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In this paper, the numerical results are presented by using Lie group transformations, to be more efficient and sophisticated. To
solve various fluid dynamic problems numerically, we present the numerical results in a field of velocity and distribution of
temperature for different parameters regarding the problem of radiative heat, a magnetohydrodynamics, and non-Newtonian
viscoelasticity for the unstable flow of optically thin fluid inside a channel filled with nonuniform wall temperature and
saturated porous medium, including Hartmann number, porous medium and frequency parameter, and radiation parameter,
with a comparison of the corresponding flow problems for a Newtonian fluid. Moreover, the effects of the pertinent parameters
on the friction coefficient of skin and local Nusselt number were discussed numerically and also illustrate that graphically.

1. Introduction

The electromagnetic propulsion is an important application
of magnetohydrodynamic flow of non-Newtonian viscoelas-
tic fluids. Also, the magnetohydrodynamics is one of the
applications of an electrically conducting fluid, as well as it
will help the fluids which have thixotropic behavior in the
flow of the liquid as the blood, lubrication with greases and
heavy oils, and plastic extension. They have applications in
chemical engineering as well.

Lie group transformation was developed [1, 2] to use in
mechanics of fluid and also in transformations of equations
to solve some nonlinear problems.

Several years ago, simple flow problems in hydrodynam-
ics were study, and new attention has been given to the mag-
netohydrodynamics by Moreau [3]. Control transfer
unsteadies the heat in the vertical porous channel [4]. There
are many applications for the motion of Newtonian fluids in
many areas, such as the flow and heat transfer magnetohy-
drodynamics, the nuclear fuel flow, flow of blood, and also
by using the multideck asymptotic technique in Poiseuille
flow [5–9]. Considering the electromagnetic propulsion is
another important application. This system is consists of

plasma and source of power (such as a reactor of nuclear)
and also tube in which the electromagnetic forces accelerate
the plasma. In studying such a system, it requires under-
standing the properties of transport and state equation, the
relationship of shear rate-shear stress, the conductivity of
electrical, thermal conductivity, and radiation. It is worth to
mention that this study is closely associated with
magnetochemistry.

The presence of an external magnetic field will likely
affect some of those properties where the plasma sets in
motion of hydrodynamic [10, 11].

In the last years, researchers have been interested in the
issue of the flow of fluid through porous media, because the
pores of the reservoir rocks recover the crude oil and at the
same time because of the magnetic field effect on the work
and quality of the systems. There are several studies on the
transfer of heat in porous media and the flow of magnetohy-
drodynamics [12]. Chamkha [13] has considered the effects
of Hall on a vertical plate during the flow of magnetohydro-
dynamic free convection through a thermally stratified
porous medium. For instance, Raptis et al., in the presence
of a porous medium through two parallel panels, [14] have
analyzed the flow of hydromagnetic free convection [15]
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through vertical plate and studied the flow of mixed con-
vection in a porous medium under the effect of a magnetic
field. Through a porous medium in a channel filled with
it, Makinde et al. [16] have studied the possibility of heat
transfer to the magnetohydrodynamic flow inside the
cannel.

The present paper is aimed at modifying the study of
Makinde et al. [16] for non-Newtonian fluid and investi-
gating the combined effects of non-Newtonian viscoelastic-
ity and radiative heat transfer through a channel filled
with porous medium for optically thin fluid. In this work,
we have used Tanhed method to transform a system of
partial differential equations to a system of nonlinear ordi-
nary differential equations, and then solve it numerically
by using the shooting method. Numerical results were
present for skin friction coefficient, velocity profile, tem-
perature distribution, and local Nusselt number, with a
comparison of the corresponding flow problems for a
Newtonian fluid. The effects of the different parameters
of the problem on the flow have been shown and dis-
cussed graphically.

2. Mathematical Analysis

Assume that the unsteady flow of non-Newtonian fluid of
conducting an optically thin fluid in a porous medium inside
a channel filled with it, under the influence of radiative heat
transfer and field of homogeneous magnetic an externally
applied (see Figure 1).

Suppose that the force of electromagnetic produced is
too small and the fluid has a weak electrical conductivity.
Let ða, bÞ system of Cartesian, such that a lies along the
center of the channel, and b is the distance measured.
Let a model of Boussinesq incompressible fluid, then give
as the equations of governing the motion.
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The problem’s boundary conditions are

z = 0, r = r j at b =m,
z = 0, r = r0 at b = 0:

ð2Þ

Let the temperatures r0 ,rj of both walls are high
enough to transfer heat of radiative. [17] Cogley et al. sup-
posed that the optically thin fluid has a relatively low den-
sity with a flux of radiative heat shown as follows:

∂v
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, ð3Þ

such that ϕ is the mean coefficient of radiation absorption.
Now, introducing these dimensionless variables,
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such that w is the flow, and in another meaning, it is
velocity. The governing equations of dimensionless with
ignoring the bars (for clarity) been given by
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The transformed boundary conditions may be written
as follows:

�z = 0, η = 1 at b = 1,
�z = 0, η = 0 at b = 0,

ð7Þ

where the dimensionless parameters are defined as follows:
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2
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,
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Figure 1: Described the problem.
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2.1. Lie Group Transformations. We are using this method
to solve the problems of fluid dynamics numerically, with
efficiently and high quality [18].

Let

−
∂�u
∂�a

= μ tanh ji′
� �

, �z �b, i′
� �

= z0 �b
� �

tanh ji′
� �
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� �

= η0
�b
� �

tanh ji′
� �

,

ð9Þ

such that μ is a constant and j is the oscillation frequency.

2.2. Solution Mechanism. To solve equations (5) and (6)
under the boundary condition (7), replace the expressions
above in equation (9) into equations (5) to (7), and we obtain

d2z0
d�b

2 − n1z0 = −n2 μ + f gη0
� �

, ð10Þ

d2η0
d�b

2 + n3η0 = 0, ð11Þ

with boundary conditions

z0 = 0, η0 = coth ji′
� �

 at �b = 1,

z0 = 0, η0 = 0 at �b = 0,
ð12Þ

where n1 = q +N + 2jy cos echð2ji′Þ/1 + 2Aj cos echð2ji′Þ,
n2 = 1/1 + 2Aj cos echð2ji′Þ, and n3 = R − 2jL cos echð2ji′Þ.
2.3. Skin Friction and Nusselt Number. The upper wall of the
channel defines the shear stress (13) more clearly; is δ consid-
ered in the case that b = 0?

δ = w
m
∂�z
∂�b

+ γ1w
2

γm2
∂2�z
∂i′∂�b

 !
b=0

: ð13Þ

The local nondimensional skin friction coefficient ψ is
given by

ψ = δ

w/m = tanh ji′
� �

z0′ 0ð Þ + ε sec ζ2 ji′
� �

z0″ 0ð Þ, ð14Þ

where ε = γ1wj/γm.
The heat transfer rate is defined as follows:

vj = −t
∂r
∂�b

����
b=0

: ð15Þ

The coefficient of local heat transfer is defined as follows:

ζ �b
� �

=
mvj �b
� �

r j − r0
: ð16Þ
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Figure 2: Velocity profile for various values of R with q = 1:0,
N = 1:0, A = 1:0, and ji′ = π/4.

0.08

0.06

0.04

0.02

0.2 0.4 0.6 0.8 1
τ

z (τ)

N = 1.0

N = 3.0

N = 2.0

Figure 3: Velocity profile for various values of N with q = 1:0,
R = 1:0, A = 1:0, and ji′ = π/4.
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Figure 4: Velocity profile for various values of A with q = 1:0,
N = 1:0, R = 1:0, and ji′ = π/4.
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Figure 5: Velocity profile for various values of q with N = 1:0,
R = 1:0, A = 1:0, and ji′ = π/4.
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The local Nusselt number may be written as

Rz =
ζ �b
� �
t

= − tanh ji′
� �

η0′ 0ð Þ: ð17Þ

3. Results and Discussion

We used fourth-order Runge-Kutta integration and New-
ton’s shooting method to solve equations (10) and (11) under
the boundary conditions (12) numerically, for different
values of the parameters, and used the following parameter
values L = 0:71, f g = 1:0, y = 1:0, μ = 1:0, and j = 1:0.
Figures 2–6, we noticed the profile of velocity for various
values in the parameter of the radiation R, Hartmann num-
ber N , non-Newtonian (viscoelasticity) parameter A, porous
medium parameter q, and frequency parameter ji′. In
Figures 2 and 3, we can notice that the profile of fluid velocity
is parabolic where the minimum value concentrated at the
walls, and the maximum value concentrated along the cen-
terline of the channel. Nevertheless, we can observe that the
fluid velocity profile decreases when the Hartmann number
is increased and increases if the radiation parameter is
increased, which means a magnetic field intensity. Figures 4
and 5 clearly show that the fluid velocity decreases when
there is an increase in a porous medium and increases when
there is a decrease in the non-Newtonian (viscoelasticity)
parameter. In Figure 6, we can note that the fluid velocity
increases when there is an increase in the frequency parame-

ter. In Figures 7 and 8, we can note that the fluid temperature
increases when there is an increase in the radiation parameter
and increases when there is a decrease in the frequency
parameter.

The magnetic field can produce a resistive type force that
appears to withstand the fluid flow, and its velocity reduces,
where radiation parameter value R increases with fixed mag-
netic field parameter N values (see Figures 9 and 10).

Table 1 illustrates the effects of A, N , q, R, and ji′ on the
coefficient of skin friction (wall shear stress) and the number
of local Nusselt (wall heat transfer rate).

Coefficient decreases as A, q, andN increase but increases
as R and ji′ increase, and the local Nusselt number increases
as R and ji′ increase.

4. Conclusion

This paper reviewed the combined effects of a transverse
magnetic field, non-Newtonian viscoelasticity, and radiative
heat transfer to unsteady the flow of optically thin fluid in a
porous medium inside a channel filled with it and nonuni-
form channel wall temperature. This paper presented the
results of the temperature and velocity numerically and then
used to compute the rate’s transfer of heat at the channel
walls and shear stress of the wall. In general, these results
show that the increase in non-Newtonian fluid parameter
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Figure 6: Velocity profile for various values of ji′ with q = 1:0,
N = 1:0, R = 1:0, and A = 1:0.
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Figure 9: Velocity of Z when N = 0:5, R = 1:5.

4 Journal of Function Spaces



reduces the velocity profile and the fluid velocity is parabolic
within maximum value along the centerline of the channel
and minimum at the walls. Nevertheless, we observed that
the fluid velocity profile increases when there is an increase
in the frequency parameter, and the increase of non-
Newtonian fluid parameter reduces the skin friction coeffi-
cient, while the frequency parameter increases the wall heat
transfer rate. Also, it was interesting to compare the results
with the corresponding flow problems for a Newtonian fluid.

Abbreviations

z: The axial velocity
i: The time
λ: The fluid density
u: The pressure
ϑ: Kinematic viscosity coefficient
υ: Coefficient of viscoelasticity

P: The porous medium permeability
ρ: Conductivity of the fluid
E0 = γI: The electromagnetic induction
γ: The magnetic permeability
I: The intensity of the magnetic field
h: The gravitational force
r: The fluid temperature
r0: Temperature at b = 0
r j: Temperature at b =m
α: The coefficient of volume expansion due to

temperature
S: Specific heat at constant pressure
v: The radiative heat flux
t: Thermal conductivity.
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