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In this paper, assume that L = −Δℍn +V is a Schrödinger operator on the Heisenberg groupℍn, where the nonnegative potential V
belongs to the reverse Hölder class BQ/2. By the aid of the subordinate formula, we investigate the regularity properties of the time-
fractional derivatives of semigroups fe−tLgt>0 and fe−t ffiffiLp gt>0, respectively. As applications, using fractional square functions, we
characterize the Hardy-Sobolev type space H1,α

L ðℍnÞ associated with L. Moreover, the fractional square function
characterizations indicate an equivalence relation of two classes of Hardy-Sobolev spaces related with L.

1. Introduction

It is well-known that the Hardy spaces Hp form a natural
continuation of the Lebesgue spaces Lp to the range 0 < p ≤
1. Correspondingly, let Iα and Jα denote the classical Riesz
potentials and Bessel potentials, respectively. The Hardy-
Sobolev spaces IαðHpÞ and JαðHpÞ can be seen as natural gen-
eralizations of homogeneous and inhomogeneous Sobolev
spaces. Compared with Hardy spaces, the elements of
Hardy-Sobolev spaces are of regularities and have been
widely used in the research of partial differential equations,
potential theories, complex analysis and harmonic analysis,
etc. In the last decades, the theory of Hardy-Sobolev spaces
was investigated by many researchers extensively. In [1], Stri-
chartz proved that In/pðHpÞ was an algebra and found equiv-
alent norms for the Hardy-Sobolev space or, more generally,
for the corresponding space with fractional smoothness and
Lebesgue exponents in the range p > n/ðn + 1Þ. The trace
properties of the space IαðHpÞ were discussed by Torchinsky
[2]. Miyachi [3] characterized the Hardy-Sobolev spaces in
terms of maximal functions related to the mean oscillation
of functions in cubes and obtained a counterpart of previous
results of Calderón and of the general theory of De Vore and

Sharpley [4]. For further information on Hardy-Sobolev
spaces and their variants on ℝd , or on subdomains, we refer
the reader to [5–12].

The development of the theory of Hardy spaces with sev-
eral real variables was initiated by Stein andWeiss. In [13], by
use of square functions, Fefferman and Stein characterized
the Hardy spaces HpðℝnÞ for 0 < p ≤ 1. From then on, such
characterizations were extended to other settings, see [14–
16] and the references therein. Since the 1990s, the theory
of Hardy spaces associated with second-ordered differential
operators on ℝn attracts the attention of many researchers
and has been investigated extensively, such as [15–22] and
the references therein. In recent years, a lot of research has
been done on the Hardy spaces associated with operators
on the Heisenberg group and other settings, see [23–25].

Let L = −Δℍn + V be a Schrödinger operator, where ΔHn

is the sub-Laplacian on ℍn and V belongs to the reverse
Hölder class. Let fe−tLgt>0 be the heat semigroup generated
by −L and denote by KL

t ð·, · Þ the integral kernels. Since V
is nonnegative, the Feynman-Kacformula asserts that

0 < KL
t g, hð Þ ≤ ~Tt g, hð Þ≔ 4πtð Þ−Q/2e− g−1hj j2/4t: ð1Þ
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Lin-Liu-Liu [25] introduced the Hardy space associated
with L, which is defined as follows. Let ML denote the semi-
group maximal function: MLð f ÞðgÞ≔ supt>0jTL

t f ðgÞj, g ∈
ℍn. The Hardy space H1

LðℍnÞ associated with L is defined
to be

H1
L ℍnð Þ = f ∈ L1 ℍnð Þ:  ML fð Þ ∈ L1 ℍnð Þ� �

, ð2Þ

where k f kH1
L
= kMLð f ÞkL1 .

As an analogue of classical Hardy-Sobolev spaces, we
introduce the following Hardy-Sobolev space associated with
L on ℍn:

Definition 1. For α > 0, the Hardy-Sobolev space H1,α
L ðℍnÞ is

defined as the set of all functions f ∈H1
LðℍnÞ such that

Lα f ∈H1
LðℍnÞ with the norm

fk kH1,α
L
≔ Lα fk kH1

L
+ fk kH1

L
<∞: ð3Þ

Our motivation is inspired by the following square func-
tion characterization of H1

LðℍnÞ. For k ∈ℕ, let

Qk
t f gð Þ≔ t2k ∂ks T

L
s

���
s=t2

f
� �

gð Þ: ð4Þ

Define the square function associated with fQk
t g as

SLk fð Þ gð Þ≔
ð∞
0

ð
∣g−1h∣<t

Qk
t fð Þ hð Þ

��� ���2 dhdt
tQ+1

 !1/2

: ð5Þ

In [16], Hoffmann et al. obtained the following square
function characterization of H1

LðℍnÞ:

Proposition 2. Let k ∈ℕ. A function f ∈H1
LðℍnÞ if and only

if f ∈ L1ðℍnÞ and the square function SkLð f Þ ∈ L1ðℍnÞ. More-
over, k f kH1

L
~ kSkLð f ÞkL1 + k f kL1 .

The goal of this paper is to characterize H1,α
L ðℍnÞ by the

square functions generated by semigroups associated with L.
It can be seen from Definition 1 that the elements of
H1,α

L ðℍnÞ have the regularities of order α. Based on this obser-
vation, we introduced the following fractional square func-
tions associated with semigroup generated by L. For α > 0, let
∂αt K

L
t and ∂αt P

L
t denote the time-fractional derivatives of the

heat kernel and the Poisson kernel, respectively, (cf [26]), i.e.,

∂αt K
L
t g, hð Þ≔ eiπ m−αð Þ

Γ m − αð Þ
ð∞
0
∂mt K

L
t+s g, hð Þsm−α ds

s
, m = α½ � + 1 ;

∂αt P
L
t g, hð Þ≔ eiπ m−αð Þ

Γ m − αð Þ
ð∞
0
∂mt P

L
t+s g, hð Þsm−α ds

s
, m = α½ � + 1,

8>>><>>>:
ð6Þ

For α > 0, define the following family of operators:

QL
α,t fð Þ≔ t2α∂αs e

−sL��
s=t2 fð Þ, t > 0 ;

DL
α,t fð Þ≔ tα∂αt e

−t
ffiffi
L

p
fð Þ, t > 0:

8<: ð7Þ

Similar to ([27], Proposition 3.6), the regularities of the
kernels of fQL

α,tg and fDL
α,tg can be deduced from (6). In this

paper, we apply a different method to derive the regularities.
In Propositions 10 and 14, we estimate the regularities of
ftαLαe−tLg and ftαLα/2e−t ffiffiLp g, respectively. Then, by the func-
tional calculus, we deduce the following relations:

tαLαe−tL ·, ·ð Þ = tα∂αt e
−tL ·, ·ð Þ ;

tαLα/2e−t
ffiffi
L

p
·, ·ð Þ = tα∂αt e

−t
ffiffi
L

p
·, ·ð Þ,

(
ð8Þ

see Lemmas 15 and 11. Hence, the desired regularities of
fQL

α,tg and fDL
α,tg are corollaries of Propositions 10 and 14.

Respect to QL
α,t , we introduce the following fractional

square functions:

gH,α fð Þ gð Þ≔
ð∞
0

QL
α,t fð Þ hð Þ�� ��2 dt

t

� 	1/2
;

SH,α fð Þ gð Þ≔
ð∞
0

ð
B g,tð Þ

QL
α,t fð Þ hð Þ�� ��2 dhdt

tQ+1

 !1/2

;

g∗H,α,λ fð Þ gð Þ≔
ð∞
0

ð
ℍn

t
t+∣g−1h ∣

� 	2λ

QL
α,t fð Þ hð Þ�� ��2 dhdt

tQ+1

 !1/2

:

8>>>>>>>>>>><>>>>>>>>>>>:
ð9Þ

In Section 3.1, we establish the characterizations of
H1

LðℍnÞ be the square function defined by (9), see Theorem
20. In Section 3.2, we introduce the fractional square functions
as follows:

gHk,α fð Þ≔
ð∞
0

t2k−2α
∂ke−sL

∂sk

�����
�����
s=t2

f j2 dt
t

 !1/2

, k ≥ α > 0 ;

SHk,α fð Þ≔
ð∞
0

ð
B g,tð Þ

t2k−2α
∂ke−sL

∂sk

�����
�����
s=t2

f j2 dhdt
tQ+1

 !1/2

, k ≥ α > 0 ;

gH,∗
k,α,λ fð Þ≔

ð∞
0

ð
ℍn

t
t+∣g−1h ∣

� 	2λ

t2k−2α
∂ke−sL

∂sk

�����
�����
s=t2

f j2 dhdt
tQ+1

 !1/2

, k ≥ α > 0:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð10Þ

Let

D M Lð Þð Þ = f ∈ L2 ℍnð Þ:
ð∞
0

M λð Þj j2 dEL λð Þf , fh i<∞

 �

: ð11Þ

For every f ∈DðLαÞ and Lα f ∈ L2ðℍnÞ ∩H1
LðℍnÞ, we

prove

gHk−α Lα fð Þ = gH
k,α fð Þ, SH

k−α Lα fð Þ = SHk,α fð Þ, gH,∗
k−α,λ Lα fð Þ = gH,∗

k,α,λ fð Þ,
ð12Þ
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The above relations, together with Theorem 20, indicate
that

Lα fk kH1
L
~ gHk,α fð Þ�� ��

L1
~ SHk,α fð Þ�� ��

L1
~ gH,∗

k,α,λ fð Þ�� ��
L1
, ð13Þ

see Proposition 23. Finally, in Theorem 24, we obtain the
desired characterizations of H1,α

L ðℍnÞ via the fractional
square functions defined in (10): for every f ∈H1,α

L ðℍnÞ,

fk kH1,α
L
~ fk kH1

L
+ gH

k,α fð Þ�� ��
L1
~ fk kH1

L
+ SHk,α fð Þ�� ��

L1

~ fk kH1
L
+ gH,∗

k,α,λ fð Þ�� ��
L1
:

ð14Þ

For the Poisson semigroup, via the operators fDL
α,tg, we

can also obtain the corresponding square function character-
izations of H1

LðℍnÞ and H1,α
L ðℍnÞ, see Theorems 21 and 25

for the details.

Remark 3.

(i) As far as the authors know, even on ℝn, the regular-
ities of the time-fractional derivatives of the heat ker-
nels obtained in Section 2.2 are new. The results
obtained in Section 2.3 generalize those of [27] to
the setting of Heisenberg groups. Moreover, all
results in Sections 2.2 and 2.3 apply to some other
operators, for example, the degenerate Schrödinger
operators, the Schrödinger operators on stratified
Lie groups, and so on

(ii) Lemma 22 implies that the operators QL
α,t and DL

α,t
can be expressed by the spectrum integral of Schrö-
dinger operator. In the sequel, sometime, we formally
denote by tα∂αt e

−tL and tα∂αt e
−t
ffiffi
L

p
by QL

α,
ffiffi
t

p and DL
α,t ,

respectively

The paper is organized as follows. In Section 2.1, we give
some knowledge to be used throughout this paper. Sections
2.2 and 2.3 are devoted to the regularity estimates of fQL

α,tg
and fDL

α,tg, respectively. In Sections 3.1 and 3.2, we establish
the fractional square function characterizations of H1

LðℍnÞ
and H1,α

L ðℍnÞ. As an application, we deduce an equivalence
of the norms of Hardy-Sobolev spaces associated with L.

1.1. Notations. Throughout this article, we will use c and C to
denote the positive constants, which are independent of main
parameters and may be different at each occurrence. By B1
~ B2, we mean that there exists a constant C > 1 such that
1/C ≤ B1/B2 ≤ C.

2. Preliminaries

2.1. Heisenberg Groups and Hardy Spaces. The ð2n + 1Þ
-dimensional Heisenberg group ℍn is the Lie group with

underlying manifold ℝ2n ×ℝ with the multiplication

x, tð Þ y, sð Þ = x + y, t + s + 2〠
n

j=1
xn+jyj − xjyn+j
� � !

: ð15Þ

The Lie algebra of left-invariant vector fields on ℍn is
given by

X2n+1 =
∂
∂t
, Xj =

∂
∂xj

+ 2xn+j
∂
∂t
, Xn+j =

∂
∂xn+ j

+ 2xj
∂
∂t
, j = 1, 2,⋯, n:

ð16Þ

The sub-Laplacian Δℍn is defined as Δℍn =∑2n
j=1 X

2
j . The

gradient ∇ℍn is defined by ∇ℍn = ðX1,⋯, X2nÞ. The left-
invariant distance is dðh, gÞ = jh−1gj. The ball of radius r cen-
tered at g is denoted by Bðg, rÞ = fh ∈ℍn : jh−1gj < rgwhose
volume is given by jBðg, rÞj = cnr

Q, where cn denotes the vol-
ume of the unit ball inℍn and Q = 2n + 2 is the homogenous
dimension of ℍn. Let Un be the Siegel upper half-space in
ℂn+1, i.e.,

Un = z ∈ℂn+1 :   Im zn+1 > 〠
n

j=1
zj
�� ��2( )

: ð17Þ

Then, Un is holomorphically equivalent to the unit ball in
ℂn+1. It is well known that the Heisenberg groupℍn is a nil-
potent subgroup of the automorphism group of Un, which
consists of the translations of Un. The Heisenberg group
ℍn can be also identified with the boundary ∂Un via its
action on the origin. We use the Heisenberg coordinates
ðg, sÞ = ðx, t, sÞ to denote the points in Un, where

xj + ixn+j = zj, j = 1,⋯, n ;
t = Re zn+1 ;

s = Im zn+1 − 〠
n

j=1
zj
�� ��2:

8>>>>><>>>>>:
ð18Þ

A nonnegative locally Lq-integrable function V on ℍn is
said to belong to the reverse Hölder class Bq, 1 < q <∞, if
there exists C > 0 such that the reverse Hölder inequality

1
∣B ∣

ð
B
Vq hð Þdh

� 	1/q
≤

C
∣B ∣

ð
B
V hð Þdh ð19Þ

holds for every ball B ∈ℍn: In the sequel, we always assume
that 0≡V ∈ BQ/2.

The following auxiliary function ρðg, VÞ = ρðgÞ was first
introduced by Shen [28] and widely used in the research of
function spaces related to Schrödinger operators:
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Definition 4. The auxiliary function ρð·Þ is defined by

ρ gð Þ≔ sup
r>0

r :
1

rQ−2

ð
B g,rð Þ

V hð Þdh ≤ 1
( )

, g ∈ℍn: ð20Þ

The following atomic characterization of H1
LðℍnÞ was

obtained by Lin-Liu-Liu [25].

Definition 5.A function a is called a ð1, qÞ -atom of the Hardy
space H1

LðℍnÞ related with a ball Bðg0, rÞ if

(i) supp a ⊂ Bðg0, rÞ;
(ii) kakL∞ ≤ jBðg0, rÞj1/q−1;
(iii) if r < ρðgÞ, then Ð Bðg,rÞ aðhÞdh = 0

The atomic norm of H1
LðℍnÞ is defined by k f kL−atom,q

≔ inf f∑ ∣ cj ∣ g, where the infimum is taken over all decom-

positions f = Σcjaj, and aj are H
q
L-atoms.

Proposition 6. Let 1 ≤ q ≤∞. The norms k f kL−atom,q and
k f kH1

L
are equivalent, that is, there exists a constant C > 0

such that C−1k f kH1
L
≤ k f kL−atom,q ≤ Ck f kH1

L
.

Below, we give some results on the tent spaces introduced
by Coifman-Meyer-Stein.

Definition 7. Assume that 0 < p, q <∞. The tent space
Tp
qðℍnÞ is defined as the set of all functions f ð·, · Þ onℍn sat-

isfying Aqð f Þð·Þ ∈ LpðℍnÞ, where

Aq fð Þ≔
ð ð

Γ gð Þ
f h, tð Þj jq dhdt

tQ+1

 !1/q

, Γ gð Þ = h, tð Þ: h−1g
�� �� < t

� �
:

ð21Þ

Coifman, Meyer, and Stein established the following
atomic decomposition of T1

2ðUnÞ. A function að·, · Þ is called
a T1

2-atom if (i) a is supported in B̂ for some ball B ⊂ℍn; (ii)Ð Ð
B̂ jaðg, tÞj2ðdgdt/tÞ ≤ 1/∣B ∣ .
The following proposition is one of the main results of

tent spaces.

Proposition 8. Every element f ∈ T1
2ðUnÞ can be written as

f =∑ j λjaj, where aj are T
1
2 -atoms, λj ∈ℂ, and ∑ j ∣ aj ∣ ≤C

k f kT1
2
.

2.2. Time-Fractional Derivatives of the Heat Semigroup. In
this part, we estimate the time-fractional derivatives of the
heat kernel associated with L. For k ∈ℕ, define

QL
k,t g, hð Þ≔ t2k∂ks K

L
s g, hð Þ

���
s=t2

: ð22Þ

In ([29], Proposition 2.9), the authors obtained the fol-
lowing estimates about the kernel QL

k,tð·, · Þ.

Proposition 9.

(i) For M > 0, there exists a constant CM > 0 such that

QL
k,t g, hð Þ�� �� ≤ CMt

−Qe−c g−1hj j2/t2 1 + t
ρ gð Þ + t

ρ hð Þ
� 	−M

: ð23Þ

(ii) Assume that 0 < δ′ ≤min f1, δg. For anyM > 0, there
exists a constant CM > 0 such that, for all ∣ω ∣ <

ffiffi
t

p

QL
k,t gω, hð Þ −Qk

t g, hð Þ
��� ��� ≤ CM

∣ω ∣
t

� 	δ′
t−Qe−c g−1hj j2/t2 1 + t

ρ gð Þ +
t

ρ hð Þ
� 	−M

:

ð24Þ

(iii) For any M > 0, there exists a constant CM > 0 such
that

ð
ℍn

QL
k,t g, hð Þdh

���� ���� ≤ CM t/ρ gð Þð Þδ′
1 + t/ρ gð Þð ÞM

: ð25Þ

Denote by ~Q
L
α,tð·, · Þ the kernel of tαLαe−tL. In the follow-

ing proposition, we investigate the regularities of ~Q
L
α,tð·, · Þ.

Proposition 10. Let α > 0.

(i) For M > 0, there exists a constant CM > 0 such that

~Q
L
α,t g, hð Þ

��� ��� ≤ CM min 1

tQ/2
, tα/2

g−1hj jQ+α
( )

1 +
ffiffi
t

p
ρ gð Þ +

ffiffi
t

p
ρ hð Þ

 !−M

: ð26Þ

(ii) Assume that 0 < δ′ ≤ δ with 0 < δ′ < α. For any M
> 0, there exists a constant CM > 0 such that for
all ∣ω ∣ ≤

ffiffi
t

p

~Q
L
α,t gω, hð Þ − ~Q

L
α,t g, hð Þ

��� ��� ≤ CM
∣ω ∣ffiffi

t
p

� 	δ′
min

� 1
tQ/2

, tα/2

g−1hj jQ+α
( )

1 +
ffiffi
t

p
ρ gð Þ +

ffiffi
t

p
ρ hð Þ

 !−M

:

ð27Þ

(iii) For any M > 0, there exists a constant CM > 0 such
that
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ð
ℍn

~Q
L
α,t g, hð Þdh

���� ���� ≤ CM

ffiffi
t

p
/ρ gð Þ
 �δ′

1 +
ffiffi
t

p
/ρ gð Þ
 �M : ð28Þ

Proof.

(i) The proof of (i) is divided into the following two
cases.

Case 1. α ∈ ð0, 1Þ. For this case, it follows from functional
calculus that

tαLαe−tL = tα
ð∞
0

ðs
0
∂re

− t+rð ÞL drds
s1+α

: ð29Þ

By (i) of Proposition 9, we obtain

~Q
L
α,t g, hð Þ

��� ��� ≤ tα
ð∞
0

ðs
0
QL ffiffiffiffiffi

t+r
p g, hð Þ

��� ��� dr
t + r

ds
s1+α

≤ tα
ð∞
0

ðs
0

e− g−1hj j2/ t+rð Þ

t + rð ÞQ/2
1 +

ffiffiffiffiffiffiffiffiffi
t + r

p
ρ gð Þ

 !−M

� 1 +
ffiffiffiffiffiffiffiffiffi
t + r

p
ρ hð Þ

 !−M
dr
t + r

ds
s1+α

:

ð30Þ

On the one hand, a direct computation gives

~Q
L
α,t g, hð Þ

��� ��� ≤ tα
ð∞
0

ðs
0

1
t + rð ÞQ/2

ffiffiffiffiffiffiffiffiffi
t + r

p
ρ gð Þ

 !−M ffiffiffiffiffiffiffiffiffi
t + r

p
ρ hð Þ

 !−M
dr
t + r

ds
s1+α

≤ tαρ gð ÞMρ hð ÞM
ð∞
0

ð∞
r

ds
s1+α

� 	 1
t + rð ÞQ/2+M+1 dr

≤ t−Q/2
ffiffi
t

p
ρ gð Þ

 !−M ffiffi
t

p
ρ hð Þ

 !−M

:

ð31Þ

On the other hand, because the heat kernel decays rap-
idly, we can get

~Q
L
α,t g, hð Þ

��� ��� ≤ tαρ gð ÞMρ hð ÞM
ð∞
0

�
ðs
0

1
t + rð ÞQ/2+M+1

g−1h
�� ��2
t + s

 !− Q+αð Þ/2
dr

0@ 1A ds
s1+α

≤
tαρ gð ÞMρ hð ÞM

g−1hj jQ+α
ð∞
0

ð∞
r

ds
s1+α

� 	
t + rð Þ−M−1+α/2dr

≤
tαρ gð ÞMρ hð ÞM

g−1hj jQ+α
ð∞
0
r−α t + rð Þ−M−1+α/2dr

≤
tα/2

g−1hj jQ+α
1 +

ffiffi
t

p
ρ gð Þ

 !−M

1 +
ffiffi
t

p
ρ hð Þ

 !−M

:

ð32Þ

Case 2. α > 1. Let α − ½α� = β. Write

tαLαe−tL = tαL α½ �Lβe−tL = tαL α½ �
ð∞
0

ðs
0
∂re

− t+rð ÞL drds
s1+β

: ð33Þ

Since m = ½α� + 1, we can get

tαLαe−tL = tαL α½ �
ð∞
0

ðs
0
−Lð Þe− t+rð ÞL drds

s1+α− α½ �

= tα
ð∞
0

ðs
0
−Lð Þme− t+rð ÞL drds

s2+α−m

= tα
ð∞
0

ðs
0
QL ffiffiffiffiffi

t+r
p

,m g, hð Þ dr
t + rð Þm

ds
s2+α−m

:

ð34Þ

It can be deduced from (i) of Proposition 9 that

~Q
L
α,t g, hð Þ

��� ��� ≤ tα
ð∞
0

ðs
0
t + rð Þ−Q/2

ffiffiffiffiffiffiffiffiffi
t + r

p
ρ gð Þ

 !−M

�
ffiffiffiffiffiffiffiffiffi
t + r

p
ρ hð Þ

 !−M
dr

t + rð Þm
ds

s2+α−m

≤ tαρ gð ÞMρ hð ÞM
ð∞
0

ðs
0
t + rð Þ−Q/2−M−mdr

ds
s2+α−m

≤ tαρ gð ÞMρ hð ÞM
ð∞
0

ð∞
r

ds
s2+α−m

� 	
t + rð Þ−Q/2−M−mdr

≤ t−Q/2 1 +
ffiffi
t

p

ρ gð Þ

 !−M

1 +
ffiffi
t

p

ρ hð Þ

 !−M

:

ð35Þ

Similarly, an application of (i) of Proposition 9 again
yields

~Q
L
α,t g, hð Þ

��� ��� ≤ tαρ gð ÞMρ hð ÞM
ð∞
0

�
ðs
0
t + rð Þ−Q/2−M−m g−1h

�� ��2
t + s

 !− Q+αð Þ/2
dr

0@ 1A ds
s2+α−m

≤
tαρ gð ÞMρ hð ÞM

g−1hj jQ+α
ð∞
0

ð∞
r

ds
s2+α−m

� 	
t + rð Þ−M−m+α/2dr

≤
tαρ gð ÞMρ hð ÞM

g−1hj jQ+α
ð∞
0
rm−α−1 t + rð Þ−M−m+α/2dr

≤
tα/2

g−1hj jQ+α
1 +

ffiffi
t

p
ρ gð Þ

 !−M

1 +
ffiffi
t

p
ρ hð Þ

 !−M

:

ð36Þ

(ii) We first consider the case α ∈ ð0, 1Þ. By (ii) of Propo-
sition 9, we obtain
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~Q
L
α,t gω, hð Þ − ~Q

L
α,t g, hð Þ

��� ���
≤ tα
ð∞
0

ðs
0
QL ffiffiffiffiffi

t+r
p gω, hð Þ −QL ffiffiffiffiffi

t+r
p g, hð Þ

��� ��� dr
t + r

ds
s1+α

≤ tα
ð∞
0

ðs
0
t + rð Þ−Q/2 ∣ω ∣ffiffiffiffiffiffiffiffiffi

t + r
p
� 	δ′

e− g−1hj j2/t+r × 1 +
ffiffiffiffiffiffiffiffiffi
t + r

p
ρ gð Þ

 !−M

� 1 +
ffiffiffiffiffiffiffiffiffi
t + r

p

ρ hð Þ

 !−M
dr
t + r

ds
s1+α

:

ð37Þ

Changing the order of integration, we obtain

~Q
L
α,t gω, hð Þ − ~Q

L
α,t g, hð Þ

��� ���
≤ tα
ð∞
0

ðs
0
t + rð Þ−Q/2 ∣ω ∣ffiffiffiffiffiffiffiffiffi

t + r
p
� 	δ′

�
ffiffiffiffiffiffiffiffiffi
t + r

p
ρ gð Þ

 !−M ffiffiffiffiffiffiffiffiffi
t + r

p
ρ hð Þ

 !−M
dr
t + r

ds
s1+α

≤ tα ωj jδ′ρ gð ÞMρ hð ÞM
ð∞
0

t + rð Þ−Q/2−δ′/2−M−1

�
ð∞
r

ds
s1+α

� 	
dr ≤

∣ω ∣ffiffi
t

p
� 	δ′ ffiffi

t
p
ρ gð Þ

 !−M ffiffi
t

p
ρ hð Þ

 !−M

t−Q/2:

ð38Þ

Alternatively, we can also get

~Q
L
α,t gω, hð Þ − ~Q

L
α,t g, hð Þ

��� ���
≤ tα ωj jδ′ρ gð ÞMρ hð ÞM

ð∞
0

ðs
0
t + rð Þ−Q/2−δ′/2−M−1

� g−1h
�� ��2
t + r

 !− Q+αð Þ/2
drds
s1+α

≤
tα ωj jδ′ρ gð ÞMρ hð ÞM

g−1hj jQ+α
ð∞
0

� t + rð Þ−δ′/2−M−1+α/2
ð∞
r

ds
s1+α

� 	
dr ≤

∣ω ∣ffiffi
t

p
� 	δ′

�
ffiffi
t

p

ρ gð Þ

 !−M ffiffi
t

p

ρ hð Þ

 !−M
tα/2

g−1hj jα+Q
:

ð39Þ

For α ≥ 1, by (ii) of Proposition 9, we can get

~Q
L
α,t gω, hð Þ − ~Q

L
α,t g, hð Þ

��� ���
≤ tα
ð∞
0

ðs
0
QL ffiffiffiffiffi

t+r
p gω, hð Þ −QL ffiffiffiffiffi

t+r
p g, hð Þ

��� ��� dr
t + rð Þm

ds
s2+α−m

≤ tα
ð∞
0

ðs
0
t + rð Þ−Q/2 ∣ω ∣ffiffiffiffiffiffiffiffiffi

t + r
p
� 	δ′

e− g−1hj j2/t+r × 1 +
ffiffiffiffiffiffiffiffiffi
t + r

p
ρ gð Þ

 !−M

� 1 +
ffiffiffiffiffiffiffiffiffi
t + r

p
ρ hð Þ

 !−M
dr

t + rð Þm
ds

s2+α−m
:

ð40Þ

Similar to the case α ∈ ð0, 1Þ, the rest of the proof can be
finished by applying change of order of integration. We omit
the details.

(iii) For α ∈ ð0, 1Þ, by (iii) of Proposition 9, we change the
order of integration to obtain

ð
ℍn

~Q
L
α,t g, hð Þdh

���� ���� ≤ tα
ð∞
0

ðs
0

ð
ℍn

QL ffiffiffiffiffi
t+r

p g, hð Þdh
���� ���� dr

t + r
ds
s1+α

≤ tα
ð∞
0

ðs
0

ffiffiffiffiffiffiffiffiffi
t + r

p

ρ gð Þ

 !δ′ 1
1 +

ffiffiffiffiffiffiffiffiffi
t + r

p
/ρ gð Þ
 �M dr

t + r
ds
s1+α

:

ð41Þ

If
ffiffi
t

p
> ρðgÞ, then

ð
ℍn

~Q
L
α,t g, hð Þdh

���� ���� ≤ tα
ð∞
0

ðs
0

ffiffiffiffiffiffiffiffiffi
t + r

p
ρ gð Þ

 !δ′−M
dr
t + r

ds
s1+α

≤ tαρ gð ÞM−δ′
ð∞
0

ð∞
r

ds
s1+α

� 	
dr

t + rð Þ M−δ′ð Þ/2+1

≤
ffiffi
t

p
/ρ gð Þ
 �δ′

1 +
ffiffi
t

p
/ρ gð Þ
 �M :

ð42Þ

If
ffiffi
t

p
≤ ρðgÞ, then

ð
ℍn

~Q
L
α,t g, hð Þdh

���� ���� ≤ tα
ð∞
0

ffiffiffiffiffiffiffiffiffi
t + r

p
ρ gð Þ

 !δ′ 1
1 +

ffiffiffiffiffiffiffiffiffi
t + r

p
/ρ gð Þ
 �M dr

t + rð Þrα

≤ tαρ gð Þ−δ′
ð∞
0

t + rð Þδ′/2−1 dr
rα

≤
ffiffi
t

p
/ρ gð Þ
 �δ′

1 +
ffiffi
t

p
/ρ gð Þ
 �M :

ð43Þ

For α ≥ 1, we have

ð
ℍn

~Q
L
α,t g, hð Þdh

���� ����
≤ tα
ð∞
0

ðs
0

ð
ℍn

DL ffiffiffiffiffi
t+r

p g, hð Þdh
���� ���� dr

t + rð Þm
ds

s2+α−m

≤ tα
ð∞
0

ðs
0

ffiffiffiffiffiffiffiffiffi
t + r

p
ρ gð Þ

 !δ′ 1
1 +

ffiffiffiffiffiffiffiffiffi
t + r

p
/ρ gð Þ
 �
 �M dr

t + rð Þm
ds

s2+α−m
:

ð44Þ

If
ffiffi
t

p
> ρðgÞ, then
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ð
ℍn

~Q
L
α,t g, hð Þdh

���� ���� ≤ tαρ gð ÞM−δ′
ð∞
0

t + rð Þ δ′−Mð Þ/2−m
ð∞
r

ds
s2+α−m

� 	
dr

≤ tαρ gð ÞM−δ′
ð∞
0

t + rð Þ δ′−Mð Þ/2−mrm−α−1dr

≤
ffiffi
t

p
/ρ gð Þ
 �δ′

1 +
ffiffi
t

p
/ρ gð Þ
 �M :

ð45Þ

If
ffiffi
t

p
≤ ρðgÞ, thenð

ℍn

~Q
L
α,t g, hð Þdh

���� ����
≤ tα
ð∞
0

ffiffiffiffiffiffiffiffiffi
t + r

p
ρ gð Þ

 !δ′ 1
1 +

ffiffiffiffiffiffiffiffiffi
t + r

p
/ρ gð Þ
 �M dr

t + rð Þmrα+1−m

≤ tαρ gð Þ−δ′
ð∞
0

t + rð Þδ′/2−1 dr
rα

≤
ffiffi
t

p
/ρ gð Þ
 �δ′

1 +
ffiffi
t

p
/ρ gð Þ
 �M :

ð46Þ

The following lemma can be deduced from the functional
calculus immediately.

Lemma 11. Let α > 0. The operators tα∂αt e
−tL and tαLαe−tL are

equivalent.

Proof. For α ∈ ð0, 1Þ, we have

tαLαe−tL = tα
ð∞
0

ðs
0
∂re

− t+rð ÞL drds
s1+α

= tα
ð∞
0

ð∞
r

ds
s1+α

� 	
∂re

− t+rð ÞLdr

= tα
ð∞
0
r−α∂re

− t+rð ÞLdr = tα∂αt e
−tL:

ð47Þ

For α > 1, let α − ½α� = β. Since m = ½α� + 1, it holds

tαLαe−tL = tαL α½ �Lβe−tL = tαL α½ �
ð∞
0

−Lð Þe− s+tð ÞLs1−β
ds
s

= tα
ð∞
0

−Lð Þme− t+sð ÞLsm−α ds
s
= tα∂αt e

−tL:

ð48Þ

Denote by QL
α,tð·, · Þ the integral kernel of QL

α,t . By Propo-
sition 10 and Lemma 11, we have the following result.

Corollary 12. Let α > 0.

(i) For M > 0, there exists a constant C > 0 such that

QL
α,t g, hð Þ�� �� ≤ Ctα

g−1hj j + tð ÞQ+α
1 + t

ρ gð Þ + t
ρ hð Þ

� 	−M
: ð49Þ

(ii) Let 0 < δ′ ≤ δ with 0 < δ′ < α. For any M > 0 there
exists a constant C > 0 such that, for all ∣ω ∣ ≤

ffiffi
t

p

QL
α,t gω, hð Þ −Qα

t g, hð Þ�� �� ≤ C
∣ω ∣
t

� 	δ′ tα

g−1hj j + tð ÞQ+α

� 1 + t
ρ gð Þ + t

ρ hð Þ
� 	−M

:

ð50Þ

(iii) For anyM > 0, there exists a constant C > 0 such that

ð
ℍn

QL
α,t g, hð Þdh

���� ���� ≤ C t/ρ gð Þð Þδ′
1 + t/ρ gð Þð ÞM

: ð51Þ

2.3. Time-Fractional Derivatives of the Poisson Semigroup. In
this part, our aim is to give some regularity estimates of the
Poisson kernel associated with

ffiffiffi
L

p
. For k ∈ℕ, define DL

k,tðg
, hÞ≔ tk∂kt P

L
t ðg, hÞ. In ([29], Proposition 2.12), the authors

obtained the following estimates about the kernel DL
k,tð·, · Þ.

Proposition 13 (see [29], Proposition 2.12).

(i) For M > 0, there exists a constant CM > 0 such that

DL
k,t g, hð Þ�� �� ≤ CMt

k

t2 + g−1hj j2
� � Q+kð Þ/2 1 + t

ρ gð Þ + t
ρ hð Þ

� 	−M
:

ð52Þ

(ii) Assume that 0 < δ′ ≤min f1, δg. For anyM > 0 there
exists a constant CM > 0 such that, for all ∣ω ∣ <t

DL
k,t gω, hð Þ −DL

k,t g, hð Þ�� �� ≤ CM
∣ω ∣
t

� 	δ′ tk

t2 + g−1hj j2
� � Q+kð Þ/2

� 1 + t
ρ gð Þ +

t
ρ hð Þ

� 	−M

:

ð53Þ

(iii) For any M > 0, there exists a constant CM > 0 such
that

ð
ℍn

DL
k,t g, hð Þdh

���� ���� ≤ CM
t/ρ gð Þð Þδ′

1 + t/ρ gð Þð ÞM
: ð54Þ

Denote by ~D
L
α,tð·, · Þ the kernel tαLα/2PL

t ð·, · Þ. Similar to
Proposition 10, we have

Proposition 14. Let α > 0.

(i) For every M, there is a constant CM such that
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~D
L
α,t g, hð Þ

��� ��� ≤ CM min 1

tQ
, tα

g−1hj jQ+α
( )

1 + t
ρ gð Þ + t

ρ hð Þ
� 	−M

:

ð55Þ

(ii) Assume that 0 < δ′ ≤ δ with 0 < δ′ < α. For anyM > 0
there exists a constant C > 0 such that for all ∣ω ∣ ≤t

~D
L
α,t gω, hð Þ − ~D

L
α,t g, hð Þ

��� ��� ≤ CM
∣ω ∣
t

� 	δ′
min 1

tQ
, tα

g−1hj jQ+α
( )

� 1 + t
ρ gð Þ + t

ρ hð Þ
� 	−M

:

ð56Þ

(iii) For any M > 0, there exists a constant CM > 0 such
that

ð∞
0

~D
L
α,t g, hð Þdh

���� ���� ≤ CM t/ρ gð Þð Þδ′
1 + t/ρ gð Þð ÞM

: ð57Þ

Proof. Let us prove (i) first. The following two cases are
considered.

Case 1. α ∈ ð0, 1Þ. By the functional calculus, we obtain

tαLα/2e−t
ffiffi
L

p
= tα
ð∞
0

ðs
0
∂re

− t+rð Þ ffiffiLp drds
s1+α

, ð58Þ

which, together with Proposition 13, implies that

~D
L
α,t g, hð Þ = tα

ð∞
0

ðs
0
DL
t+r,1 g, hð Þ dr

t + r
ds
s1+α

≤ tα
ð∞
0

ðs
0

t + r

t + rð Þ2 + g−1hj j2
� � Q+1ð Þ/2

� 1 + t + r
ρ gð Þ + t + r

ρ hð Þ
� 	−M dr

t + r
ds
s1+α

:

ð59Þ

One the one hand, we use the change of order of integra-
tion to get

~D
L
α,t g, hð Þ

��� ��� ≤ tα
ð∞
0

ðs
0
t + rð Þ−Q t + r

ρ gð Þ
� 	−M t + r

ρ hð Þ
� 	−M dr

t + r
ds
s1+α

≤ tαρ gð ÞMρ hð ÞM
ð∞
0

ð∞
r

ds
s1+α

� 	
t + rð Þ−Q−2M−1dr

≤ tαρ gð ÞMρ hð ÞM
ð∞
0
r−α t + rð Þ−Q−2M−1dr

≤ t−Q
t

ρ gð Þ
� 	−M t

ρ hð Þ
� 	−M

:

ð60Þ

One the other hand, for α ∈ ð0, 1Þ,

~D
L
α,t g, hð Þ

��� ��� ≤ tα
ð∞
0

ðs
0

t + rð Þ−Q−1

1 + g−1hj j2/ t + rð Þ2
� �� � Q+αð Þ/2

� t + r
ρ gð Þ
� 	−M t + r

ρ hð Þ
� 	−M drds

s1+α

≤
tαρ gð ÞMρ hð ÞM

g−1hj jQ+α
ð∞
0

ðs
0
t + rð Þα−2M−1dr

ds
s1+α

≤
tαρ gð ÞMρ hð ÞM

g−1hj jQ+α
ð∞
0
r−α t + rð Þα−2M−1dr

≤ tα g−1h
�� ��−Q−α t

ρ gð Þ
� 	−M t

ρ hð Þ
� 	−M

:

ð61Þ

Case 2. α ≥ 1. Since, for α ∈ ð0, 1Þ, tαLα/2e−t ffiffiLp
= tα
Ð∞
0
Ð s
0

∂re−ðt+rÞ
ffiffi
L

p ðdrds/s1+αÞ: We can get

tαLα/2e−t
ffiffi
L

p
= tαL α½ �/2L α− α½ �ð Þ/2e−t

ffiffi
L

p
: ð62Þ

Setting β = α − ½α�, we obtain

tαLα/2e−t
ffiffi
L

p
= tαL α½ �/2Lβ/2e−t

ffiffi
L

p
= tαL α½ �/2

ð∞
0

ðs
0
∂re

− t+rð Þ ffiffiLp drds

s1+β
:

ð63Þ

Since m = ½α� + 1,

tαLα/2e−t
ffiffi
L

p
= tαL α½ �/2

ð∞
0

ðs
0
−Lð Þ1/2e− t+rð Þ ffiffiLp drds

s1+α− α½ �

= tα
ð∞
0

ðs
0
−Lð Þm/2e− t+rð Þ ffiffiLp drds

s2+α−m

= tα
ð∞
0

ðs
0
DL
t+r,m g, hð Þ dr

t + rð Þm
ds

s2+α−m
:

ð64Þ

It follows from Proposition 13 that

~D
L
α,t g, hð Þ

��� ��� ≤ tα
ð∞
0

ðs
0
t + rð Þ−Q t + r

ρ gð Þ
� 	−M t + r

ρ hð Þ
� 	−M dr

t + rð Þm
ds

s2+α−m

≤ tαρ gð ÞMρ hð ÞM
ð∞
0

ðs
0
t + rð Þ−Q−2M−mdr

ds
s2+α−m

≤ tαρ gð ÞMρ hð ÞM
ð∞
0

ð∞
r

ds
s2+α−m

� 	
t + rð Þ−Q−2M−mdr

≤ t−Q 1 + t
ρ gð Þ

� 	−M

1 + t
ρ hð Þ

� 	−M

:

ð65Þ
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Also, noticing that α <m, we obtain

~D
L
α,t g, hð Þ

��� ��� ≤ tα
ð∞
0

ðs
0

t + rð Þ−Q−m

1 + g−1hj j2/ t + rð Þ2
� �� � Q+αð Þ/2

� t + r
ρ gð Þ
� 	−M t + r

ρ hð Þ
� 	−M

dr
ds

s2+α−m

≤
tαρ gð ÞMρ hð ÞM

g−1hj jQ+α
ð∞
0

ðs
0
t + rð Þα−2M−mdr

ds
s2+α−m

≤
tαρ gð ÞMρ hð ÞM

g−1hj jQ+α
ð∞
0
rm−α−1 t + rð Þα−2M−mdr

≤
tα

g−1hj jQ+α
1 + t

ρ gð Þ
� 	−M

1 + t
ρ hð Þ

� 	−M

:

ð66Þ

(ii) We first consider the case α ∈ ð0, 1Þ. Since

~D
L
α,t g, hð Þ = tα

ð∞
0

ðs
0
DL
t+r,1 g, hð Þ dr

t + r
ds
s1+α

, ð67Þ

we apply (ii) of Proposition 13 to obtain

~D
L
α,t gω, hð Þ − ~D

L
α,t g, hð Þ

��� ���
≤ tα
ð∞
0

ðs
0

∣ω ∣
t + r

� 	δ′ t + r

t + rð Þ2 + g−1hj j2
� � Q+1ð Þ/2

× 1 + t + r
ρ gð Þ

� 	−M

1 + t + r
ρ hð Þ

� 	−M dr
t + r

ds
s1+α

:

ð68Þ

One the one hand, we have

~D
L
α,t gω, hð Þ − ~D

L
α,t g, hð Þ

��� ���
≤ tα
ð∞
0

ðs
0

∣ω ∣
t + r

� 	δ′ t + r
ρ gð Þ
� 	−M t + r

ρ hð Þ
� 	−M dr

t + rð ÞQ+1
ds
s1+α

≤ tα ωj jδ′ρ gð ÞMρ hð ÞM
ð∞
0

ð∞
r

ds
s1+α

� 	
t + rð Þ−δ′−Q−2M−1dr

≤ t−Q
∣ω ∣
t

� 	δ′
1 + t

ρ gð Þ
� 	−M

1 + t
ρ hð Þ

� 	−M
:

ð69Þ

On the other hand, since α < 1, it holds

~D
L
α,t gω, hð Þ − ~D

L
α,t g, hð Þ

��� ���
≤ tα
ð∞
0

ðs
0

∣ω ∣
t + r

� 	δ′ t + rð Þ−Q

1 + g−1hj j2/ t + rð Þ2
� �� � Q+αð Þ/2

� t + r
ρ gð Þ
� 	−M t + r

ρ hð Þ
� 	−M dr

t + r
ds
s1+α

≤
tα ωj jδ′ρ gð ÞMρ hð ÞM

g−1hj jQ+α
ð∞
0

ðs
0
t + rð Þ−δ′+α−2M−1dr

ds
s1+α

≤
tα ωj jδ′ρ gð ÞMρ hð ÞM

g−1hj jQ+α
ð∞
0
r−α t + rð Þ−δ′+α−2M−1dr

≤
tα

g−1hj jQ+α
∣ω ∣
t

� 	δ′
1 + t

ρ gð Þ
� 	−M

1 + t
ρ hð Þ

� 	−M

:

ð70Þ

For α ≥ 1, noticing

~D
L
α,t gω, hð Þ − ~D

L
α,t g, hð Þ = tα

ð∞
0

ðs
0

� DL
t+r,m gω, hð Þ −DL

t+r,m g, hð Þ� � dr
t + rð Þm

ds
s2+α−m

,

ð71Þ

we can use (ii) of Proposition 13 to get

~D
L
α,t gω, hð Þ − ~D

L
α,t g, hð Þ

��� ���
≤ tα
ð∞
0

ðs
0

∣ω ∣
t + r

� 	δ′ t + rð Þm

t + rð Þ2 + g−1hj j2
� � Q+mð Þ/2

× 1 + t + r
ρ gð Þ

� 	−M

1 + t + r
ρ hð Þ

� 	−M dr
t + rð Þm

ds
s2+α−m

:

ð72Þ

The rest of the proof can be completed by the procedure
of the case α > 1 in (i), so we omit the details.

(iii) For α ∈ ð0, 1Þ, it follows from (iii) of Proposition 13
that

ð
ℍn

~D
L
α,t g, hð Þdh

���� ���� ≤ tα
ð∞
0

ðs
0

ð
ℍn

DL
t+r,1 g, hð Þdh

���� ���� dr
t + r

ds
s1+α

≤ tα
ð∞
0

ðs
0

t + r
ρ gð Þ
� 	δ′ 1

1 + t + r/ρ gð Þð Þð ÞM
dr
t + r

ds
s1+α

:

ð73Þ
If t/ρðgÞ ≥ 1, then
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ð
ℍn

~D
L
α,t g, hð Þdh ≤ tα

ð∞
0

ðs
0

t + r
ρ gð Þ
� 	δ′−M dr

t + r
ds
s1+α

≤ tαρ gð ÞM−δ′
ð∞
0

ð∞
r

ds
s1+α

� 	
t + rð Þδ′−M−1dr

≤
t/ρ gð Þð Þδ′
t/ρ gð Þð ÞM

≤ C
t/ρ gð Þð Þδ′

1 + t/ρ gð Þð ÞM
:

ð74Þ

If t/ρðgÞ < 1, then

ð
ℍn

~D
L
α,t g, hð Þdh ≤ tα

ð∞
0

t + r
ρ gð Þ
� 	δ′ 1

1 + t + r/ρ gð Þð Þð ÞM
dr

rα t + rð Þ

≤ tαρ gð Þ−δ′
ð∞
0

t + rð Þδ′−1r−αdr ≤ t
ρ gð Þ
� 	δ′

≤ C
t/ρ gð Þð Þδ′

1 + t/ρ gð Þð ÞM
:

ð75Þ

For α ≥ 1, using (iii) of Proposition 13 again, we have

ð
ℍn

~D
L
α,t g, hð Þdh

���� ���� ≤ tα
ð∞
0

ðs
0

ð
ℍn

DL
t+r,m g, hð Þdh

���� ���� dr
t + rð Þm

ds
s2+α−m

≤ tα
ð∞
0

ðs
0

t + r
ρ gð Þ
� 	δ′

� 1
1 + t + r/ρ gð Þð Þð ÞM

dr
t + rð Þm

ds
s2+α−m

:

ð76Þ

If t/ρðgÞ ≥ 1, we obtain

ð
ℍn

~D
L
α,t g, hð Þdh ≤ tα

ð∞
0

ðs
0

t + r
ρ gð Þ
� 	δ′−M dr

t + rð Þm
ds

s2+α−m

≤ tαρ gð ÞM−δ′
ð∞
0

ð∞
r

ds
s2+α−m

� 	
t + rð Þδ′−M−mdr

≤
t/ρ gð Þð Þδ′
t/ρ gð Þð ÞM

≤ C
t/ρ gð Þð Þδ′

1 + t/ρ gð Þð ÞM
:

ð77Þ

If t/ρðgÞ < 1, similarly, we can get

ð
ℍn

~D
L
α,t g, hð Þdh ≤ tα

ð∞
0

t + r
ρ gð Þ
� 	δ′ 1

1 + t + r/ρ gð Þð Þð ÞM
dr

rα+1−m t + rð Þm

≤ tαρ gð Þ−δ′
ð∞
0

t + rð Þδ′−mrm−α−1dr ≤
t

ρ gð Þ
� 	δ′

≤ C
t/ρ gð Þð Þδ′

1 + t/ρ gð Þð ÞM
:

ð78Þ

The following result can be obtained similar to Lemma 11.

Lemma 15. Let α > 0. The operators tα∂αt e
−t
ffiffi
L

p
and tαLα/2e−t

ffiffi
L

p

are equivalent.

Proof. For α ∈ ð0, 1Þ, we have

tαLα/2e−t
ffiffi
L

p
= tα
ð∞
0

ðs
0
∂re

− t+rð Þ ffiffiLp drds
s1+α

= tα
ð∞
0

ð∞
r

ds
s1+α

� 	
∂re

− t+rð Þ ffiffiLp
dr

= tα
ð∞
0
r−α∂re

− t+rð Þ ffiffiLp
dr

= tα∂αt e
−t
ffiffi
L

p
:

ð79Þ

For α > 1, let α − ½α� = β. Noticing m = ½α� + 1, we obtain

tαLα/2e−t
ffiffi
L

p
= tαL α½ �/2Lβ/2e−t

ffiffi
L

p

= tαL α½ �/2
ð∞
0

−
ffiffiffi
L

p� �
e− s+tð Þ ffiffiLp

s1−β
ds
s

= tα
ð∞
0

−
ffiffiffi
L

p� � α½ �+1
e− t+sð Þ ffiffiLp

s1−α+ α½ � ds
s

= tα
ð∞
0

−
ffiffiffi
L

p� �m
e− t+sð Þ ffiffiLp

sm−α ds
s

= tα∂αt e
−t
ffiffi
L

p
:

ð80Þ

Define an operator DL
α,tð f Þ = tα∂αt P

L
t : Denote by D

L
α,tð·, · Þ

the integral kernel of DL
α,t . The following estimates are imme-

diate corollaries of Proposition 14 and Lemma 15.

Corollary 16. Let α > 0.

(i) For every M, there is a constant CM such that

DL
α,t g, hð Þ�� �� ≤ CMt

α

t2 + g−1hj j2
� � Q+αð Þ/2 1 + t

ρ gð Þ +
t

ρ hð Þ
� 	−M

: ð81Þ

(ii) Assume that 0 < δ′ ≤ δ with 0 < δ′ < α. For anyM > 0
there exists a constant CM > 0 such that for all ∣ω ∣ ≤t

DL
α,t gω, hð Þ −DL

α,tP
L
t g, hð Þ�� �� ≤ CMt

α

t2 + g−1hj j2
� � Q+αð Þ/2

∣ω ∣
t

� 	δ′

� 1 + t
ρ gð Þ + t

ρ hð Þ
� 	−M

:

ð82Þ

(iii) For any M > 0, there exists a constant CM > 0 such
that
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ð∞
0
DL
α,t g, hð Þdh

���� ���� ≤ CM t/ρ gð Þð Þδ′
1 + t/ρ gð Þð ÞM

: ð83Þ

3. Square Function Characterizations of Hardy-
Sobolev Type Spaces

3.1. Fractional Square Functions Characterizations of
H1

LðℍnÞ. Define

gP,α fð Þ gð Þ≔
ð∞
0

DL
α,t f gð Þ�� ��2 dt

t

� 	1/2
;

SP,α fð Þ gð Þ≔
ð∞
0

ð
B g,tð Þ

DL
α,t f gð Þ�� ��2 dhdt

tQ+1

 !1/2

;

g∗P,α,λ fð Þ gð Þ≔
ð∞
0

ð
ℍn

t
t+∣g−1h ∣

� 	2λ
DL
α,t f gð Þ�� ��2 dhdt

tQ+1

 !1/2

:

8>>>>>>>>>>><>>>>>>>>>>>:
ð84Þ

In this section, we will characterize the Hardy space H1
L

ðℍnÞ by the fractional square functions defined by (9) and
(84). Now, we first prove the following reproducing formulas.

Lemma 17. Let α > 0.

(i) The operator QL
α,t defines an isometry from L2ðℍnÞ

into L2ðUn, dgdt/tÞ. Moreover, in the sense of L2ðℍn

Þ,

f = Cαlimε→0
lim
N→∞

ðN
ε

QL
α,t


 �2
f
dt
t
: ð85Þ

(ii) The operator DL
α,t defines an isometry from L2ðℍnÞ

into L2ðUn, dgdt/tÞ. Moreover, in the sense of
L2ðℍnÞ,

f = Cαlimε→0
lim
N→∞

ðN
ε

DL
α,t


 �2
f
dt
t
: ð86Þ

Proof. The proofs of (i) and (ii) are standard and can be
deduced from the spectral techniques. For completeness, we
give the proof of (i) and omit the details of the proof of (ii).
Since e−t

2L = Ð∞0 e−t
2λdEðλÞ, we have

t2
d
ds

e−sL
����
s=t2

= −t2Le−t
2L = −

ð∞
0
t2λe−t

2λdE λð Þ: ð87Þ

Thus, for all f ∈ L2ðℍnÞ, we get

gH,α f
�� ��2

2 =
ð
ℍn

ð∞
0

QL
α,t fð Þ gð Þ�� ��2 dtdg

t

=
ð∞
0

QL
α,t


 �2
f , f

D E dt
t

=
ð∞
0

ð∞
0
t4αλ2αe−2t

2λ dt
t

� �
dEf ,f λð Þ

= Cα fk k22:

ð88Þ

For the second part, it suffices to show that, for every pair
of sequences nk →∞& εk → 0,

lim
k→∞

ðnk+m
nk

QL
α,t f


 �2 dt
t
= lim

k→∞

ðεk
εk+m

QL
α,t f


 �2 dt
t
= 0∀m ≥ 1:

ð89Þ

Indeed, if (89) holds, we can find h ∈ L2ðℍnÞ such that

limk→∞
Ð nk
εk
ðQL

α,t f Þ2ðdt/tÞ = h. Therefore, it follows from a

polarized version of the first part that for g ∈ L2ðℍnÞ,

h, gh i = lim
k→∞

ðnk
εk

QL
α,t f ,QL

α,tg
� � dt

t

=
ð∞
0

QL
α,t f ,QL

α,tg
� � dt

t

= Cα f , gh i,

ð90Þ

which implies h = Cα f . To prove (89), we use again the func-
tional calculus to deduce that

ðnk+m
nk

QL
α,t f


 �2 dt
t

�����
�����
2

2

≤
ð∞
0

ðnk+m
nk

t4αλ2αe−2t
2λ dt

t

�����
�����
2

dEf ,f λð Þ:

ð91Þ

Computing the integral inside one yields
Ð∞
0 ð1 + 2λn2kÞ

e−2λn
2
kdEf ,f ðλÞasnk →∞, which by dominated convergence

tends to 0. Observe that the last step makes use of the fact that
0 is not an eigenvalue of L because VðgÞ > 0 for almost every
g, and hLf , f i ≥ hVf , f i > 0 unless f ≡ 0. One proceeds simi-
larly when εk → 0.

The following boundedness of square functions can be
deduced from the spectral theorem immediately.

Lemma 18. Let α > 0 and λ >Q/2.

(i) The operators gH,α, GH,α and g∗H,α,λ are bounded on
L2ðℍnÞ. Moreover, there exist constants C, C1 and
C2 such that kgH,α f kL2 = Ck f kL2 , kGH,α f kL2 ≤ C1

k f kL2 , kg∗H,α,λ f kL2 ≤ C2k f kL2
(ii) The operators gP,α, GP,α and g∗P,α,λ are bounded on

L2ðℍnÞ. Moreover, there exist constants C, C1 and
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C2 such that kgP,α f kL2 = Ck f kL2 , kGP,α f kL2 ≤ C1

k f kL2 , kg∗P,α,λ f kL2 ≤ C2k f kL2

Proof. We only prove (i), and (ii) can be done similarly. For
gH,α, using the reproducing formula on L2ðℍnÞ, we can get

gH,α f
�� ��2

L2
=
ð∞
0

QL
α,t f ,Qα

t f
� � dt

t

=
ð∞
0

QL
α,t


 �2
f , f

D E dt
t

=
ð∞
0

e−iπα
ð∞
0
t4αλ2αe−2t

2λ dt
t

� �
dEf ,f λð Þ

= C fk k2L2 :

ð92Þ

For GH,α, we have

GH,α fð Þ�� ��2
L2
≤
ð∞
0

ð
ℍn

1
tQ

ð
ℍn

χΓ gð Þ h, tð Þdg
� �

QL
α,t f gð Þ�� ��2 dhdt

t

≤
ð∞
0

ð
ℍn

QL
α,t f gð Þ�� ��2 dhdt

t
= gH,α f
�� ��2

L2

≤ C1 fk k2L2 :
ð93Þ

For g∗H,α,λ, the relation: g∗H,α,λ f ðgÞ ≤ CGH,αð f ÞðgÞ indi-
cates that kg∗H,α,λ f kL2 ≤ C2k f kL2 :

Proposition 19. Let α > 0 and λ >Q/2.

(i) There exists a constant C such that for any function f
which is a linear combination of H1

L -atoms

GH,α f
�� ��

L1
≤ C fk kH1

L
, gH,α f
�� ��

L1
≤ C fk kH1

L
, g∗H,α,λ
�� ��

L1
≤ C fk kH1

L
:

ð94Þ

(ii) There exists a constant C such that for any function f
which is a linear combination of H1

L-atoms

GP,α f
�� ��

L1
≤ C fk kH1

L
, gP,α f
�� ��

L1
≤ C fk kH1

L
, g∗P,α,λ
�� ��

L1
≤ C fk kH1

L
:

ð95Þ

Proof. We only prove (i), and (ii) can be dealt with similarly.
Firstly, by Lemma 18, we can get kgH,αð f ÞkL2 = Ck f kL2 . For
f ∈H1

LðℍnÞ, it holds an atomic decomposition: f =∑ j cjaj.
Then,

GH,α fð Þ gð Þ =
ð∞
0

ð
B g,tð Þ

〠
j

cj Q
L
α,taj


 �
hð Þ

�����
�����
2
dhdt

tQ+1

 !1/2

≤〠
j

∣cj∣GH,α aj

 �

gð Þ:

ð96Þ

So we only need to verify that GH,αðaÞ is in L1ðℍnÞ for
any H1

L-atom a uniformly. By Lemma 18,

GH,α að Þ�� ��2
L2
≤
ð∞
0

ð
ℍn

QL
α,ta hð Þ�� ��2 dhdt

t

= gH,α fð Þ�� ��2
L2
≤ C ak k2L2

≤ C B g0, rð Þj j−1:

ð97Þ

Write kGH,αðaÞkL1 = A + B, where A =
Ð
Bðg0,4rÞ jGH,αaðg

Þjdg and B = Ð Bcðg0,4rÞ jGH,αaðgÞjdg: For A, it is clear that

A ≤ B g0, 4rð Þj j1/2
ð
B g0,4rð Þ

GH,αa gð Þ�� ��2dg !1/2

≤ B g0, 4rð Þj j1/2C B g0, rð Þj j−1 ≤ C:

ð98Þ

For the estimate of B, the following two cases are
considered.

Case 1. r < ρðg0Þ/4. By the cancelation property of the atom a
, we have GH,αaðgÞ ≤ B1 + B2, where

B1 ≔
ð∣g−1g0∣/2
0

ð
∣g−1h∣<t

ð
B g0,rð Þ

QL
α,t h, zð Þ −QL

α,t h, g0j j�� �� a zð Þj jdz
 !2

dhdt

tQ+1

 !1/2

;

B2 ≔
ð∞
∣g−1g0∣/2

ð
∣g−1h∣<t

ð
B g0,rð Þ

QL
α,t h, zð Þ −QL

α,t h, g0j j�� �� a zð Þj jdz
 !2

dhdt

tQ+1

 !1/2

:

8>>>>>><>>>>>>:
ð99Þ

For B1, since 0 < t < jg−1g0j/2 and jg−1hj < t, we can get
jh−1g0j ~ jg−1g0j. For z ∈ Bðg0, rÞ and g ∈ Bcðg0, 4rÞ, we have
jg−1

0 zj < r ≤ Cjg−10 hj/4. Using (ii) of Corollary 12 and the
symmetry, we can get

B1 ≤
ð∣g−1g0∣/2
0

ð
∣g−1h∣<t

ð
B g0,rð Þ

CM
tα

t+∣g−10 h ∣

 �Q+α

  

� ∣z−1g0 ∣
t

� 	δ′
∣ a zð Þ ∣ dz

!2
dhdt

tQ+1

!1/2

≤ CM

ð∣g−1g0∣/2
0

ð
∣g−1h∣<t

t2α

t+∣g−10 g ∣

 �2 Q+αð Þ

r
t

� �2δ′ dhdt
tQ+1

 !1/2

≤ CM
rδ′

g−1
0 g

�� ��Q+α
ð∣g−1g0∣/2
0

1
t2δ′−2α+1

dt

 !1/2

≤
CMr

δ′

g−10 g
�� ��Q+δ′ :

ð100Þ

12 Journal of Function Spaces



The above estimate for B1 implies that

ð
Bc g0,4rð Þ

B1dg ≤ CM 〠
∞

k=2

ð
2kr≤∣g−1g0∣<2k+1r

rδ′dg

g−1g0j jQ+δ′

≤ CM 〠
∞

k=2

rδ′ 2k+1r

 �Q
2kr
�� ��Q+δ′ ≤ C:

ð101Þ

Next, we estimate B2. Since jz−1g0j ≤ r < jg−1g0j/2 ≤ t, the
estimate

B2 ≤ CM

ð∞
∣g−1g0∣/2

ð
∣g−1h∣<t

ð
B g0,rð Þ

tα

t+∣g−1
0 h ∣


 �Q+α
  

� ∣z−1g0 ∣
t

� 	δ′
∣ a zð Þ ∣ dz

!2
dhdt

tQ+1

!1/2

≤ CM

ð∞
∣g−1g0∣/2

ð
∣g−1h∣<t

r
t

� �2δ′ t2α

t+∣g−1
0 h ∣


 �2 Q+αð Þ
dhdt

tQ+1

 !1/2

≤
CM

g−1g0j jQ
rδ′

g−1g0j jδ′
ð102Þ

implies that

ð
Bc g0,4rð Þ

B2dg ≤ CM

ð
∣g−1g0∣≥4r

rδ′

g−1g0j jQ+δ′
dg ≤ C: ð103Þ

Case 2. ρðg0Þ/4 ≤ r < ρðg0Þ. In this case, we write
ðGH,αaðgÞÞ2 =D1 +D2 +D3, where

D1 ≔
ðr/2
0

ð
∣g−1h∣<t

QL
α,ta hð Þ�� ��2 dhdt

tQ+1
;

D2 ≔
ð∣g−1g0∣/4
r/2

ð
∣g−1h∣<t

QL
α,ta hð Þ�� ��2 dhdt

tQ+1
;

D3 ≔
ð∞
∣g−1g0∣/4

ð
∣g−1h∣<t

QL
α,ta hð Þ�� ��2 dhdt

tQ+1
:

8>>>>>>>>>><>>>>>>>>>>:
ð104Þ

We first estimate the term D1. Since jg−1g0j > 4r, jg−10 zj
< r and jg−1hj < t < r/2, jh−1g0j > 7r/2. For z ∈ Bðg0, rÞ, jz−1
g0j < r < jg−1g0j/4. Using the triangle inequality, we apply
(i) of Corollary 12 to estimate D1 as follows.

D1 ≤ CM

ðr/2
0

ð
∣g−1h∣<t

ð
B g0,rð Þ

tα

t+∣g−1h ∣ð ÞQ+α
∣ a zð Þ ∣ dz

 !2
dhdt

tQ+1

≤ CM

ðr/2
0

ð
∣g−1h∣<t

t2α

t+∣g−1g0 ∣ð Þ2 Q+αð Þ
dhdt

tQ+1

≤
CM

g−1g0j j2Q+2α
ðr/2
0

t2α−1dt ≤
CMr

2α

g−1g0j j2Q+2α
:

ð105Þ

For D2, since z ∈ Bðg0, rÞ, ∣z−1g0 ∣ <r < ρðg0Þ, then ρðzÞ
~ ρðg0Þ ~ r. We have

D2 ≤ CM

ð∣g−1g0∣/4
r/2

ð
∣g−1h∣<t

�
ð
B g0,rð Þ

tα

t+∣g−1h ∣ð ÞQ+α
∣a zð Þ ∣ dz

1 + t/ρ hð Þð Þ + t/ρ zð Þð Þð ÞM
 !2

dhdt

tQ+1
,

≤ CM

ð∣g−1g0∣/4
r/2

ð
∣g−1h∣<t

t2α

t+∣g−1h ∣ð Þ2 Q+αð Þ 1 + t
ρ g0ð Þ

� 	−2M dhdt

tQ+1

≤ CM

ð∣g−1g0∣/4
r/2

r
t

� �2M t2α−1

g−1g0j j2Q+2α
dt ≤

CMr
2M

g−1g0j j2Q+2M
:

ð106Þ

At last, we estimate D3. For ∣z−1g0 ∣ <r < ρðg0Þ, we have
ρðg0Þ ~ ρðzÞ. Then, we can get

D3 ≤ CM

ð∞
∣g−1g0∣/4

ð
∣g−1h∣<t

�
ð
B g0,rð Þ

tα

t+∣h−1z ∣

 �Q+α ∣a zð Þ ∣ dz

1 + t/ρ hð Þð Þ + t/ρ zð Þð Þð ÞM
 !2

dhdt

tQ+1

≤ CM

ð∞
∣g−1g0∣/4

ð
∣g−1h∣<t

�
ð
B g0,rð Þ

1 + t
ρ g0ð Þ

� 	−M 1
t+∣h−1z ∣

 �Q ∣ a zð Þ ∣ dz

 !2
dhdt

tQ+1

≤ CM
r2M

g−1g0j j2Q
ð∞
∣g−1g0∣/4

1
t2M+1 dt ≤

CMr
2M

g−1g0j j2Q+2M
:

ð107Þ

The above estimates for Di, i = 1, 2, 3, indicate thatð
Bc
GH,αa gð Þdg ≤ 〠

∞

k=2

ð
2kr≤∣g−1g0 ∣<2k+1r

� D1/2
1 gð Þ +D1/2

2 gð Þ +D1/2
3 gð Þ� �

dg ≤ C:

ð108Þ

Now, we give the following characterizations of H1
LðℍnÞ.

Theorem 20. Let α ≥ 1/2 and λ >Q/2. The following asser-
tions are equivalent:

(i) f ∈H1
LðℍnÞ;

(ii) f ∈ L1ðℍnÞ and gH,αð f Þ ∈ L1ðℍnÞ;
(iii) f ∈ L1ðℍnÞ and GH,αð f Þ ∈ L1ðℍnÞ;
(iv) f ∈ L1ðℍnÞ and g∗H,α,λð f Þ ∈ L1ðℍnÞ

Moreover, for every f ∈H1
LðℍnÞ,

fk kH1
L
~ fk k1 + gH,α fð Þ�� ��

1
~ fk k1 + GH,α fð Þ�� ��

1

~ fk k1 + g∗H,α,λ fð Þ�� ��
1
:

ð109Þ
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Proof. By Proposition 19, for f ∈H1
LðℍnÞ, we know that gH,α

ð f Þ ∈ L1ðℍnÞ, GH,αð f Þ ∈ L1ðℍnÞ, and g∗H,α,λð f Þ ∈ L1ðℍnÞ,
respectively.

For the reverse, we first show that for GH,αð f Þ ∈ L1ðℍnÞ,
f ∈H1

LðℍnÞ. Assume that f ∈ L1ðℍnÞ ∩ L2ðℍnÞ. When GH,α
ð f Þ ∈ L1ðℍnÞ, we can see that

ð
ℍn

GH,α f gð Þ�� ��dg =
ð
ℍn

ð∞
0

ð
B g,tð Þ

QL
α,t f hð Þ�� ��2 dhdt

tQ+1

 !1/2

dg,

ð110Þ

which implies that QL
α,t f ðgÞ ∈ T1

2, where Q
L
α,t f ðgÞ≔

Ð
ℍn QL

α,t
ðg, hÞf ðhÞdh. By Proposition 8, QL

α,t f ðgÞ = Σkλkakðg, tÞ,
where akð·, · Þ are T1

2-atoms and Σk ∣ λk ∣ <∞. Assume that
the atom að·, · Þ is supported on B̂ðg0, rÞ. By Lemma 17,

f gð Þ = C
ð∞
0
Qα

t 〠
∞

k=1
λkak g, tð Þ

 !
dt
t
≔ 〠

∞

k=1
λkTk gð Þ, ð111Þ

where TkðgÞ =
Ð∞
0 QL

α,takðg, tÞðdt/tÞ. For simplicity, we
denote TkðgÞ by TðgÞ for k = 1, 2,⋯. Write

sup
t>0

e−tLT gð Þ�� ������ ����
L1
≤ sup

t>0
e−tLT gð Þ�� ��� 	

χB∗

���� ����
L1

+ sup
t>0

e−tLT gð Þ�� ��� 	
χ B∗ð Þc

���� ����
L1

� = I1 + I2,

ð112Þ

where B∗ = Bðg0, 2rÞ. For I1, we use Hölder’s inequality to
deduce that

Tk kL2 = sup
∥ϕ∥2≤1

ð
ℍn

ð∞
0
QL

α,ta g, tð Þ dt
t

� 	
�ϕ gð Þdg

≤ sup
∥ϕ∥2≤1

ð∞
0

ð
ℍn

a g, tð Þj j2 dgdt
t

� 	1/2

�
ð∞
0

ð
ℍn

QL
α,t�ϕ gð Þ�� ��2 dgdt

t

� 	1/2

≤ sup
∥ϕ∥2≤1

Bj j−1/2 ϕk k2 ≤ Bj j−1/2,

ð113Þ

which gives I1 ≤ jB∗j1/2jBj−1/2 ≤ C.
Now, we deal with I2. For s > 0, by functional calculus

and Proposition 2.9, we have

e−sL
ð∞
0
QL

α,ta g, tð Þ dt
t

� 	���� ���� = ð∞
0

ð∞
0
t2α∂sK

L
s+t+λ

��
s=t2a g, tð Þλ1−α dλ

λ

dt
t

���� ����
=
ð∞
0
t2α ∂αs K

L
s+t

�� ��
s=t2a g, tð Þ dt

t

���� ����
≤ C
ð∞
0

tα a h, tð Þj j
s + t2ð Þ+∣g−1h ∣ð ÞQ+α

dhdt
t

:

ð114Þ

When h ∈ Bðg0, rÞ and g ∈ ðB∗Þc, we have ∣g−1h ∣ ~ ∣ g−1
g0 ∣ , and

e−sL
ð∞
0
QL

α,ta g, tð Þ dt
t

� 	���� ���� ≤ C g−1g0
�� ��− Q+α/2ð Þ

�
ðr
0

ð
B
t2α−1dhdt

� 	1/2

�
ðr
0

ð
B
a h, tð Þj j2 dhdt

t

� 	1/2

≤ C Bj j−1/2 g−1g0
�� ��− Q+αð Þ

�
ðr
0

ð
B
t2α−1dhdt

� 	1/2

≤ Crα g−1g0
�� ��− Q+αð Þ

:

ð115Þ

Finally, we get

I2 ≤
ð
Bc g0,rð Þ

rα

g−1g0j jQ+α
dg ≤ C: ð116Þ

When f ∈H1
LðℍnÞ, let ~GH,α be the bounded extension of

GH,αð f Þ from L2 ∩H1
LðℍnÞ to H1

LðℍnÞ. Since L2 ∩H1
LðℍnÞ

is dense in H1
LðℍnÞ, there exists a sequence f f ng ⊂ L2 ∩H1

L
ðℍnÞ such that f n → f as n→∞ in H1

LðℍnÞ. By Corollary
12, we conclude that GH,αð f nÞ→GH,αð f Þ as n→∞. By

the definition of ~GH,α, we know that GH,αð f nÞ→ ~GH,αð f Þ
as n→∞. Therefore, GH,αð f Þ = ~GH,αð f Þ for f ∈H1

LðℍnÞ,
which gives

fk kH1
L
= lim

n→∞
f n

��� ���
H1

L

≤ lim
n→∞

GH,α f nð Þ�� ��
L1

= ~GH,α fð Þ
��� ���

L1
= GH,α fð Þ�� ��

L1
:

ð117Þ

For the Littlewood-Paley g-function, it is sufficient to
prove kGH,αð f ÞkL1 ≤ CkgH,αð f ÞkL1 . For β > 0, we define
~GH,βð f Þ by

~GH,β fð Þ gð Þ =
ð∞
0

ð
∣g−1h∣<βt

QL
α,t f hð Þ

�����
2
dhdt

tQ+1

 !1/2

: ð118Þ

Similarly, we can prove that f ∈H1
LðℍnÞ if and only if

~GH,βð f Þ ∈ L1ðℍnÞ and f ∈ L1ðℍnÞ. Moreover, k f kH1
L
~

k ~GH,βð f ÞkL1 .
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Let FðgÞðtÞ≔ ð∂αs e−sLjs=t2 f ÞðgÞ and Vðg, sÞ≔ e−sLFðgÞ.
Then Vðg, sÞðtÞ = ð∂αr e−ðs+rÞLjr=t2 f ÞðgÞ. Therefore,ð∞
0

V g, sð Þ tð Þj j2 dt
t1−4α

=
ð∞
0

∂αr e
− s+rð ÞL

���
r=t2

f
� �

gð Þ
��� ���2 dt

t1−4α

=
ð∞ffiffi

s
p ∂αr e

−rL��
r=t2 f

� �
gð Þ

��� ���2 tdt

t2 − sð Þ1−2α
:

ð119Þ

When α ≥ 1/2, we have ðt2 − sÞ2α−1 ≤ t4α−1. Hence,

sup
s>0

ð∞
0

V g, sð Þ tð Þj j2t4α−1dt ≤
ð∞
0

∂αr e
−rL��

r=t2 f
� �

gð Þ
��� ���2t4α−1dt

= gH,α f gð Þð Þ2:
ð120Þ

Let X = L2ðð0,∞Þ, t4α−1dtÞ. Then, sups>0ke−sLFðgÞkX ≤
gH,α f ðgÞ ∈ L1ðℍnÞ. Therefore, F ∈H1

XðℍnÞ, where H1
XðℍnÞ

can be seen as a vector-valued Hardy space (cf. [30]). This

shows that ~G
X
2 FðgÞ ∈ L1ðℍnÞ, where

~G
X
2 F gð Þ =

ð∞
0

ð
∣g−1h∣<2t

QL
α,t F hð Þ�� ��2

X
dhdt

tQ+1

 !1/2

: ð121Þ

We can assume that 1/2 ≤ α < 1. Then, the identity (6)
gives

∂αt K
L
t

��
t=s2

� �
∂αs K

L
s

��
s=t2

� �
= C
ð∞
0

ð∞
0

∂aK
L
a+t
��
t=s2

� �
� ∂bK

L
s+b
��
s=t2

� �
a−αb−αdadb

= C
ð∞
0

ð∞
0

∂2aK
L
a+b+s+t

��
s=t2, t=s2

� �
a−αb−αdadb

= C
ð∞
0

∂2λK
L
λ+s+t

��
s=t2, t=s2

� �
λ1−2αdλ:

ð122Þ

When α ≥ 1/2, we get ∂αt KL
t jt=s2∂αs KL

s js=t2 = ∂2αt KL
s+tjs=t2, t=s2

. Via integration by substitution, we can change the orders of
integration to obtain

~G
X
2 F gð Þ

h i2
=
ð∞
0

ð
∣g−1h∣<2t

ð∞
0

t2α∂2αs e−sL
��
s=t2F hð Þ sð Þ�� ��2 s4α−1dsdhdt

tQ+1

≥
ð∞
0

ð ffiffi3p
t/2

0

ð
∣g−1h∣<2

ffiffiffiffiffiffiffiffi
t2−s2

p ∂2αs e−sL
��
s=t2 f hð Þ�� ��2 ts4α−1dhdtds

t2 − s2ð Þ1+Q/2−2α

≥
ð∞
0

ð ffiffi3p
t/2

0

ð
∣g−1h∣<t

∂2αs e−sL
��
s=t2 f hð Þ�� ��2t4α−1−Qs4α−1dhdsdt

= C
ð∞
0

ð
∣g−1h∣<t

t4α∂2αs e−sL
��
s=t2 f hð Þ�� ��2 dhdt

tQ+1

= C ~G
1
L f gð Þ

� �2
,

ð123Þ

which implies GH,αð f Þ ∈ L1ðℍnÞ, and therefore, f ∈H1
LðℍnÞ.

Since ðt/ð∣g−1h∣+tÞÞ2λ > 2−2λ in the cone ΓðgÞ = fðh, tÞ: ∣ g−1
h∣<tg,wehave

GH,α fð Þ gð Þ ≤
ð
Γ gð Þ

22λ t
∣g−1h∣+t

� 	2λ
Qα

t f hð Þj j2 dhdt
tQ+1

" #1/2
≤ 2λg∗H,α,λ fð Þ gð Þ:

ð124Þ

This completes theproofofTheorem20.

Theorem 21. Let α ≥ 1/2 and λ >Q/2. The following asser-
tions are equivalent:

(i) f ∈H1
LðℍnÞ

(ii) f ∈ L1ðℍnÞ and gP,αð f Þ ∈ L1ðℍnÞ
(iii) f ∈ L1ðℍnÞ and GP,αð f Þ ∈ L1ðℍnÞ
(iv) f ∈ L1ðℍnÞ and g∗P,α,λð f Þ ∈ L1ðℍnÞ

Moreover, for every f ∈H1
LðℍnÞ,

fk kH1
L
~ fk k1 + gP,α fð Þ�� ��

1
~ fk k1 + GP,α fð Þ�� ��

1

~ fk k1 + g∗P,α,λ fð Þ�� ��
1
:

ð125Þ

Proof. This theorem can be proved similarly as the proof of
Theorem 20, so we omit it.

3.2. Fractional Square Functions Characterizations of
H1,α

L ðℍnÞ. In this part, we will give the characterizations of
Hardy-Sobolev space H1,α

L ðℍnÞ by fractional square func-
tions. Firstly, we give the following Lemma, which will be
used in the sequel. Similar to ([31], Proposition 2.4), we can
express the operators ∂αt e

−tL and ∂αt e
−t
ffiffi
L

p
as follows.

Lemma 22. Let α > 0.

(i) For every f ∈ L2ðℍnÞ,

∂αt e
−tL f = eiπα

ð∞
0
λαe−tλdEL λð Þf , t > 0: ð126Þ

(ii) For every f ∈ L2ðℍnÞ,

∂αt e
−t
ffiffi
L

p
f = eiπα

ð∞
0
λα/2e−t

ffiffi
λ

p
dEL λð Þf , t > 0: ð127Þ

Proof. Let EðλÞ denote a resolution of the identity. It follows
from the spectral decomposition:

e−tL f =
ð∞
0
e−λtdEf λð Þ ∀ f ∈ L2 ℍnð Þ ð128Þ
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that

∂kt e
−tL f = e−iπk

ð∞
0
λke−λtdEf λð Þ, k = 1, 2,⋯: ð129Þ

By (6) and (129), we have

∂αt e
−tL f = e−iπα

Γ k − αð Þ
ð∞
0

ð∞
0
λke− t+sð ÞλdEf λð Þsk−α−1ds, ð130Þ

where k is the smallest integer satisfying k > α. Then, the inte-
gral ð∞

0

ð∞
0
λke− t+sð Þλ∣dEf λð Þ∣sk−α−1ds ð131Þ

is absolutely convergent. By the fact that k∂αt e−tL f kLp ≤ Cα

k f kLp /tα, the integral in (6) is absolutely convergent in
L2ðℍnÞ. Hence, by (130), we can get for g ∈ L2ðℍnÞ,

∂αt e
−tL f , g

� �
= e−iπα

Γ k − αð Þ
ð∞
0

ð∞
0
λke− t+sð ÞλdEf λð Þsk−α−1ds, g

� �
= e−iπα

Γ k − αð Þ
ð∞
0

ð∞
0
λke− t+sð ÞλdE f ,gh i λð Þsk−α−1ds

= e−iπα

Γ k − αð Þ
ð∞
0

ð∞
0
λke− t+sð Þλsk−α−1dsdE f ,gh i

= e−iπα
ð∞
0
λαe−tλdEf λð Þ, g

� �
,

ð132Þ

which implies (i). The assertion (ii) can be obtained by the
aid of functional calculus similarly.

The following result can be deduced from Lemma 22
immediately.

Proposition 23.

(i) Let 0 < α < k, k ∈ℕ and λ >Q . If f ∈DðLαÞ ∩H1
LðℍnÞ

and Lα f ∈ L2ðℍnÞ ∩H1
LðℍnÞ. Then,

Lα fk kH1
L
~ gH

k,α fð Þ�� ��
L1
~ SHk,α fð Þ�� ��

L1
~ gH,∗

k,α,λ fð Þ�� ��
L1
: ð133Þ

(ii) Let 0 < α < k, k ∈ℕ and λ >Q. If f ∈DðLαÞ ∩H1
LðℍnÞ

and Lα f ∈ L2ðℍnÞ ∩H1
LðℍnÞ. Then,

Lα/2 f
�� ��

H1
L
~ gP

k,α fð Þ�� ��
L1
~ SPk,α fð Þ�� ��

L1
~ gP,∗

k,α,λ fð Þ�� ��
L1
:

ð134Þ

Proof. We only prove (i), and (ii) can be dealt with similarly.

Using Lemma 22, we can get

∂k−αs e−sL s=t2 Lα fð Þ = L k−αð Þe−t
2L Lα fð Þ = Lke−t

2L fð Þ = ∂ks K
L
s

��� ���
s=t2

fð Þ,
ð135Þ

therefore,

gHk−α Lα fð Þ = gHk,α fð Þ, SHk−α Lα fð Þ = SHk,α fð Þ, gH,∗
k−α,λ Lα fð Þ = gH,∗

k,α,λ fð Þ:
ð136Þ

Using Theorem 20, we can get

Lα fk kH1
L
~ gHk,α fð Þ�� ��

L1
~ SHk,α fð Þ�� ��

L1
~ gH,∗

k,α,λ fð Þ�� ��
L1
: ð137Þ

Let Gα,L = f f ∈H1
LðℍnÞ: Lα f ∈ C∞

c ðℍnÞg. Since C∞
c ðℍnÞ

is dense in H1
LðℍnÞ, Gα,L is dense in H1,α

L ðℍnÞ. Note that
Gα,L ⊂DðLαÞ ∩H1

LðℍnÞ, and

LαGα,L = C∞
c ℍnð Þ ⊂ L2 ℍnð Þ ∩H1

L ℍnð Þ: ð138Þ

Using Proposition 23, gHk,α, SHk,α, and gH,∗
k,α,λ can be extended

toH1,α
L ðℍnÞ as bounded operators fromH1,α

L ðℍnÞ to L1ðℍnÞ.
Let fgHk,α be the extension of gHk,α to H1,α

L ðℍnÞ as a bounded

operator from H1,α
L ðℍnÞ to L1ðℍnÞ. Then, there exists C > 0

such that for f ∈H1,α
L ðℍnÞ,

fk kH1
L
+ fgHk,α fð Þ
��� ���

1
≤ C fk kH1,α

L
: ð139Þ

Below, we give the square function characterizations of
the Hardy-Sobolev space H1,α

L ðℍnÞ as follows.

Theorem 24. Let α ≥ 1/2, k ∈ℕf0g, and λ >Q. Then, the fol-
lowing assertions are equivalent:

(i) f ∈H1,α
L ðℍnÞ

(ii) f ∈H1
LðℍnÞ and gHk,αð f Þ ∈ L1ðℍnÞ for k > α

(iii) f ∈H1
LðℍnÞ and SHk,αð f Þ ∈ L1ðℍnÞ for α < k − ðQ + 1

Þ/2
(iv) f ∈H1

LðℍnÞ and gH,∗
k,α,λð f Þ ∈ L1ðℍnÞ for α < k − ðQ +

1Þ/2
Moreover, for every f ∈H1,α

L ðℍnÞ,

fk kH1,α
L
~ fk kH1

L
+ gHk,α fð Þ�� ��

L1
~ fk kH1

L
+ SHk,α fð Þ�� ��

L1

~ fk kH1
L
+ gH,∗

k,α,λ fð Þ�� ��
L1
:

ð140Þ

Proof. We first prove k f kH1
L
+ kgHk,αð f ÞkL1 ≤ Ck f kH1,α

L
. By

(139), it is sufficient to prove gHk,αð f Þ = fgHk,αð f Þ. For N ∈ℕ
and h ∈H1

LðℍnÞ, by the subordination formula, we obtain
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∂k

∂tk
KL

t hð Þ gð Þ
�����

����� ≤ Ct−2k sup
t>0

TL
t2/2 hð Þ gð Þ�� ��: ð141Þ

Then,

ð∞
1/N

t2k−2α
∂k

∂sk
KL

s

�����
s=t2

hð Þ gð Þ
�����

�����
2
dt
t

 !1/2

≤ C
ð∞
1/N

t−1−4αdt
� 	1/2

sup
t>0

TL
t2/2 hð Þ gð Þ�� ��

≤ CN2α sup
t>0

TL
t2/2 hð Þ gð Þ�� ��:

ð142Þ

By the definition of H1
LðℍnÞ, we conclude that the oper-

ator

h→
ð∞
1/N

t2k−2α
∂k

∂sk
KL

s

�����
s=t2

hð Þ gð Þ
�����

�����
2
dt
t

 !1/2

ð143Þ

is bounded from H1
LðℍnÞ to L1ðℍnÞ. Therefore, if f = L−αh,

where h ∈H1
LðℍnÞ ∩ L2ðℍnÞ, we have

ð∞
1/N

t2k−2α
∂k

∂sk
KL

s

�����
s=t2

L−αhð Þ gð Þ
�����

�����
2
dt
t

 !1/2������
������
L1

=
ð∞
1/N

t2k−2α
∂k−α

∂sk−α
KL

s

�����
s=t2

hð Þ gð Þ
�����

�����
2
dt
t

 !1/2������
������
L1

≤ C hk kH1
L
,

ð144Þ

where the positive constant C is independent of N ∈ℕ. Let-
ting N →∞ yields

fgHk,α fð Þ
��� ���

L1
=

ð∞
0

t2k−2α
∂k

∂sk
KL

s

�����
s=t2

fð Þ gð Þ
�����

�����
2
dt
t

 !1/2������
������
L1

≤ C fk kH1,α
L
:

ð145Þ

Since Gα,L is dense in H1,α
L ðℍnÞ, for f ∈H1,α

L ðℍnÞ, we
obtain

gHk,α fð Þ�� ��
L1
=

ð∞
0

t2k−2α
∂k

∂sk
KL

s

�����
s=t2

fð Þ gð Þ
�����

�����
2
dt
t

 !1/2������
������
L1

= fgHk,α fð Þ
��� ���

L1
≤ C fk kH1,α

L
:

ð146Þ

The proofs for SHk,α and gH,∗
k,α,λ are similar, and so is

omitted.

For the reverse, we only deal with the case of gHk,α for
simplicity.

Step I. We prove

∂αs K
L
s

��
s=t2 fð Þ�� ��

H1
L

≤ Ct−2α fk kH1
L
: ð147Þ

For m ∈ℕ and m > α, by (141), we obtain

sup
β>0

TL
β ∂αs K

L
s

��
s=t2 fð Þ gð Þ

� ������
�����

≤ sup
β>0

TL
β

ð∞
0
um−α−1 ∂m

∂um
KL

u+s

����
s=t2

fð Þ gð Þds
� 	�����

�����
≤ C sup

β>0

ð∞
0
sm−α−1TL

t2+uð Þ/2+β fð Þ gð Þ t2 + s

 �−m

ds

�����
�����

≤ C sup
t>0

TL
t2/2 fð Þ gð Þ�� ��ð∞

0

sm−α−1

t2 + sð Þm ds

≤ Ct−2α sup
t>0

TL
t2/2 fð Þ gð Þ�� ��:

ð148Þ

Therefore, (147) follows from the definition of H1
LðℍnÞ.

Step II. Assume that f ∈H1
LðℍnÞ and gHk,αð f Þ ∈ L1ðℍnÞ.

Let f f ng be a sequence in C∞
c ðℍnÞ such that limn→∞ f n = f

in H1
LðℍnÞ. For fixed t > 0, set uðt, ·Þ≔ e−tLð f Þð·Þ and

unðt, ·Þ≔ e−tLð f nÞð·Þ, n ∈ℕ. Then, uðt, ·Þ and unðt, ·Þ belong
to H1

LðℍnÞ. By Lemma 22 and (147), we have

∂αt un s, ·ð Þjs=t2 = Lαun t2, ·

 �

∈H1
L ℍnð Þ, ð149Þ

which implies that unðt, ·Þ ∈H1,α
L ðℍnÞ with kunðt2, ·ÞkH1,α

L
=

kunðt2, ·ÞkH1
L
+ k∂αt unðs, ·Þjs=t2kH1

L
. By (147) again,

lim
n→∞

∂αt un s, ·ð Þ s=t2 − ∂αt u s, ·ð Þj js=t2
�� ��

H1
L
= 0: ð150Þ

This indicates that funðt2, ·Þg is a Cauchy sequence in
H1,α

L ðℍnÞ. Therefore, there exists vðt, ·Þ ∈H1,α
L ðℍnÞ such that

kunðt2, ·Þ − vðt, ·ÞkH1,α
L
→ 0 as n→∞. Hence,

kunðt2, ·Þ − vðt, ·ÞkH1
L
→ 0 as n→∞, which yields uðt2, ·Þ =

vðt, ·Þ ∈H1,α
L ðℍnÞ and kunðt2, ·Þ→ uðt2, ·ÞkH1,α

L
→ 0 as

n→∞.
Step III. Noting that unðt2, ·Þ ∈ L2ðℍnÞ ∩H1

LðℍnÞ and
Lαunðt2, ·Þ ∈ L2ðℍnÞ ∩H1

LðℍnÞ, by Proposition 23, we get

un t2, ·

 ��� ��

H1
L
+ gHk,α un t2, ·


 �
 ��� ��
1 ~ un t2, ·


 ��� ��
H1,α

L
: ð151Þ

Letting n→∞, we have kuðt2, ·ÞkH1,α
L
≤ Cðkuðt2, ·ÞkH1

L
+

kgHk,αuðt2, ·Þk1Þ. Since

17Journal of Function Spaces



gHk,α f t

 �

gð Þ =
ð∞
0

s2k−2α
∂k

∂tk
KL

t

�����
�����
t=s2

u t2, ·

 �
 �

gð Þj2 ds
s

 !1/2

=
ð∞
0

e−t
2Ls2k−2α

∂k

∂tk
KL

t

�����
�����
t=s2

fð Þ gð Þj2 ds
s

 !1/2

≤ e−t
2L

ð∞
0

s2k−2α∂kt K
L
t

��� ���
t=s2

fð Þ ·ð Þ
����2 dss

 !1/2" #
gð Þ,

ð152Þ

we get kgHk,αðuðt, ·ÞÞk1 ≤ kgHk,αð f Þk1. Furthermore, this gives

u t2, ·

 ��� ��

H1,α
L
≤ C u t2, ·


 ��� ��
H1

L
+ gHk,α fð Þ�� ��

1

� �
, ð153Þ

where C > 0 is independent of t. By (153), we know fuðt2, ·Þg
are uniformly bounded in H1,α

L ðℍnÞ, i.e., fLαðuðt2, ·ÞÞg are
uniformly bounded in H1

LðℍnÞ. Since H1
LðℍnÞ is a Banach

space, we can find g ∈H1
LðℍnÞ such that Lαðujðt2, ·ÞÞ→ g

as j→∞, where fujðt2, ·Þg is a subsequence of fuðt2, ·Þg.
Since H1

LðℍnÞ is the dual space of VMOLðℍnÞ and C∞
c ðℍn

Þ is dense in VMOLðℍnÞ with norm of VMOLðℍnÞ (cf.
[32]), we get limj→∞hLαðujðt2, ·ÞÞ, ϕi = hg, ϕi,ϕ ∈ C∞

c ðℍnÞ:
Let h = L−αg. Then, h ∈H1,α

L ðℍnÞ and lim j→∞hðujðt2, ·ÞÞ, ϕi
= hh, ϕi,ϕ ∈ C∞

c ðℍnÞ. By the arguments analogous to ([33]
page 776), which relay on the decay of the kernel of e−tL, we
can get

lim
t→0

u t2, ·

 �

, ϕ
� �

= f , ϕh i, ϕ ∈ C∞
c ℍnð Þ: ð154Þ

It follows that f = h and

fk kH1,α
L
≤ C fk kH1

L
+ gHk,α fð Þ�� ��

L1

� �
: ð155Þ

This completes the proof of Theorem 24.

For the Poisson semigroup fPL
t gt>0, we define the frac-

tional square functions as follows:

gPk,α fð Þ≔
ð∞
0

tk−α
∂kPL

t

∂tk
f

�����
�����
2
dt
t

 !1/2

, k ≥ α > 0 ;

SPk,α fð Þ≔
ð∞
0

ð
B g,tð Þ

tk−α
∂kPL

t

∂tk
f

�����
�����
2
dhdt
tQ+1

 !1/2

, k ≥ α > 0 ;

gP,∗k,α,λ fð Þ≔
ð∞
0

ð
ℍn

t
t + g−1hj j
� 	2λ

tk−α
∂kPL

t

∂tk
f

�����
�����
2
dhdt

tQ+1

 !1
2

, k ≥ α > 0:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð156Þ

Similar to the proof of Theorem 24, we can apply (ii) of
Proposition 23 to establish the following characterization of
H1,α

L ðℍnÞ via the fractional square functions related to the
Poisson semigroup. We omit the proof.

Theorem 25. Let α ≥ 1/2, k ∈ℕ \ f0g and λ >Q. Then, the
following assertions are equivalent:

(i) f ∈H1,α
L ðℍnÞ

(ii) f ∈H1
LðℍnÞ and gPk,αð f Þ ∈ L1ðℍnÞ for k > α

(iii) f ∈H1
LðℍnÞ and SPk,αð f Þ ∈ L1ðℍnÞ for α < k − ðQ +

1Þ/2
(iv) f ∈H1

LðℍnÞ and gP,∗k,α,λð f Þ ∈ L1ðℍnÞ for α < k − ðQ +
1Þ/2

Moreover, for every f ∈H1,α
L ðℍnÞ,

fk kH1,α
L
~ fk kH1

L
+ gPk,α fð Þ�� ��

L1
~ fk kH1

L
+ SPk,α fð Þ�� ��

L1

~ fk kH1
L
+ gP,∗k,α,λ fð Þ�� ��

L1
:

ð157Þ

3.3. Equivalent Norms of Hardy-Sobolev Spaces. We define
the following Hardy-Sobolev space H 1,α

L ðℍnÞ as the set of
all functions f ∈H1

LðℍnÞ such that ðI + LÞα f ∈H1
LðℍnÞ, with

the norm

fk kH1,α
L
= I + Lð Þα fk kH1

L
+ fk kH1

L
: ð158Þ

The purpose of this section is to characterize H 1,α
L ðℍnÞ

by the fractional square functions defined by (10) and
(156), respectively. As an application, it follows from the
fractional square function characterizations of H 1,α

L ðℍnÞ
and H1,α

L ðℍnÞ that the two Hardy-Sobolev spaces are
equivalent.

Let EL be the spectral decomposition of the operator L.
For a bounded function M on ð0,∞Þ, the spectral multiplier
MðLÞ is defined by

M Lð Þf =
ð∞
0
M λð ÞdEL λð Þf , f ∈D M Lð Þð Þ, ð159Þ

where DðMðLÞÞ denotes the domain, i.e.,

D M Lð Þð Þ = f ∈ L2 ℍnð Þ:
ð∞
0

M λð Þj j2 dEL λð Þf , fh i<∞

 �

:

ð160Þ

We say that a function M on ð−∞, +∞Þ belongs to the
space CðsÞ, s > 0, if

Mk kC sð Þ ≔

〠
s

k=0
sup M kð Þ λð Þ

��� ���<∞, s ∈ℤ ;

M s½ �ð Þ
��� ���

Lip s− s½ �ð Þ
+ 〠

s½ �

k=0
sup M kð Þ λð Þ

��� ���<∞, s ∉ℤ:

0BBBBB@
ð161Þ
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We have the following version of spectral multiplier
theorems.

Proposition 26 (see [34], Theorem 1.11). LetM be a bounded
continuous function on ð0,∞Þ. If for some ε > 0 and a non-
zero function ϕ ∈ C∞

c ð0,∞Þ, there exists a constant C > 0 such
that for every t > 0,

ϕ ·ð ÞM t ·ð Þk kC Q/2+εð Þ ≤ C, ð162Þ

then the operator MðLÞ is bounded on H1
LðℍnÞ.

Let α, β > 0. For λ > 0, define

M1 λð Þ = λα

1 + λð Þα , M2 λð Þ = 1 + λð Þα
1 + λα

, M3 λð Þ = β + λð Þ−α:

ð163Þ

Then, it is clear that Mi, i = 1, 2, 3, are smooth and
bounded on ð0,∞Þ. It follows from Proposition 26 that

Proposition 27. Let α, β > 0. The operators MiðLÞ, i = 1, 2, 3,
can be extended to bounded operators on H1

LðℍnÞ.

Theorem 28. Let 0 < α < k, k ∈ℕ and λ >Q . If
f ∈DððI + LÞαÞ ∩H1

LðℍnÞ and ðI + LÞα f ∈ L2ðℍnÞ ∩H1
LðℍnÞ,

I + Lð Þα fk kH1
L
~ fk kH1

L
+ gHk,α fð Þ�� ��

L1

~ fk kH1
L
+ SHk,α fð Þ�� ��

L1
~ fk kH1

L
+ gH,∗

k,α,λ fð Þ�� ��
L1
:

ð164Þ

Proof. We give the proof of kðI + LÞα f kH1
L
~ k f kH1

L
+

kgHk,αð f ÞkL1 . The proofs for the cases of SHk,αð f Þ and gH,∗
k,α,λð f Þ

are similar. By Proposition 27, we know that the operators Lα

ðI + LÞ−α and ðI + LÞαðI + LαÞ−1 are bounded on H1
LðℍnÞ.

Then, following from Proposition 23, we obtain

I + Lð Þα fk kH1
L
= I + Lð Þα I + Lαð Þ−1 I + Lαð Þf
��� ���

H1
L

≤ I + Lαð Þfk kH1
L

≤ C fk kH1
L
+ Lα fk kH1

L

� �
≤ C fk kH1

L
+ gHk,α fð Þ�� ��

L1

� �
:

ð165Þ

For the reverse, we take the functionM1ðλÞ = λαð1 + λÞ−α,
λ > 0. For any r ∈ ð0,∞Þ,ðr

0
λαdEL λð Þf =

ðr
0

λα

1 + λð Þα 1 + λð ÞαdEL λð Þf

=M1 Lð Þ
ðr
0
1 + λð ÞαdEL λð Þf :

ð166Þ

Letting r→∞, we get Lαð f Þ =M1ðλÞðI + LÞαð f Þ. By
Proposition 27 again, we obtain kLα f kH1

L
≤ CkðI + LÞα f kH1

L
,

and

fk kH1
L
= I + Lð Þ−α I + Lð Þα fk kH1

L
≤ C I + Lð Þα fk kH1

L
: ð167Þ

Theorem 28 follows from Proposition 23.

Similar to Theorem 28, we also can obtain

Theorem 29. Let 0 < α < k, k ∈ℕ and λ >Q . If f ∈Dð
ðI + LÞα/2Þ ∩H1

LðℍnÞ and ðI + LÞα/2 f ∈ L2ðℍnÞ ∩H1
LðℍnÞ,

I + Lð Þα/2 f�� ��
H1

L
~ fk kH1

L
+ gP

k,α fð Þ�� ��
L1

~ fk kH1
L
+ SPk,α fð Þ�� ��

L1
~ fk kH1

L
+ gP,∗

k,α,λ fð Þ�� ��
L1
:

ð168Þ

Let

Gα,L = f ∈H1
L ℍnð Þ: I + Lð Þα f ∈ C∞

c ℍnð Þ� �
: ð169Þ

Since C∞
c ðℍnÞ is dense in H 1

LðℍnÞ, Gα,L is dense in
H 1,α

L ðℍnÞ. Note that Gα,L ⊂DððI + LÞαÞ ∩H1
LðℍnÞ, and

I + Lð ÞαGα,L = C∞
c ℍnð Þ ⊂ L2 ℍnð Þ ∩H1

L ℍnð Þ: ð170Þ

Using Theorem 28, gHk,α, S
H
k,α, and g

H,∗
k,α,λ can be extended to

H1,α
L ðℍnÞ as bounded operators from H 1,α

L ðℍnÞ to L1ðℍnÞ.
Let ggH

k,α be the extension of gHk,α to H 1,α
L ðℍnÞ as a bounded

operator from H 1,α
L ðℍnÞ to L1ðℍnÞ. Then, there exists C > 0

such that for f ∈H 1,α
L ðℍnÞ, k f kH1

L
+ kggHk,αð f Þk1 ≤ Ck f kH 1,α

L
:

Similar to Theorems 24 and 25, we will give the following
characterizations of the Hardy-Sobolev spaceH 1,α

L ðℍnÞ as fol-
lows. We omit the proof.

Theorem 30. Let α ≥ 1/2, k ∈ℕ \ f0g and λ >Q. The follow-
ing assertions are equivalent:

(i) f ∈H 1,α
L ðℍnÞ

(ii) f ∈H1
LðℍnÞ and gHk,αð f Þ ∈ L1ðℍnÞ for k > α

(iii) f ∈H1
LðℍnÞ and SHk,αð f Þ ∈ L1ðℍnÞ for α < k − ðQ +

1Þ/2
(iv) f ∈H1

LðℍnÞ and gH,∗
k,α,λð f Þ ∈ L1ðℍnÞ for α < k − ðQ +

1Þ/2
Moreover, for every f ∈H 1,α

L ðℍnÞ,

fk kH 1,α
L
~ fk kH1

L
+ gH

k,α fð Þ�� ��
L1
~ fk kH1

L
+ SHk,α fð Þ�� ��

L1

~ fk kH1
L
+ gH,∗

k,α,λ fð Þ�� ��
L1
:

ð171Þ

Theorem 31. Let α ≥ 1/2, k ∈ℕ \ f0g and λ >Q. The follow-
ing assertions are equivalent:

(i) f ∈H 1,α
L ðℍnÞ
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(ii) f ∈H1
LðℍnÞ and gP

k,αð f Þ ∈ L1ðℍnÞ for k > α

(iii) f ∈H1
LðℍnÞ and SPk,αð f Þ ∈ L1ðℍnÞ for α < k − ðQ + 1

Þ/2
(iv) f ∈H1

LðℍnÞ and gP,∗k,α,λð f Þ ∈ L1ðℍnÞ for α < k − ðQ +
1Þ/2

Moreover, for every f ∈H 1,α
L ðℍnÞ,

fk kH 1,α
L
~ fk kH1

L
+ gPk,α fð Þ�� ��

L1
~ fk kH1

L
+ SPk,α fð Þ�� ��

L1

~ fk kH1
L
+ gP,∗k,α,λ fð Þ�� ��

L1
:

ð172Þ

Theorems 24, 25, 30, and 31 indicate the following equiv-
alence relation:

Corollary 32. Let α ≥ 1/2. H 1,α
L ðℍnÞ =H1,α

L ðℍnÞ.
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