v−1u


 

 = v−1u0

� �
∙ u−10 u
� �

 

 ≥ v−1u0



 

 − u−10 u


 

: ð65Þ

Thus,

1
2 v−1u0


 

 ≤ v−1u



 

 ≤ 3
2 v−1u0


 

: ð66Þ

That is, jv−1uj ≈ jv−1u0j. Combining this fact with
(59) yields that for any u ∈ Bðu0, rÞ and any positive

integer N ∈ℕ,

T ∗
L f2ð Þ uð Þ ≤ CN ,A,n

ð
2Bð Þ∁

1 + ∣v−1u0 ∣
ρ uð Þ

� �−N 1
v−1u0j jQ

· f vð Þj jdv

= CN ,A,n 〠
∞

k=1

ð
2kr≤ v−1u0j j<2k+1r

1 + v−1u0


 


ρ uð Þ

" #−N

� 1
v−1u0j jQ

· f vð Þj jdv

≤ CN ,A,n 〠
∞

k=1

1
B u0, 2k+1r
� �

 



ð
v−1u0j j<2k+1r

� 1 + 2kr
ρ uð Þ

� �−N
f vð Þj j dv:

ð67Þ

Furthermore, in view of (21) and (57), we can see
that the above expression (67) does not exceed

C〠
∞

k=1

1
B u0, 2k+1r
� �

 



ð
B u0,2k+1rð Þ

1 + r
ρ u0ð Þ

� �N · N0/ N0+1ð Þð Þ

� 1 + 2kr
ρ u0ð Þ

� �−N
f vð Þj jdv

≤ C〠
∞

k=1
1 + 2kr

ρ u0ð Þ
� �−N · 1/ N0+1ð Þð Þ 1

B u0, 2k+1r
� �

 



ð
B u0,2k+1rð Þ

f vð Þj jdv

≤ C〠
∞

k=1
1 + 2k+1r

ρ u0ð Þ
� �−N · 1/ N0+1ð Þð Þ 1

B u0, 2k+1r
� �

 



ð
B u0,2k+1rð Þ

f vð Þj jdv:

ð68Þ

By using the Hölder inequality, we obtain that for
each fixed k ∈ℕ,

1
B u0, 2k+1r
� �

 



ð
B u0,2k+1rð Þ

f vð Þj jdv

≤
1

B u0, 2k+1r
� �

 



ð
B u0,2k+1rð Þ

f vð Þj jp dv
 !1/p ð

B u0,2k+1rð Þ
1 dv

 !1/p′

≤ C fk kLp,κ
ρ,θ ℍnð Þ ·

B u0, 2k+1r
� �

 

κ/p

B u0, 2k+1r
� �

 

1/p 1 + 2k+1r

ρ u0ð Þ
� �θ

:

ð69Þ

Substituting the above inequality into formula (68),
we conclude that

I2 ≤ C fk kLp,κ
ρ,θ ℍnð Þ 〠

∞

k=1

B u0, rð Þj j 1−κð Þ/p

B u0, 2k+1r
� �

 

 1−κð Þ/p

� 1 + 2k+1r
ρ u0ð Þ

� �−N · 1/ N0+1ð Þð Þ+θ
:

ð70Þ
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By choosing some sufficiently large number N such
that N > ðN0 + 1Þθ, then we have

I2 ≤ C fk kLp,κ
ρ,θ ℍnð Þ 〠

∞

k=1

B u0, rð Þj j
B u0, 2k+1r
� �

 



 ! 1−κð Þ/p

≤ C fk kLp,κ
ρ,θ ℍnð Þ

≤ C fk kLp,κ
ρ,θ ℍnð Þ 1 + r

ρ u0ð Þ
� �θ

,

ð71Þ

where the last inequality follows from the fact that 1 −
κ > 0 and θ > 0. Combining the above estimates for I1
and I2, we obtain the desired inequality (53). This ends
Proof of Theorem 18.

Proof of Theorem 19. Let f ∈ L1,κρ,θðℍnÞ with κ ∈ ð0, 1Þ and θ

∈ ð0,∞Þ. Fix ðu0, rÞ ∈ℍn × ð0,∞Þ. Our aim is to prove, by
definition, that for each given ball B = Bðu0, rÞ ofℍn, the fol-
lowing estimate

1
B u0, rð Þj jκ sup

λ>0
λ · u ∈ B u0, rð Þ T ∗

L fð Þ uð Þj j > λf gj j ≲ 1 + r
ρ u0ð Þ

� �θ
,

ð72Þ
holds true. To this end, we decompose the function f as

f = f1 + f2 ∈ L
1,κ
ρ,θ ℍnð Þ,

f1 = f · χ2B,
f2 = f · χ 2Bð Þ∁ :

8>><
>>: ð73Þ

Then, for any fixed λ > 0, we can write

1
B u0, rð Þj jκ λ · u ∈ B u0, rð Þ: T ∗

L fð Þ uð Þj j > λf gj j

≤
1

B u0, rð Þj jκ λ · u ∈ B u0, rð Þ: T ∗
L f1ð Þ uð Þj j > λ

2

 �










+ 1
B u0, rð Þj jκ λ · u ∈ B u0, rð Þ: T ∗

L f2ð Þ uð Þj j > λ

2

 �










≔ J1 + J2:

ð74Þ
We first give the estimate for the term J1. By the second

part of Theorem 9, we get

J1 =
1

B u0, rð Þj jκ λ · u ∈ B u0, rð Þ: T ∗
L f1ð Þ uð Þj j > λ

2

 �










≤ C · 1
Bj jκ

ð
ℍn

f1 uð Þj j du
� 	

= C · 1
Bj jκ

ð
2B

f uð Þj j du
� 	

≤ C fk kL1,κ
ρ,θ ℍnð Þ ·

2Bj jκ
Bj jκ · 1 + 2r

ρ u0ð Þ
� �θ

:

ð75Þ

Therefore, in view of (57) and (10), we have

J1 ≤ Cθ,n fk kL1,κ
ρ,θ ℍnð Þ 1 + r

ρ u0ð Þ
� �θ

: ð76Þ

To estimate the second term J2, by using the pointwise
inequality (68) and Chebyshev’s inequality, we can deduce that

J2 ≤
2

B u0, rð Þj jκ
ð
B u0,rð Þ

T ∗
L f2ð Þ uð Þj jdu

 !

≤ C · B u0, rð Þj j
B u0, rð Þj jκ

ð
2Bð Þ∁

1 + v−1u


 


ρ uð Þ

" #−N 1
v−1uj jQ

· f vð Þj jdv

≤ C · B u0, rð Þj j
B u0, rð Þj jκ 〠

∞

k=1
1 + 2k+1r

ρ u0ð Þ
� �−N · 1/ N0+1ð Þð Þ

� 1
B u0, 2k+1r
� �

 



ð
B u0,2k+1rð Þ

f vð Þj j dv:

ð77Þ

Moreover, for each fixed k ∈ℕ, we compute

1
B u0, 2k+1r
� �

 



ð
B u0,2k+1rð Þ

f vð Þj j dv

≤ C fk kL1,κ
ρ,θ ℍnð Þ ·

B u0, 2k+1r
� �

 

κ
B u0, 2k+1r
� �

 

 1 + 2k+1r

ρ u0ð Þ
� �θ

:

ð78Þ

Consequently, substituting this inequality into formula (77),

J2 ≤ C fk kL1,κ
ρ,θ ℍnð Þ 〠

∞

k=1

B u0, rð Þj j1−κ
B u0, 2k+1r
� �

 

1−κ 1 + 2k+1r

ρ u0ð Þ
� �−N · 1/ N0+1ð Þð Þ+θ

:

ð79Þ

By selecting some large enoughN such thatN > ðN0 + 1Þθ,
we thus have

J2 ≤ C fk kL1,κ
ρ,θ ℍnð Þ 〠

∞

k=1

B u0, rð Þj j
B u0, 2k+1r
� �

 



 ! 1−κð Þ

≤ C fk kL1,κ
ρ,θ ℍnð Þ

≤ C fk kL1,κ
ρ,θ ℍnð Þ 1 + r

ρ u0ð Þ
� �θ

,

ð80Þ

where the last step is again due to the fact that 0 < κ < 1 and θ
> 0. Summing up the above estimates for J1 and J2, and then
taking the supremumover all λ > 0, we obtain our desired result
(72). This completes Proof of Theorem 19.

We also consider the maximal function with respect to
the Poisson semigroup fe−t ffiffiffiffiLp gt>0, which is defined by

T ∗ ffiffiffiffi
L

p fð Þ uð Þ≔ sup
t>0

e−t
ffiffiffiffi
L

p
f uð Þ




 


, u ∈ℍn: ð81Þ
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We now begin to prove that under the conditions of
Theorems 18 and 19, the same results also hold for the oper-
ator T ∗ ffiffiffiffi

L
p related to L . Recall the subordination formula

(see [41], p. 6)

e−β = 1ffiffiffi
π

p
ð∞
0

e−vffiffiffi
v

p · e−β2/4v dv: ð82Þ

Thus, from the heat semigroup, we can define the Poisson
semigroup fe−t ffiffiffiffiLp gt>0 by

e−t
ffiffiffiffi
L

p
f uð Þ = 1ffiffiffi

π
p

ð∞
0

e−vffiffiffi
v

p · e− t2/4vð ÞL f uð Þ dv: ð83Þ

From this, it follows immediately that for all u ∈ℍn,

T ∗ ffiffiffiffi
L

p fð Þ uð Þ ≤ sup
t>0

1ffiffiffi
π

p
ð∞
0

e−vffiffiffi
v

p · e− t2/4vð ÞL f uð Þ



 


dv

≤
1ffiffiffi
π

p
ð∞
0

e−vffiffiffi
v

p · sup
s>0

e−sL f uð Þ

 

dv
=T ∗

L fð Þ uð Þ · 1ffiffiffi
π

p
ð∞
0

e−vffiffiffi
v

p dv =T ∗
L fð Þ uð Þ:

ð84Þ

Hence, as an immediate consequence of Theorems 18
and 19 and Corollaries 20 and 21, we have the following
results. Let ρ be the same as in (14).

Theorem 28. Let 1 < p <∞, 0 < κ < 1, and 0 < θ <∞. If V
∈Bq with q ∈ ½Q/2,∞Þ, then the operator T ∗ ffiffiffiffi

L
p is bounded

on Lp,κρ,θðℍnÞ and hence bounded on Lp,κρ,∞ðℍnÞ.

Theorem 29. Let p = 1, 0 < κ < 1, and 0 < θ <∞. If V ∈Bq

with q ∈ ½Q/2,∞Þ, then the operator T ∗ ffiffiffiffi
L

p is bounded from

L1,κρ,θðℍnÞ into WL1,κρ,θðℍnÞ and hence bounded from L1,κρ,∞ðℍnÞ
into WL1,κρ,∞ðℍnÞ.

Remark 30.

(i) A slightly more general point of view is as follows.
Motivated by the work in [9, 25], we introduce the
semigroup nontangential maximal function related
to L , which is given as follows:

T ∗∗
L fð Þ uð Þ≔ sup

t>0
sup

v∈B u,tð Þ
e−tL f vð Þ

 

, u ∈ℍn: ð85Þ

It is interesting to investigate the boundedness of the
operator T ∗∗

L related to L . Following the same arguments
as in Proofs of Theorems 4 and 6 in [3], we are able to prove
that the operator T ∗∗

L is bounded on LpðℍnÞ for all 1 < p <
∞ and bounded from L1ðℍnÞ into WL1ðℍnÞ. Based on this
result, we can further prove that the corresponding estimates
for the operator T ∗∗

L remain valid in the context of Morrey

spaces. The proof needs appropriate but minor modifica-
tions, and we leave this to the interested reader.

(ii) In view of the above results, we consider here the
nontangential maximal function with respect to the
Poisson semigroup fe−t ffiffiffiffiLp gt>0, which is defined by

T ∗∗ffiffiffiffi
L

p fð Þ uð Þ≔ sup
t>0

sup
v∈B u,tð Þ

e−t
ffiffiffiffi
L

p
f vð Þ




 


, u ∈ℍn: ð86Þ

For the same reason as above, it can be shown that this
new maximal operator T ∗∗ffiffiffiffi

L
p is dominated by T ∗∗

L in some
sense. Therefore, all the results mentioned above hold as well
for the maximal operator in this more general situation.

4. Boundedness of the Riesz Transforms

This section is concerned with Proofs of Theorems 22, 23,
and 24. Recall that the operators RL and R∗

L have singular
kernels with values in ℝ2n that will be denoted by Kðu, vÞ
and K∗ðu, vÞ, respectively (see [3]).

RL fð Þ uð Þ = ∇ℍnL−1/2 fð Þ uð Þ =
ð
ℍn
K u, vð Þf vð Þ dv,

R∗
L fð Þ uð Þ =L−1/2∇ℍn fð Þ uð Þ =

ð
ℍn
K∗ u, vð Þf vð Þ dv:

8>>><
>>>:

ð87Þ

Obviously,

K∗ u, vð Þ = −K v, uð Þ
K∗ u, vð Þj j = K v, uð Þj j:

ð88Þ

The next lemma plays a crucial role in our Proofs of
Theorems 22–24.

Lemma 31. Let V ∈Bq with q ∈ ½Q/2,QÞ, and let ρð·Þ be the
auxiliary function determined by V . For every positive integer
N ∈ℕ, there exists a positive constant CN > 0 such that, for
any u and v in ℍn,

K∗ u, vð Þj j ≤ CN 1 + v−1u


 


ρ uð Þ

" #−N
1

jjv−1uQ−1

×
ð
B v, v−1uj j/4ð Þ

V wð Þ
v−1wj jQ−1

dw + 1
v−1uj j

( )
,

ð89Þ

whereK∗ðu, vÞ denotes the (vector-valued) kernel of the oper-
atorR∗

L . Moreover, the above inequality also holds with ρðuÞ
replaced by ρðvÞ.

Lemma 31 was proved by Li [21] in a more general setting
(connected nilpotent Lie group) (see also [19] for ℍn). For
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such kernels, we also give the following result, which estab-
lishes the Lipschitz regularity of K∗ðu, vÞ.

Lemma 32. Let V ∈Bq with q ∈ ½Q/2,QÞ, and let ρð·Þ be the
auxiliary function determined by V . For every positive integer
N ∈ℕ, there exists a positive constant CN > 0 such that, for
any u and v in ℍn, and for some fixed δ′ ∈ ð0, δÞ, δ is given
as in (16),

K∗ uh, vð Þ −K∗ u, vð Þj j

≤ CN 1 + v−1u


 


ρ uð Þ

" #−N
hj jδ′

v−1uj jQ−1+δ′

×
ð
B v, v−1uj j/4ð Þ

V wð Þ
v−1wj jQ−1

dw + 1
v−1uj j

( )
,

ð90Þ

whenever jhj ≤ jv−1uj/4/. Moreover, the above inequality also
holds with ρðuÞ replaced by ρðvÞ.

The above kernel estimate in Lemma 32 was obtained by
Pengtao and Lizhong in [19], which will be used to prove that
the operator RL is of weak-type ð1, 1Þ. Recall that in the
Euclidean setting, the kernel estimates (89) and (90) were
proved in [10, 42].

We are now in a position to give the proofs of our main
theorems.

Proof of Theorem 22. Let f ∈ Lp,κρ,θðℍnÞ with ðp, κÞ ∈ ðp′0,∞Þ
× ð0, 1Þ and θ ∈ ð0,∞Þ, where 1/p0 = 1/q − 1/Q. Fix ðu0, rÞ
∈ℍn × ð0,∞Þ. By definition, we only need to show that for
any given ball B = Bðu0, rÞ of ℍn, the following inequality

1
B u0, rð Þj jκ

ð
B u0,rð Þ

R∗
L fð Þ uð Þj jp du

 !1/p

≲ 1 + r
ρ u0ð Þ

� �θ
,

ð91Þ

holds true. Using the standard technique, we decompose the
function f as

f = f1 + f2 ∈ L
p,κ
ρ,θ ℍnð Þ,

f1 = f · χ2B,
f2 = f · χ 2Bð Þ∁ :

8>><
>>: ð92Þ

Then, by using the linearity of R∗
L , we write

1
B u0, rð Þj jκ

ð
B u0,rð Þ

R∗
L fð Þ uð Þj jp du

 !1/p

≤
1

B u0, rð Þj jκ
ð
B u0,rð Þ

R∗
L f1ð Þ uð Þj jp du

 !1/p

+ 1
B u0, rð Þj jκ

ð
B u0,rð Þ

R∗
L f2ð Þ uð Þj jp du

 !1/p

≔ K1 + K2:

ð93Þ

Let us consider the first term K1. Making use of (10), (57),
and Theorem 11, we have

K1 ≤ C · 1
Bj jκ/p

ð
ℍn

f1 uð Þj jp du
� 	1/p

= C · 1
Bj jκ/p

ð
2B

f uð Þj jp du
� 	1/p

≤ C fk kLp,κ
ρ,θ ℍnð Þ ·

2Bj jκ/p
Bj jκ/p · 1 + 2r

ρ u0ð Þ
� �θ

≤ Cθ,n fk kLp,κ
ρ,θ ℍnð Þ 1 + r

ρ u0ð Þ
� �θ

:

ð94Þ

Now let us turn to estimate the second term K2. By using
Lemma 31, we obtain that for any u ∈ Bðu0, rÞ,

R∗
L f2ð Þ uð Þj j =

ð
2Bð Þ∁

K∗ u, vð Þf vð Þdv












 ≤ CN I uð Þ + II uð Þ½ �,

ð95Þ

where

I uð Þ≔
ð

2Bð Þ∁
1 + v−1u



 


ρ uð Þ

" #−N 1
v−1uj jQ

· f vð Þj j dv,

II uð Þ≔
ð

2Bð Þ∁
1 + v−1u



 


ρ uð Þ

" #−N 1
jjv−1uQ−1

�
ð
B v, v−1uj j/4ð Þ

V wð Þ
v−1wj jQ−1

dw

( )
· f vð Þj j dv:

ð96Þ

Hence, K2 can be written as follows:

K2 =
1

B u0, rð Þj jκ
ð
B u0,rð Þ

R∗
L f2ð Þ uð Þj jp du

 !1/p

≲
1

B u0, rð Þj jκ
ð
B u0,rð Þ

I uð Þj jp du
 !1/p

+ 1
B u0, rð Þj jκ

ð
B u0,rð Þ

II uð Þj jp du
 !1/p

≔ K3 + K4:

ð97Þ

Arguing as in Proof of Theorem 18, we can also obtain

K3 ≤ C fk kLp,κ
ρ,θ ℍnð Þ 1 + r

ρ u0ð Þ
� �θ

: ð98Þ

We only have to deal with the term K4. As mentioned in
the previous proof, one has

1
2 v−1u0


 

 ≤ v−1u



 

 ≤ 3
2 v−1u0


 

, ð99Þ
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whenever u ∈ Bðu0, rÞ and v ∈ ð2BÞ∁. Thus, for any positive
integer N ∈ℕ,

∣II uð Þ∣ ≲
ð

2Bð Þ∁
1 + v−1u0



 


ρ uð Þ

" #−N 1
v−1u0j jQ−1

�
ð
B v,∣v−1u∣/4ð Þ

V wð Þ
v−1wj jQ−1

dw












 · f vð Þj jdv

= 〠
∞

k=1

ð
2kr≤ v−1u0j j<2k+1r

1 + v−1u0


 


ρ uð Þ

" #−N 1
v−1u0j jQ−1

×
ð
B v, v−1uj j/4ð Þ

V wð Þ
v−1wj jQ−1

dw












 · f vð Þj jdv

≲ 〠
∞

k=1

1
B u0, 2k+1r
� �

 

1−1/Q

ð
B u0,2k+1rð Þ

1 + 2kr
ρ uð Þ

� �−N

×
ð
B v, v−1uj j/4ð Þ

V wð Þ
v−1wj jQ−1

dw












 · f vð Þj j dv:

ð100Þ

It is not difficult to check that when w ∈ Bðv, jv−1uj/4Þ
and v ∈ Bðu0, 2k+1rÞ, one has w ∈ Bðu0, 2k+2rÞ, which
implies

II uð Þj j ≲ 〠
∞

k=1

1
B u0, 2k+1r
� �

 

1−1/Q 1 + 2kr

ρ uð Þ
� �−N

×
ð
B u0,2k+1rð Þ

I 1 VχB u0,2k+2rð Þ
� �

vð Þ



 


 · f vð Þj j dv,

ð101Þ

where I 1 stands for the fractional integral operator of
order one defined by

I 1g vð Þ≔
ð
ℍn

g wð Þ
v−1wj jQ−1

dw: ð102Þ

For this operator, a classical result of Folland and
Stein [43] states that I 1 is bounded from LqðℍnÞ into
Lp0ðℍnÞ for 1 < q <Q and 1/p0 = 1/q − 1/Q (see also [39,
44]). Namely, there exists a constant C > 0 such that for
any g ∈ LqðℍnÞ,

I 1 gð Þk kLp0 ℍnð Þ ≤ C gk kLq ℍnð Þ: ð103Þ

Since ðp0Þ′ < p <∞, we can choose a number s > 0
such that 1/p + 1/p0 + 1/s = 1. A combination of the

Hölder inequality and (103) gives

ð
B u0,2k+1rð Þ

I 1 VχB u0,2k+2rð Þ
� �

vð Þ



 


 · ∣f vð Þ∣ dv

≤
ð
B u0,2k+1rð Þ

f vð Þj jp dv
 !1/p ð

B u0,2k+1rð Þ
1 dv

 !1/s

�
ð
B u0,2k+1rð Þ

I 1 VχB u0,2k+2rð Þ
� �

vð Þ



 


p0dv

 !1/p0

≤ C
ð
B u0,2k+1rð Þ

f vð Þj jp dv
 !1/p

B u0, 2k+1r
� �


 


1/s

�
ð
B u0,2k+2rð Þ

V wð Þqdw
 !1/q

≤ C
ð
B u0,2k+1rð Þ

f vð Þj jp dv
 !1/p

B u0, 2k+1r
� �


 


1/s

� 1
B u0, 2k+2r
� �

 

1/q′

ð
B u0,2k+2rð Þ

V wð Þ dw
0
@

1
A,

ð104Þ

where the last inequality holds by our assumptionV ∈Bq. We
now claim that the following inequality holds. For any
N1 > log2C0 (C0 is the doubling constant in Lemma 3),
there exists a constant C > 0 such that for any u0 ∈ℍn

and τ ∈ ð0,∞Þ,

ð
B u0,τð Þ

V wð Þ dw ≤ C · τQ−2 1 + τ

ρ u0ð Þ
� �N1

: ð105Þ

Taking this claim momentarily for granted, then we
have

ð
B u0,2k+1rð Þ

I 1 VχB u0,2k+2rð Þ
� �

vð Þ



 


 · f vð Þj j dv

≤ C
ð
B u0,2k+1rð Þ

f vð Þj jp dv
 !1/p

B u0, 2k+1r
� �


 


1/s

· 2k+2r
� �Q−2

B u0, 2k+2r
� �

 

1/q′ 1 + 2k+2r

ρ u0ð Þ
� �N1

≤ C
ð
B u0,2k+1rð Þ

f vð Þj jp dv
 !1/p

· 1
B u0, 2k+1r
� �

 

1/q′−1/s−1+2/Q

� 1 + 2k+1r
ρ u0ð Þ

� �N1

,

ð106Þ

13Journal of Function Spaces



where in the last step we have invoked (57) and (10). In
addition, it follows immediately from (21) and (57) that

1 + 2kr
ρ uð Þ

� �−N
≲ 1 + r

ρ u0ð Þ
� �N · N0/ N0+1ð Þð Þ

1 + 2kr
ρ u0ð Þ

� �−N

≤ 1 + 2kr
ρ u0ð Þ

� �−N · 1/ N0+1ð Þð Þ

≤ 1 + 2k+1r
ρ u0ð Þ

� �−N · 1/ N0+1ð Þð Þ
:

ð107Þ

A trivial computation shows that

1 − 1
Q

� 	
+ 1

q′
−
1
s
− 1 + 2

Q

� 	
= 1
Q

+ 1
q′

−
1
s
= 1
p
: ð108Þ

Therefore, in view of (108) and (107), we conclude
that

II uð Þj j ≲ 〠
∞

k=1

1
B u0, 2k+1r
� �

 

1/p 1 + 2k+1r

ρ u0ð Þ
� �−N · 1/ N0+1ð Þð Þ+N1

×
ð
B u0,2k+1rð Þ

f vð Þj jp dv
 !1/p

≲ fk kLp,κ
ρ,θ ℍnð Þ 〠

∞

k=1

B u0, 2k+1r
� �

 

κ/p

B u0, 2k+1r
� �

 

1/p

� 1 + 2k+1r
ρ u0ð Þ

� �−N · 1/ N0+1ð Þð Þ+N1+θ
:

ð109Þ

Consequently,

K4 ≤ C fk kLp,κ
ρ,θ ℍnð Þ 〠

∞

k=1

B u0, rð Þj j 1−κð Þ/p

B u0, 2k+1r
� �

 

 1−κð Þ/p

� 1 + 2k+1r
ρ u0ð Þ

� �−N · 1/ N0+1ð Þð Þ+N1+θ
:

ð110Þ

By choosing some sufficiently large number N such
that N > ðN0 + 1ÞðN1 + θÞ, then we have

K4 ≤ C fk kLp,κ
ρ,θ ℍnð Þ 〠

∞

k=1

B u0, rð Þj j
B u0, 2k+1r
� �

 



 ! 1−κð Þ/p

≤ C fk kLp,κ
ρ,θ ℍnð Þ ≤ C fk kLp,κ

ρ,θ ℍnð Þ 1 + r
ρ u0ð Þ

� �θ
,

ð111Þ

where the last inequality follows again from the fact that
1 − κ > 0 and θ > 0. Combining the above estimates for
K1, K3, and K4 produces the desired inequality (91).

Finally, let us verify (105). Suppose that V ∈Bq with Q/
2 ≤ q <Q. Using the same method as in Proof of Lemma 1
in [42], for any u0 ∈ℍn and τ ∈ ð0,∞Þ, there must exist an
integer j such that 2jτ ≤ ρðu0Þ < 2j+1τ. Two cases are consid-
ered below.

Case 1. j < 0. In this case, one has ρðu0Þ < τ. This fact together
with Lemmas 3 and 4 yields

1 + τ

ρ u0ð Þ
� �−N1ð

B u0,τð Þ
V wð Þ dw

≤ 2−j
� �−N1

ð
B u0,2− jρ u0ð Þð Þ

V wð Þ dw

≤ 2−j
� �−N1 C0ð Þ−j

ð
B u0,ρ u0ð Þð Þ

V wð Þ dw

≤ 2−j
� �−N1 C0ð Þ−jτQ−2:

ð112Þ

Since N1 > log2C0, it is easy to see that

1 + τ

ρ u0ð Þ
� �−N1ð

B u0,τð Þ
V wð Þ dw ≤ τQ−2: ð113Þ

Case 2. j ≥ 0. In this case, one has τ ≤ ρðu0Þ. This fact, along
with Lemmas 5 and 4, implies that

1 + τ

ρ u0ð Þ
� �−N1ð

B u0,τð Þ
V wð Þ dw

≤
ð
B u0,τð Þ

V wð Þ dw = τQ−2 · 1
τQ−2

ð
B u0,τð Þ

V wð Þ dw

≤ C · τQ−2 · 1
ρ u0ð ÞQ−2

ð
B u0,ρ u0ð Þð Þ

V wð Þ dw = C · τQ−2:

ð114Þ

Thus, in both cases, (105) holds. This completes Proof of
Theorem 22.

In order to prove Theorem 24, let us first set up the fol-
lowing result, which is based on a version of the Calderón-
Zygmund decomposition on ℍn and Lemma 32.

Theorem 33. Let V ∈Bq with q ∈ ½Q/2,QÞ. Then, the Riesz
transform RL is bounded from L1ðℍnÞ into WL1ðℍnÞ.

Proof. For any given f ∈ L1ðℍnÞ and σ > 0, making use of the
Calderón-Zygmund decomposition of f at height σ (see
[43]), we have the decomposition f = g + b with b =∑ibi
such that

(1) ∣gðuÞ ∣ ≤C · σ, for almost every u ∈ℍn and

gk kL1 ℍnð Þ ≤ C fk kL1 ℍnð Þ, ð115Þ

14 Journal of Function Spaces



(2) each bi is supported in the ball Bi = Bðui, riÞ, and we
denote the center and the radius of Bi by ui and ri,
respectivelyð

Bi

bi uð Þdu = 0,

bikL1 ≤ Cσ Bij j,
ð116Þ

(3) the sets Bi are finitely overlapping and

〠
i

∣Bi∣ ≤
C
σ

fk kL1 ℍnð Þ: ð117Þ

From this construction, we have that for any fixed σ > 0,

u ∈ℍn : RL fð Þ uð Þj j > σf gj j
≤ u ∈ℍn : RL gð Þ uð Þj j > σ

2
n o


 



+ u ∈ℍn : RL bð Þ uð Þj j > σ/2f gj j≔ I + II:

ð118Þ

The part of the argument involving the function g pro-
ceeds as follows. By using the L2ðℍnÞ boundedness of RL

(see Theorem 12 with 1 < 2 < p0), we obtain

I ≤ C
σ2

fk k2L2 ℍnð Þ ≤
C
σ

gk kL1 ℍnð Þ ≤
C
σ

fk kL1 ℍnð Þ: ð119Þ

Setting E =Si4Bi =
S

iBðui, 4riÞ, we split II into two parts
as follows:

II ≤ u ∈ E : RL bð Þ uð Þj j > σ

2
n o


 



+ u ∈ E∁ : RL bð Þ uð Þj j > σ

2
n o


 


≔ III + IV:

ð120Þ

It is obvious that

III ≤
[
i

4Bi












 ≤ C〠

i

∣Bi∣ ≤
C
σ

fk kL1 ℍnð Þ: ð121Þ

Therefore, in order to complete our proof, we need only
to show that

IV ≤
C
σ

fk kL1 ℍnð Þ: ð122Þ

An application of Chebyshev’s inequality yields

IV ≤
2
σ

ð
E∁
RL bð Þ uð Þj jdu ≤ 2

σ
〠
i

ð
4Bið Þ∁

RL bið Þ uð Þj jdu:

ð123Þ

We observe that

u−1i v


 

 < ri <

u−1i u


 



4 , ð124Þ

whenever v ∈ Bi and u ∈ ð4BiÞ∁. Then, we apply Lemma 32,
(88), and the cancelation condition of bi to get

RL bið Þ uð Þj j =
ð
ℍn
K u, vð Þbi vð Þ dv












=
ð
Bi

K u, vð Þ −K u, uið Þ½ �bi vð Þ dv













≤
ð
Bi

K∗ v, uð Þ −K∗ ui, uð Þj j bi vð Þj j dv

≲
ð
Bi

u−1i v


 

δ′
u−1i u


 

Q+δ′ bi vð Þj j dv +

ð
Bi

1 + u−1i u


 


ρ uið Þ

" #−N

�
ð
B u, u−1i uj j/4ð Þ

V wð Þ
u−1wj jQ−1

dw

( )

� u−1i v


 

δ′

u−1i u


 

Q−1+δ′ bi vð Þj j dv:

ð125Þ

Obviously, the first term on the right-hand side of (125) is
bounded by

ð
Bi

rδi′
u−1i u


 

Q+δ′ bi vð Þj j dv ≤ rδi′ bik kL1 ·

1
u−1i u


 

Q+δ′ : ð126Þ

Using this estimate together with (11), we can deduce that

IV 1ð Þ ≔
1
σ
〠
i

ð
4Bið Þ∁

ð
Bi

u−1i v


 

δ′
u−1i u


 

Q+δ′ bi vð Þj j dv

( )
du

≤
1
σ
〠
i

rδi′ bik kL1
ð

u−1i uj j>4ri
du

u−1i u


 

Q+δ′

= 1
σ
〠
i

rδi′bij jL1
ð∞
4ri

1
ρQ+δ′

· ρQ−1 dρ

≤
C
σ
〠
i

σ Bij j ≤ C
σ

fk kL1 ℍnð Þ:

ð127Þ

On the other hand, the latter term on the right-hand side
of (125) is controlled by

ð
Bi

1 + u−1i u


 


ρ uið Þ

" #−N ð
B u, u−1i uj j/4ð Þ

V wð Þ
u−1wj jQ−1

dw

( )

� rδi′
u−1i u


 

Q−1+δ′ bi vð Þj j dv

≤ rδi′ bik kL1 ·
1

u−1i u


 

Q−1+δ′ 1 + ∣u−1i u ∣

ρ uið Þ
� �−N

�
ð
B u, u−1i uj j/4ð Þ

V wð Þ
u−1wj jQ−1

dw

( )
:

ð128Þ
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Whenw ∈ Bðu,∣u−1i u∣/4Þ, by the triangle inequality, one has

u−1i w


 

 ≤ u−1i u



 

 + u−1w


 

 ≤ 2 u−1i u



 

: ð129Þ

From this, it follows that the above expression is
bounded by

rδi′ bik kL1 ·
1

u−1i u


 

Q−1+δ′ 1 + u−1i u



 


ρ uið Þ

" #−N ð
B ui ,2 u−1i uj jð Þ

V wð Þ
u−1wj jQ−1

dw

( )
:

ð130Þ

Consequently,

IV 2ð Þ ≔
1
σ
〠
i

ð
4Bið Þ∁

ð
Bi

1 + ∣u−1i u ∣
ρ uið Þ

� �−N

×
ð
B u, u−1i uj j/4ð Þ

V wð Þ
u−1wj jQ−1

dw

( )
u−1i v


 

δ′

u−1i u


 

Q−1+δ′

� bi vð Þj j dv du

≤
1
σ
〠
i

ð
4Bið Þ∁

rδi′ bik kL1 ·
1

u−1i u


 

Q−1+δ′ 1 + u−1i u



 


ρ uið Þ

" #−N

×
ð
B ui ,2 u−1i uj jð Þ

V wð Þ
u−1wj jQ−1

dw

( )
du

≤
1
σ
〠
i

rδi′ bik kL1 〠
∞

k=1
1 + 2k+1ri

ρ uið Þ
� �−N

×
ð
2k+1ri≤ u−1i uj j<2k+2ri

� 1
u−1i u


 

Q−1+δ′ · I 1 VχB ui ,2k+3rið Þ

� �
uð Þ




 


du,
ð131Þ

where I 1 is the fractional integral operator of order one
given in (102). A combination of the Hölder inequality and
(103) implies that for each fixed k ∈ℕ,

ð
2k+1ri≤ u−1i uj j<2k+2ri

1
u−1i u


 

Q−1+δ′ · I 1 VχB ui ,2k+3rið Þ

� �
uð Þ




 


 du

≤
ð
2k+1ri≤ u−1i uj j<2k+2ri

1
u−1i u


 

 Q−1+δ′ð Þp′0 du

0
@

1
A

1/p′0

×
ð
2k+1ri≤ u−1i uj j<2k+2ri

I 1 VχB ui ,2k+3rið Þ
� �

uð Þ



 


p0 du

 !1/p0

≤
ð
2k+1ri≤ u−1i uj j<2k+2ri

1
u−1i u


 

 Q−1+δ′ð Þp′0 du

0
@

1
A

1/p′0

I 1 VχB ui ,2k+3rið Þ
� ���� ���

Lp0

≤ C · B ui, 2k+2ri
� �

 

1/p′0
2k+1ri
� �Q−1+δ′

ð
B ui ,2k+3rið Þ

V wð Þqdw
 !1/q

≤ C · B ui, 2k+2ri
� �

 

1/p′0
2k+1ri
� �Q−1+δ′ 1

B ui, 2k+3ri
� �

 

1/q′

ð
B ui ,2k+3rið Þ

V wð Þ dw
0
@

1
A,

ð132Þ

where the last inequality is obtained by the hypothesis V ∈
Bq. Moreover, in view of (10), (105), and (57), we can see
that the above expression (132) is bounded by

B ui, 2k+2ri
� �

 

1/p′0
2k+1ri
� �1+δ′ · 1

B ui, 2k+3ri
� �

 

1/q′ 1 + 2k+3ri

ρ uið Þ
� �N1

≤ C · 1
2k+1ri
� �δ′ B ui, 2k+1ri

� �

 

1/p′0
B ui, 2k+1ri
� �

 

1/Q · 1

B ui, 2k+1ri
� �

 

1/q′

� 1 + 2k+1ri
ρ uið Þ

� �N1

= C · 1
2k+1ri
� �δ′ 1 + 2k+1ri

ρ uið Þ
� �N1

,

ð133Þ

where the last step is due to the fact that 1/Q + 1/p0 − 1/q
= 0. Therefore, by selecting some large enough N such that
N >N1, we thus have

IV 2ð Þ ≤
C
σ
〠
i

rδi′ bik kL1 〠
∞

k=1

1
2k+1ri
� �δ′ 1 + 2k+1ri

ρ uið Þ
� �−N+N1

≤
C
σ
〠
i

bik kL1 〠
∞

k=1

1
2k+1
� �δ′

≤
C
σ
〠
i

σ Bij j ≤ C
σ

fk kL1 ℍnð Þ:

ð134Þ

Collecting all these estimates and then taking the supre-
mum over all σ > 0, we conclude the proof of Theorem 33.

Proof of Theorem 24. Let p0 be a positive number such that
1/p0 = 1/q − 1/Q. To prove Theorem 24, it is enough to
prove that for each given ball B = Bðu0, rÞ of ℍn, the fol-
lowing estimate

1
B u0, rð Þj jκ sup

σ>0
σ · u ∈ B u0, rð Þ: RL fð Þ uð Þj j > σf gj j

≲ 1 + r
ρ u0ð Þ

� �θ
,

ð135Þ

holds true for any given f ∈ L1,κρ,θðℍnÞ with some θ ∈ ð0,∞Þ
and κ ∈ ð0, 1/p′0Þ. Using the standard technique, we
decompose the function f as

f = f1 + f2 ∈ L
1,κ
ρ,θ ℍnð Þ,

f1 = f · χ2B,
f2 = f · χ 2Bð Þ∁ :

8>><
>>: ð136Þ
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Then, for any fixed σ > 0, we can write

1
B u0, rð Þj jκ σ · u ∈ B u0, rð Þ: RL fð Þ uð Þj j > σf gj j

≤
1

B u0, rð Þj jκ σ · u ∈ B u0, rð Þ: RL f1ð Þ uð Þj j > σ

2
n o


 




+ 1
B u0, rð Þj jκ σ · u ∈ B u0, rð Þ: RL f2ð Þ uð Þj j > σ

2
n o


 




≔ L1 + L2:

ð137Þ

Let us estimate the first term L1. By Theorem 33, (57),
and (10), we get

L1 ≤ C · 1
Bj jκ

ð
ℍn

f1 uð Þj j du
� 	

= C · 1
Bj jκ

ð
2B

f uð Þj j du
� 	

≤ C fk kL1,κ
ρ,θ ℍnð Þ ·

2Bj jκ
Bj jκ 1 + 2r

ρ u0ð Þ
� �θ

≤ Cθ,n fk kL1,κ
ρ,θ ℍnð Þ 1 + r

ρ u0ð Þ
� �θ

:

ð138Þ

As for the second term L2, from (88) and Lemma 31,
it follows that for any u ∈ Bðu0, rÞ,

RL f2ð Þ uð Þj j =
ð

2Bð Þ∁
K u, vð Þf vð Þ dv












 =

ð
2Bð Þ∁

K∗ v, uð Þf vð Þ dv













≤ CN III uð Þ + IV uð Þ½ �,

ð139Þ

where

III uð Þ≔
ð

2Bð Þ∁
1 + v−1u



 


ρ uð Þ

" #−N 1
v−1uj jQ

· f vð Þj j dv,

IV uð Þ≔
ð

2Bð Þ∁
1 + ∣v−1u ∣

ρ uð Þ
� �−N 1

v−1uj jQ−1

�
ð
B u,∣v−1u∣/4ð Þ

V wð Þ
u−1wj jQ−1

dw

( )
· f vð Þj jdv:

ð140Þ
Thus, by (139) and Chebyshev’s inequality, L2 can be

written as follows:

L2 ≤
2

B u0, rð Þj jκ
ð
B u0,rð Þ

RL f2ð Þ uð Þj jdu
 !

≲
1

B u0, rð Þj jκ
ð
B u0,rð Þ

III uð Þj jdu
 !

+ 1
B u0, rð Þj jκ

�
ð
B u0,rð Þ

IV uð Þj jdu
 !

≔ L3 + L4:

ð141Þ

We now proceed exactly as we did in Proof of Theo-
rem 19 and have the following estimate as well:

L3 ≤ C fk kL1,κ
ρ,θ ℍnð Þ 1 + r

ρ u0ð Þ
� �θ

: ð142Þ

Let us analyze the latter term L4. In order to do this,
we first observe that

1
2 v−1u0


 

 ≤ v−1u



 

 ≤ 3
2 v−1u0


 

, ð143Þ

whenever u ∈ Bðu0, rÞ and v ∈ ð2BÞ∁. Hence, for any posi-
tive integer N ∈ℕ,

IV uð Þj j ≲
ð

2Bð Þ∁
1 + v−1u0



 


ρ uð Þ

" #−N 1
v−1u0j jQ−1

�
ð
B u,∣v−1u∣/4ð Þ

V wð Þ
u−1wj jQ−1

dw












 · f vð Þj jdv

= 〠
∞

k=1

ð
2kr≤ v−1u0j j<2k+1r

1 + v−1u0


 


ρ uð Þ

" #−N 1
v−1u0j jQ−1

×
ð
B u,∣v−1u∣/4ð Þ

V wð Þ
u−1wj jQ−1

dw












 · f vð Þj jdv

≲ 〠
∞

k=1

1
B u0, 2k+1r
� �

 

1−1/Q

ð
B u0,2k+1rð Þ

1 + 2kr
ρ uð Þ

� �−N

×
ð
B u, v−1uj j/4ð Þ

V wð Þ
u−1wj jQ−1

dw












 · f vð Þj jdv:

ð144Þ

It is easy to verify that when w ∈ Bðu, jv−1uj/4Þ and v
∈ Bðu0, 2k+1rÞ, one has w ∈ Bðu0, 2k+2rÞ. This fact together
with (107) implies that for any u ∈ Bðu0, rÞ,

IV uð Þj j ≲ 〠
∞

k=1

1
B u0, 2k+1r
� �

 

1−1/Q 1 + 2kr

ρ uð Þ
� �−N

×
ð
B u0,2k+1rð Þ

� I 1 VχB u0,2k+2rð Þ
� �

uð Þ
� �


 


 · f vð Þj jdv

≲ 〠
∞

k=1

1
B u0, 2k+1r
� �

 

1−1/Q 1 + 2k+1r

ρ u0ð Þ
� �−N · 1/ N0+1ð Þð Þ

�
ð
B u0,2k+1rð Þ

f vð Þj jdv × I 1 VχB u0,2k+2rð Þ
� �

uð Þ
� �


 




≲ 〠
∞

k=1

B u0, 2k+1r
� �

 

κ

B u0, 2k+1r
� �

 

1−1/Q 1 + 2k+1r

ρ u0ð Þ
� �−N · 1/ N0+1ð Þð Þ+θ

� fk kL1,κ
ρ,θ ℍnð Þ × I 1 VχB u0,2k+2rð Þ

� �
uð Þ

� �


 


:
ð145Þ
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Consequently,

L4 ≤ C fk kL1,κ
ρ,θ ℍnð Þ

1
B u0, rð Þj jk

〠
∞

k=1

B u0, 2k+1r
� �

 

κ

B u0, 2k+1r
� �

 

1−1/Q

� 1 + 2k+1r
ρ u0ð Þ

� �−N · 1/ N0+1ð Þð Þ+θ

×
ð
B u0,rð Þ

I 1 VχB u0,2k+2rð Þ
� �

uð Þ
� �


 


du

 !
:

ð146Þ

Applying the Hölder inequality along with (103), we
can compute the above integral as follows:

ð
B u0,rð Þ

I 1 VχB u0,2k+2rð Þ
� �

uð Þ



 


du

≤
ð
B u0,rð Þ

1 du
 !1/p′0 ð

B u0,rð Þ
I 1 VχB u0,2k+2rð Þ
� �

uð Þ



 


p0du

 !1/p0

≤ B u0, rð Þj j1/p′0 I 1 VχB u0,2k+2rð Þ
� ���� ���

Lp0

≤ C B u0, rð Þj j1/p′0
ð
B u0,2k+2rð Þ

V wð Þqdw
 !1/q

≤ C B u0, rð Þj j1/p′0 1
B u0, 2k+2r
� �

 

1/q′

ð
B u0,2k+2rð Þ

V wð Þ dw
0
@

1
A,

ð147Þ

where the last inequality holds since V ∈Bq. Moreover, by
(105), (57), and (10), we can see that the above expression
is bounded by

C B u0, rð Þj j1/p′0 · 2k+2r
� �Q−2

B u0, 2k+2r
� �

 

1/q′ 1 + 2k+2r

ρ u0ð Þ
� �N1

≤ C B u0, rð Þj j1/p′0 · 2k+1r
� �Q−2

B u0, 2k+1r
� �

 

1/q′ 1 + 2k+1r

ρ u0ð Þ
� �N1

:

ð148Þ

Taking into account the fact that 1/Q + 1/q′ = 1/p′0,
then we have

L4 ≤ C fk kL1,κ
ρ,θ ℍnð Þ B u0, rð Þj j1/p′0−κ 〠

∞

k=1

B u0, 2k+1r
� �

 

κ

B u0, 2k+1r
� �

 

1−1/Q+1/q′−1+2/Q

� 1 + 2k+1r
ρ u0ð Þ

� �−N · 1/ N0+1ð Þð Þ+θ+N1

= C fk kL1,κ
ρ,θ ℍnð Þ 〠

∞

k=1

B u0, rð Þj j1/p′0−κ

B u0, 2k+1r
� �

 

1/p′0−κ 1 + 2k+1r

ρ u0ð Þ
� �−N · 1/ N0+1ð Þð Þ+θ+N1

≤ C fk kL1,κ
ρ,θ ℍnð Þ 〠

∞

k=1

B u0, rð Þj j1/p′0−κ

B u0, 2k+1r
� �

 

1/p′0−κ ,

ð149Þ

where a large enough N is chosen satisfying N > ðN0 + 1Þ
ðθ +N1Þ. By the choice of κ, it guarantees that the expo-
nent −ð1/p′0 − κÞ of the last summation is negative, and
hence, it is convergent. Therefore, we conclude that

L4 ≤ C fk kL1,κ
ρ,θ ℍnð Þ ≤ C fk kL1,κ

ρ,θ ℍnð Þ 1 + r
ρ u0ð Þ

� �θ
: ð150Þ

Combining these estimates for L1, L3, and L4, and then
taking the supremum over all σ > 0, we get the desired
estimate (135). This finishes Proof of Theorem 24.

Proof of Theorem 23. Since the proof is similar to that of The-
orem 22, we shall only indicate the necessary modifications.
As before, it is enough for us to show that for an arbitrary
fixed ball Bðu0, rÞ in ℍn, the following estimate

1
B u0, rð Þj jκ

ð
B u0,rð Þ

RL fð Þ uð Þj jp du
 !1/p

≲ 1 + r
ρ u0ð Þ

� �θ
,

ð151Þ

holds true for any given f ∈ Lp,κρ,θðℍnÞ with some θ ∈ ð0,∞Þ,
p ∈ ð1, p0Þ, and κ ∈ ð0, 1/s′Þ, where s = p0/p and 1/p0 = 1/p −
1/Q. To this end, we split f = f1 + f2 through f1 = f · χ2B
and f2 = f · χð2BÞ∁ . Then, the left-hand side of (151) will be

divided into two parts given below.

1
B u0, rð Þj jκ

ð
B u0,rð Þ

RL fð Þ uð Þj jp du
 !1/p

≤
1

B u0, rð Þj jκ
ð
B u0,rð Þ

RL f1ð Þ uð Þj jp du
 !1/p

+ 1
B u0, rð Þj jκ

ð
B u0,rð Þ

RL f2ð Þ uð Þj jp du
 !1/p

≔M1 +M2:

ð152Þ

Since the Riesz transform RL is bounded on LpðℍnÞ for
1 < p < p0 (see Theorem 12), we can deal withM1 in the same
manner as in Proof of Theorem 22 and obtain

M1 ≤ C fk kLp,κ
ρ,θ ℍnð Þ 1 + r

ρ u0ð Þ
� �θ

: ð153Þ

On the other hand, from (139), it follows that

M2 ≲
1

B u0, rð Þj jκ
ð
B u0,rð Þ

III uð Þj jp du
 !1/p

+ 1
B u0, rð Þj jκ

ð
B u0,rð Þ

IV uð Þj jp du
 !1/p

≔M3 +M4:

ð154Þ
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Here

III uð Þ =
ð

2Bð Þ∁
1 + v−1u



 


ρ uð Þ

" #−N 1
v−1uj jQ

· f vð Þj jdv,

IV uð Þ =
ð

2Bð Þ∁
1 + ∣v−1u ∣

ρ uð Þ
� �−N 1

v−1uj jQ−1

�
ð
B u, v−1uj j/4ð Þ

V wð Þ
u−1wj jQ−1

dw

( )
· f vð Þj jdv:

ð155Þ

We follow the same arguments as in Proof of Theorem 18
and obtain the following estimate as well:

M3 ≤ C fk kLp,κ
ρ,θ ℍnð Þ 1 + r

ρ u0ð Þ
� �θ

: ð156Þ

It remains to check that (151) holds for the last term
M4. As it was shown in Theorem 24, it holds that for
any u ∈ Bðu0, rÞ,

IV uð Þj j ≲ 〠
∞

k=1

1
B u0, 2k+1r
� �

 

1−1/Q 1 + 2kr

ρ uð Þ
� �−N

×
ð
B u0,2k+1rð Þ

I 1 VχB u0,2k+2rð Þ
� �

uð Þ



 


 · ∣f vð Þ∣ dv

≲ 〠
∞

k=1

1
B u0, 2k+1r
� �

 

1−1/Q 1 + 2k+1r

ρ u0ð Þ
� �−N · 1/ N0+1ð Þð Þ

�
ð
B u0,2k+1rð Þ

f vð Þj jdv × I 1 VχB u0,2k+2rð Þ
� �

uð Þ



 


:

ð157Þ

Moreover, by using the Hölder inequality, we obtain
that for each fixed k ∈ℕ,

ð
B u0,2k+1rð Þ

f vð Þj jdv ≤
ð
B u0,2k+1rð Þ

f vð Þj jpdv
 !1/p

�
ð
B u0,2k+1rð Þ

1 dv
 !1/p′

≤ C fk kLp,κ
ρ,θ ℍnð Þ B u0, 2k+1r

� �


 


κ/p 1 + 2k+1r
ρ u0ð Þ

� �θ

· B u0, 2k+1r
� �


 


1/p′,

ð158Þ

which in turn gives

M4 ≤ C fk kLp,κ
ρ,θ ℍnð Þ

1
B u0, rð Þj jκ/p

〠
∞

k=1

B u0, 2k+1r
� �

 

κ/p

B u0, 2k+1r
� �

 

1/p−1/Q

� 1 + 2k+1r
ρ u0ð Þ

� �−N · 1/ N0+1ð Þð Þ+θ

×
ð
B u0,rð Þ

I 1 VχB u0,2k+2rð Þ
� �

uð Þ



 


p du

 !1/p

:

ð159Þ

For the latter integral, we use the Hölder inequality
with exponent s = p0/p > 1 and (103) to derive

ð
B u0,rð Þ

I 1 VχB u0,2k+2rð Þ
� �

uð Þ



 


p du

 !1/p

≤
ð
B u0,rð Þ

1 du
 !1/ ps′ð Þ ð

B u0,rð Þ
I 1 VχB u0,2k+2rð Þ
� �

uð Þ



 


p0du

 !1/p0

≤ B u0, rð Þj j1/ ps′ð Þ I 1 VχB u0,2k+2rð Þ
� ���� ���

Lp0

≤ C B u0, rð Þj j1/ ps′ð Þ
ð
B u0,2k+2rð Þ

V wð Þqdw
 !1/q

≤ C B u0, rð Þj j1/ ps′ð Þ 1
B u0, 2k+2r
� �

 

1/q′

ð
B u0,2k+2rð Þ

V wð Þ dw
0
@

1
A,

ð160Þ

where the last inequality is obtained by the fact that V ∈
Bq. Furthermore, in view of (105), (57), and (10), we
can see that the above expression is controlled by

C B u0, rð Þj j1/ ps′ð Þ · 2k+2r
� �Q−2

B u0, 2k+2r
� �

 

1/q′ 1 + 2k+2r

ρ u0ð Þ
� �N1

≤ C B u0, rð Þj j1/ ps′ð Þ · 2k+1r
� �Q−2

B u0, 2k+1r
� �

 

1/q′ 1 + 2k+1r

ρ u0ð Þ
� �N1

:

ð161Þ

A trivial computation leads to

1
p
−

1
Q

+ 1
q′

− 1 + 2
Q

= 1
p
−

1
p0

= 1
ps′
� � : ð162Þ
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Taking into account this fact, then we have

M4 ≤ C fk kLp,κ
ρ,θ ℍnð Þ B u0, rð Þj j1/ ps′ð Þ−κ/p

× 〠
∞

k=1

B u0, 2k+1r
� �

 

κ/p

B u0, 2k+1r
� �

 

1/p−1/Q+1/q′−1+2/Q

� 1 + 2k+1r
ρ u0ð Þ

� �−N · 1/ N0+1ð Þð Þ+θ+N1

= C fk kLp,κ
ρ,θ ℍnð Þ 〠

∞

k=1

B u0, rð Þj j 1/s′−κð Þ/p

B u0, 2k+1r
� �

 

 1/s′−κð Þ/p

� 1 + 2k+1r
ρ u0ð Þ

� �−N · 1/ N0+1ð Þð Þ+θ+N1

≤ C fk kLp,κ
ρ,θ ℍnð Þ 〠

∞

k=1

B u0, rð Þj j 1/s′−κð Þ/p

B u0, 2k+1r
� �

 

 1/s′−κð Þ/p ,

ð163Þ

where a large enough N is chosen such that N > ðN0 + 1Þ
ðθ +N1Þ. By the hypothesis, we know that the exponent
in the last summation is negative, and hence, it is conver-
gent. Therefore, we conclude that

M4 ≤ C fk kLp,κ
ρ,θ ℍnð Þ ≤ C fk kLp,κ

ρ,θ ℍnð Þ 1 + r
ρ u0ð Þ

� �θ
, ð164Þ

as desired. This finishes Proof of Theorem 23.

If one has a slightly stronger assumption on the potential
V , then we have the following improved estimates for the
kernels Kðu, vÞ and K∗ðu, vÞ.

Lemma 34. Let V ∈Bq with q ∈ ½Q,∞Þ, and let ρð·Þ be the
auxiliary function determined by V . For every positive integer
N ∈ℕ, there exists a positive constant CN > 0 such that, for
any u and v in ℍn,

K u, vð Þj j ≤ CN 1 + v−1u


 


ρ uð Þ

" #−N
1

v−1uj jQ
,

K∗ u, vð Þj j ≤ CN 1 + ∣v−1u ∣
ρ uð Þ

� �−N 1

v−1uj jQ
:

8>>>>><
>>>>>:

ð165Þ

We remark that in the Euclidean case, this lemma was
already obtained by Shen in [10]. Moreover, Shen [10] actu-
ally showed that RL and its dual form R∗

L are standard
Calderón-Zygmund singular integral operators in ℝd , and
hence, these two operators RL and R∗

L are all bounded on
LpðℝdÞ for 1 < p <∞ and are of weak-type ð1, 1Þ, when V
∈Bq with d ≤ q <∞. We adapt the arguments used in [10,
42] (see also [19, 21]) to our present situation and prove
Lemma 34 similarly. Furthermore, by adopting the same
method given in [3, 10], we can also prove that the operators
RL and R∗

L are bounded on LpðℍnÞ for all 1 < p <∞ and
are bounded from L1ðℍnÞ intoWL1ðℍnÞ in such a situation.

Repeating the arguments above, we are able to show that
under the same assumptions as in Theorems 18 and 19, the
corresponding results also hold for the operators RL and
R∗

L on ℍn.

Theorem 35. Let 0 < κ < 1 and 0 < θ <∞. If V ∈Bq with q
∈ ½Q,∞Þ, then the operatorsR∗

L andRL are bounded linear
operators on Lp,κρ,θðℍnÞ for all 1 < p <∞ and hence bounded on

Lp,κρ,∞ðℍnÞ.

Theorem 36. Let 0 < κ < 1 and 0 < θ <∞. If V ∈Bq with q
∈ ½Q,∞Þ, then the operatorsR∗

L andRL are bounded linear
operators from L1,κρ,θðℍnÞ into WL1,κρ,θðℍnÞ and hence bounded

from L1,κρ,∞ðℍnÞ into WL1,κρ,∞ðℍnÞ.

We recall the relation 1/p0 = 1/p − 1/Q. Since p0 tends to
∞ as q→Q, so we have the following: ðp0Þ′ tends to 1, and
s′ tends to 1 with s = p0/p. Hence, the above theorems can
be regarded as the limiting case of the results of Theorems
22, 23, and 24.

5. Generalized Morrey Spaces

In the last section, let us give the definitions of the generalized
Morrey spaces related to the nonnegative potential V onℍn.
Let Φ =ΦðrÞ, r > 0, be a growth function, that is, a positive
increasing function on ð0,∞Þ, and satisfy the following dou-
bling condition:

Φ 2rð Þ ≤DΦ rð Þ, ð166Þ

for all r > 0, where D =DðΦÞ ≥ 1 is a doubling constant inde-
pendent of r.

Definition 37. Let ρð·Þ be the auxiliary function determined
by V ∈Bq with q ∈ ½Q/2,∞Þ. Let 1 ≤ p <∞ and Φ be a
growth function. For any given 0 < θ <∞, the generalized
Morrey space Lp,Φρ,θ ðℍnÞ is defined to be the set of all p
-locally integrable functions f on ℍn such that

1
Φ ∣B u0, rð Þ ∣ð Þ

ð
B u0,rð Þ

f uð Þj jp du
 !1/p

≤ C · 1 + r
ρ u0ð Þ

� �θ
,

ð167Þ

holds for every ball Bðu0, rÞ in ℍn, and we denote the smal-
lest constant C satisfying (167) by ∥f ∥Lp,Φ

ρ,θ ðℍnÞ. It is easy to

see that the functional ∥·∥Lp,Φ
ρ,θ ðℍnÞ is a norm on the linear space

Lp,Φρ,θ ðℍnÞ that makes it into a Banach space under this norm.

Define

Lp,Φρ,∞ ℍnð Þ≔
[

0<θ<∞
Lp,Φρ,θ ℍnð Þ: ð168Þ
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Definition 38. Let ρð·Þ be the auxiliary function determined
by V ∈Bq with q ∈ ½Q/2,∞Þ. Let p = 1 and Φ be a growth
function. For any given 0 < θ <∞, the generalized weak
Morrey space WL1,Φρ,θ ðℍnÞ is defined to be the set of all mea-

surable functions f on ℍn such that

1
Φ ∣B u0, rð Þ ∣ð Þ sup

λ>0
λ · u ∈ B u0, rð Þ: f uð Þj j > λf gj j

≤ C · 1 + r
ρ u0ð Þ

� �θ
,

ð169Þ

holds for every ball Bðu0, rÞ in ℍn, and we denote the smal-
lest constant C satisfying (169) by ∥f ∥WL1,Φ

ρ,θ ðℍnÞ. Correspond-

ingly, we define

WL1,Φρ,∞ ℍnð Þ≔
[

0<θ<∞
WL1,Φρ,θ ℍnð Þ: ð170Þ

Remark 39.

(i) As in Section 2 (Remark 17), we can also define a
norm and a (quasi-)norm on the linear spaces Lp,Φρ,∞
ðℍnÞ and WL1,Φρ,∞ðℍnÞ, respectively

(ii) According to this definition, we recover the spaces
Lp,κρ,θðℍnÞ and WL1,κρ,θðℍnÞ under the choice ΦðtÞ =
tκ, for all ðp, κÞ ∈ ½1,∞Þ × ð0, 1Þ

(iii) In the Euclidean setting, when θ = 0 or V ≡ 0, the
classes Lp,Φρ,θ and WL1,Φρ,θ reduce to the classes Lp,Φ

and WL1,Φ, which were introduced and studied by
Mizuhara in [45]. We refer the reader to [46, 47]
for further details

By using the same procedure as in the proofs of our main
results, we have the following theorems. We leave the details
to the reader. Let ρ be as in (14).

Theorem 40. Let 1 < p <∞, 1 ≤DðΦÞ < 2, and 0 < θ <∞. If
V ∈Bq with q ∈ ½Q,∞Þ, then the operators R∗

L and RL are

bounded on Lp,Φρ,θ ðℍnÞ and hence bounded on Lp,Φρ,∞ðℍnÞ.

Theorem 41. Let p = 1, 1 ≤DðΦÞ < 2, and 0 < θ <∞. If V ∈
Bq with q ∈ ½Q,∞Þ, then the operators R∗

L and RL are

bounded from L1,Φρ,θ ðℍnÞ into WL1,Φρ,θ ðℍnÞ and hence bounded
from L1,Φρ,∞ðℍnÞ into WL1,Φρ,∞ðℍnÞ.

We point out that the same conclusions also hold forT ∗
L

and other maximal functions (T ∗ ffiffiffiffi
L

p , T ∗∗
L , and T ∗∗ffiffiffiffi

L
p ) dis-

cussed in Section 3.

Theorem 42. Let 1 ≤DðΦÞ < 2 and 0 < θ <∞. If V ∈Bq with
q ∈ ½Q/2,QÞ, and p0 is a number such that 1/p0 = 1/q − 1/Q,

then the operator R∗
L is bounded on Lp,Φρ,θ ðℍnÞ and hence

bounded on Lp,Φρ,∞ðℍnÞ provided that ðp0Þ′ < p <∞.

Theorem 43. Let 0 < θ <∞. If V ∈Bq with q ∈ ½Q/2,QÞ, and
p0 is a number such that 1/p0 = 1/q − 1/Q, then the operator

RL is bounded on Lp,Φρ,θ ðℍnÞ and hence bounded on Lp,Φρ,∞
ðℍnÞ provided that 1 < p < p0 and 1 ≤DðΦÞ < 21/s′ with
s≔ p0/p.

Theorem 44. Let 0 < θ <∞. If V ∈Bq with q ∈ ½Q/2,QÞ, and
p0 is a number such that 1/p0 = 1/q − 1/Q, then the operator
RL is bounded from L1,Φρ,θ ðℍnÞ into WL1,Φρ,θ ðℍnÞ and hence

bounded from L1,Φρ,∞ðℍnÞ into WL1,Φρ,∞ðℍnÞ provided that 1 ≤
DðΦÞ < 21/ðp0Þ′.

Data Availability

No data were used to support this study.

Conflicts of Interest

The author declares that there is no conflict of interest
regarding the publication of this paper.

References

[1] G. B. Folland and E. M. Stein, “Estimates for the complex and
analysis on the Heisenberg group,” Communications on Pure
and Applied Mathematics, vol. 27, no. 4, pp. 429–522, 1974.

[2] E. M. Stein, Harmonic Analysis: Real-Variable Methods,
Orthogonality, and Oscillatory Integrals, Princeton University
Press, Princeton, NJ, USA, 1993.

[3] C.-C. Lin and H. Liu, “BMOL(ℍ
n) spaces and Carleson mea-

sures for Schrödinger operators,” Advances in Mathematics,
vol. 228, no. 3, pp. 1631–1688, 2011.

[4] G. B. Folland, Harmonic Analysis in Phase Space, Annals of
Mathematics Studies, Princeton University Press, Princeton,
NJ, USA, 1989.

[5] S. Thangavelu, Harmonic Analysis on the Heisenberg Group,
Progress in Mathematics, vol. 159, Birkhauser, Boston/Basel/-
Berlin, 1998.

[6] J. Dziubański and J. Zienkiewicz, “Hardy spaces associated
with some Schrödinger operators,” Studia Mathematica,
vol. 126, no. 2, pp. 149–160, 1997.

[7] J. Dziubański and J. Zienkiewicz, “Hardy space H1 associated
to Schrödinger operator with potential satisfying reverse
Hölder inequality,” Revista Matemática Iberoamericana,
vol. 15, pp. 279–296, 1999.

[8] J. Dziubański and J. Zienkiewicz, “Hpspaces associated with
Schrödinger operators with potentials from reverse Hölder
classes,” Colloquium Mathematicum, vol. 98, no. 1, pp. 5–38,
2003.

[9] J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea, and
J. Zienkiewicz, “BMO spaces related to Schrödinger operators
with potentials satisfying a reverse Hölder inequality,”Mathe-
matische Zeitschrift, vol. 249, no. 2, pp. 329–356, 2005.

21Journal of Function Spaces



[10] Z. W. Shen, “Lp estimates for Schrödinger operators with cer-
tain potentials,” Annales de l’institut Fourier, vol. 45, no. 2,
pp. 513–546, 1995.

[11] B. Bongioanni, E. Harboure, and O. Salinas, “Classes of weights
related to Schrödinger operators,” Journal of Mathematical
Analysis and Applications, vol. 373, no. 2, pp. 563–579, 2011.

[12] B. Bongioanni, E. Harboure, and O. Salinas, “Weighted
inequalities for commutators of Schrödinger–Riesz trans-
forms,” Journal of Mathematical Analysis and Applications,
vol. 392, no. 1, pp. 6–22, 2012.

[13] B. Bongioanni, A. Cabral, and E. Harboure, “Extrapolation for
classes of weights related to a family of operators and applica-
tions,” Potential Analysis, vol. 38, no. 4, pp. 1207–1232, 2013.

[14] B. Bongioanni, A. Cabral, and E. Harboure, “Lerner’s inequal-
ity associated to a critical radius function and applications,”
Journal of Mathematical Analysis and Applications, vol. 407,
no. 1, pp. 35–55, 2013.

[15] T. A. Bui, “Weighted estimates for commutators of some sin-
gular integrals related to Schrödinger operators,” Bulletin des
Sciences Mathematiques, vol. 138, no. 2, pp. 270–292, 2014.

[16] L. Tang, “Weighted norm inequalities for Schrödinger type oper-
ators,” Forum Mathematicum, vol. 27, pp. 2491–2532, 2015.

[17] Y. S. Jiang, “Some properties of the Riesz potential associated
to the Schrödinger operator on the Heisenberg groups,” Acta
Mathematica Sinica, vol. 53, pp. 785–794, 2010.

[18] Y. S. Jiang, “Endpoint estimates for fractional integral associ-
ated to Schrödinger operators on the Heisenberg groups,” Acta
Mathematica Scientia, vol. 31, no. 3, pp. 993–1000, 2011.

[19] L. Pengtao and P. Lizhong, “Lp boundedness of commutator
operator associated with Schrödinger operators on Heisenberg
group,” Acta Mathematica Scientia, vol. 32, no. 2, pp. 568–578,
2012.

[20] R. Jiang, X. Jiang, and D. Yang, “Maximal function character-
izations of Hardy spaces associated with Schrödinger opera-
tors on nilpotent Lie groups,” Revista Matemática
Complutense, vol. 24, no. 1, pp. 251–275, 2011.

[21] H. Q. Li, “Estimations Lp des opérateurs de Schrödinger sur les
groupes nilpotents,” Journal of Functional Analysis, vol. 161,
no. 1, pp. 152–218, 1999.

[22] G. Z. Lu, “A Fefferman-Phong type inequality for degenerate
vector fields and applications,” Panamerican Mathematical
Journal, vol. 6, pp. 37–57, 1996.

[23] D. Jerison and A. Sánchez-Calle, “Estimates for the heat kernel
for a sum of squares of vector fields,” Indiana University Math-
ematics Journal, vol. 35, no. 4, pp. 835–854, 1986.

[24] J. A. Goldstein, Semigroups of Linear Operators and Applica-
tions, Oxford University Press, New York, NY, USA, 1985.

[25] S. Hofmann, G. Lu, D. Mitrea, M. Mitrea, and L. Yan, “Hardy
spaces associated to non-negative self-adjoint operators satis-
fying Davies-Gaffney estimates,” Memoirs of the American
Mathematical Society, vol. 214, no. 1007, 2011.

[26] T. Coulhon, D. Müller, and J. Zienkiewicz, “About Riesz trans-
forms on the Heisenberg groups,” Mathematische Annalen,
vol. 305, no. 1, pp. 369–379, 1996.

[27] P. Auscher and B. Ben Ali, “Maximal inequalities and Riesz
transform estimates on Lp spaces for Schrödinger operators
with nonnegative potentials,” Annales de l’institut Fourier,
vol. 57, no. 6, pp. 1975–2013, 2007.

[28] B. Bongioanni, E. Harboure, and O. Salinas, “Commutators of
Riesz transforms related to Schrödinger operators,” Journal of

Fourier Analysis and Applications, vol. 17, no. 1, pp. 115–134,
2011.

[29] C. B. Morrey, “On the solutions of quasi-linear elliptic partial
differential equations,” Transactions of the American Mathe-
matical Society, vol. 43, no. 1, pp. 126–166, 1938.

[30] D. R. Adams, Morrey Spaces, Lecture Notes in Applied and
Numerical Harmonic Analysis, Birkhäuser/Springer, 2015.

[31] D. R. Adams and J. Xiao, “Morrey spaces in harmonic analy-
sis,” Arkiv för Matematik, vol. 50, no. 2, pp. 201–230, 2012.

[32] D. R. Adams and J. Xiao, “Nonlinear potential analysis on
Morrey spaces and their capacities,” Indiana University Math-
ematics Journal, vol. 53, pp. 1629–1663, 2004.

[33] F. Chiarenza and M. Frasca, “Morrey spaces and Hardy-
Littlewood maximal function,” Rendiconti di Matematica e
delle sue Applicazioni, vol. 7, pp. 273–279, 1987.

[34] J. Peetre, “On the theory of Lp,λ spaces,” Journal of Functional
Analysis, vol. 4, no. 1, pp. 71–87, 1969.

[35] G. Difazio and M. A. Ragusa, “Interior estimates in Morrey
spaces for strong solutions to nondivergence form equations
with discontinuous coefficients,” Journal of Functional Analy-
sis, vol. 112, no. 2, pp. 241–256, 1993.

[36] G. Di Fazio, D. K. Palagachev, andM. A. Ragusa, “Global Mor-
rey regularity of strong solutions to the Dirichlet problem for
elliptic equations with discontinuous coefficients,” Journal of
Functional Analysis, vol. 166, no. 2, pp. 179–196, 1999.

[37] P. Olsen, “Fractional integration, Morrey spaces and a Schrö-
dinger equation,” Communications in Partial Differential
Equations, vol. 20, no. 11-12, pp. 2005–2055, 1995.

[38] M. E. Taylor, “Analysis on Morrey spaces and applications to
Navier-Stokes and other evolution equations,” Communica-
tions in Partial Differential Equations, vol. 17, no. 9-10,
pp. 1407–1456, 1992.

[39] H. Wang, “Morrey spaces related to certain nonnegative
potentials and fractional integrals on the Heisenberg groups,”
Journal of Inequalities and Applications, vol. 2019, no. 1, 2019.

[40] V. S. Guliyev, A. Eroglu, and Y. Y. Mammadov, “Riesz potential
in generalizedMorrey spaces on the Heisenberg group,” Journal
of Mathematical Sciences, vol. 189, no. 3, pp. 365–382, 2013.

[41] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on
Euclidean Spaces, Princeton University Press, Princeton, NJ,
USA, 1971.

[42] Z. Guo, P. Li, and L. Peng, “Lp boundedness of commutators of
Riesz transforms associated to Schrödinger operator,” Journal
of Mathematical Analysis and Applications, vol. 341, no. 1,
pp. 421–432, 2008.

[43] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous
Groups, Princeton University Press, Princeton, 1982.

[44] J. Xiao and J. He, “Riesz potential on the Heisenberg group,”
Journal of Inequalities and Applications, vol. 2011, no. 1, Arti-
cle ID 498638, 2011.

[45] T. Mizuhara, “Boundedness of some classical operators on
generalized Morrey spaces,” in ICM-90 Satellite Conference
Proceedings, S. Igari, Ed., Springer, Tokyo, 1991.

[46] S. Lu, D. Yang, and Z. Zhou, “Sublinear operators with rough
kernel on generalized Morrey spaces,” Hokkaido Mathemati-
cal Journal, vol. 27, pp. 219–232, 1998.

[47] E. Nakai, “Hardy-Littlewood maximal operator, singular inte-
gral operators and the Riesz potentials on generalized Morrey
spaces,” Mathematische Nachrichten, vol. 166, no. 1, pp. 95–
103, 1994.

22 Journal of Function Spaces


	Semigroup Maximal Functions, Riesz Transforms, and Morrey Spaces Associated with Schrödinger Operators on the Heisenberg Groups
	1. Introduction
	1.1. The Heisenberg Group &Hopf;n
	1.2. The Schrödinger Operator L
	1.3. Semigroup Maximal Functions and Riesz Transforms

	2. Definitions and Main Theorems
	3. Boundedness of the Semigroup Maximal Functions
	4. Boundedness of the Riesz Transforms
	5. Generalized Morrey Spaces
	Data Availability
	Conflicts of Interest

