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In this paper, assume that L = —Ap» + V is a Schrédinger operator on the Heisenberg group H”, where the nonnegative potential V
belongs to the reverse Hélder class By ,. By the aid of the subordinate formula, we investigate the regularity properties of the time-

fractional derivatives of semigroups {e*'},., and {e"""} ., respectively. As applications, using fractional square functions, we
characterize the Hardy-Sobolev type space Hp*(H") associated with L. Moreover, the fractional square function

characterizations indicate an equivalence relation of two classes of Hardy-Sobolev spaces related with L.

1. Introduction

It is well-known that the Hardy spaces H? form a natural
continuation of the Lebesgue spaces L? to the range 0 < p <
1. Correspondingly, let I, and ], denote the classical Riesz
potentials and Bessel potentials, respectively. The Hardy-
Sobolev spaces I ,(H?) and ] ,(H?) can be seen as natural gen-
eralizations of homogeneous and inhomogeneous Sobolev
spaces. Compared with Hardy spaces, the elements of
Hardy-Sobolev spaces are of regularities and have been
widely used in the research of partial differential equations,
potential theories, complex analysis and harmonic analysis,
etc. In the last decades, the theory of Hardy-Sobolev spaces
was investigated by many researchers extensively. In [1], Stri-
chartz proved that I,,,,(H?) was an algebra and found equiv-
alent norms for the Hardy-Sobolev space or, more generally,
for the corresponding space with fractional smoothness and
Lebesgue exponents in the range p>n/(n+1). The trace
properties of the space I (H?) were discussed by Torchinsky
[2]. Miyachi [3] characterized the Hardy-Sobolev spaces in
terms of maximal functions related to the mean oscillation
of functions in cubes and obtained a counterpart of previous
results of Calderén and of the general theory of De Vore and

Sharpley [4]. For further information on Hardy-Sobolev
spaces and their variants on R, or on subdomains, we refer
the reader to [5-12].

The development of the theory of Hardy spaces with sev-
eral real variables was initiated by Stein and Weiss. In [13], by
use of square functions, Fefferman and Stein characterized
the Hardy spaces H?(R") for 0 < p < 1. From then on, such
characterizations were extended to other settings, see [14-
16] and the references therein. Since the 1990s, the theory
of Hardy spaces associated with second-ordered differential
operators on R" attracts the attention of many researchers
and has been investigated extensively, such as [15-22] and
the references therein. In recent years, a lot of research has
been done on the Hardy spaces associated with operators
on the Heisenberg group and other settings, see [23-25].

Let L=—-Ap + V be a Schrodinger operator, where Ay
is the sub-Laplacian on H" and V belongs to the reverse
Holder class. Let {e"F},., be the heat semigroup generated
by —L and denote by KX(-, -) the integral kernels. Since V
is nonnegative, the Feynman-Kacformula asserts that

0<KL(g,h) < T(g,h) = (4mt) @27l e ()
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Lin-Liu-Liu [25] introduced the Hardy space associated
with L, which is defined as follows. Let .#; denote the semi-
group maximal function: ., (f)(g) = sup,.,|T-f(g)|. g €
H". The Hardy space H} (H") associated with L is defined
to be

H(H") = {f e L'(H"):  J,(f) e L' (H")},  (2)

where [|f| = (|22, (f)]l -

As an analogue of classical Hardy-Sobolev spaces, we
introduce the following Hardy-Sobolev space associated with
L on H"

Definition 1. For a > 0, the Hardy-Sobolev space H;*(H") is
defined as the set of all functions f € H](IH") such that
L*f € H} (H") with the norm

e = ISy + 1f L < 0o 3)

Our motivation is inspired by the following square func-
tion characterization of Hj (H"). For k € N, let

Qif(g)=r* (it

f)(9)- (4)

s=t?

Define the square function associated with {QF} as

172
SH(f)(9) = (j Joo @) e

In [16], Hoffmann et al. obtained the following square
function characterization of H] (H"):

QG (f)(h)

Proposition 2. Let k € N. A function f € Hi (H") if and only
if f € L'(H") and the square function Sk(f) € L}(H"). More-
over, ||l ~ ISE ()l + 11l

The goal of this paper is to characterize Hp*(H") by the
square functions generated by semigroups associated with L.
It can be seen from Definition 1 that the elements of
H“(H") have the regularities of order «. Based on this obser-
vation, we introduced the following fractional square func-
tions associated with semigroup generated by L. For a > 0, let
0YKE and oY PL denote the time-fractional derivatives of the
heat kernel and the Poisson kernel, respectively, (cf [26]), i.e.,

. ein(m—a) 00 . e ds

ath(g’ h) = F(m—oc) JO a Kf+s(g’ h)S ?’ :[‘X]+1;
. ein(m—oc) 0 . - ds

AP H) = for | APha L m=la et

(6)
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For a > 0, define the following family of operators:

Qi (f) =t05e | . (f),
Dy (f) =195 (f),

Similar to ([27], Proposition 3.6), the regularities of the
kernels of {Q%,} and {D,} can be deduced from (6). In this
paper, we apply a different method to derive the regularities.
In Propositions 10 and 14, we estimate the regularities of

{t*L% "} and {t*L¥?e™"V"}, respectively. Then, by the func-
tional calculus, we deduce the following relations:

taL(xe—tL(" . ) — taa(txe—tL(', . ) ; ( )
8
t"‘L“’Ze”ﬁ(-, . ) — taa?eitﬁ(', . )’

see Lemmas 15 and 11. Hence, the desired regularities of

{Q%,} and {D%,} are corollaries of Propositions 10 and 14.
Respect to QL,, we introduce the following fractional

square functions:

31a(f)(9) = ([m QL) (h) fﬂ) 7

Grar (1)(9) = (jm | () 1w ‘f’;dt>

In Section 3.1, we establish the characterizations of
H}(H") be the square function defined by (9), see Theorem
20. In Section 3.2, we introduce the fractional square functions
as follows:

ka th

12
—sL dt
‘2 ) , k>2a>0;

Osk
L dhdr\ "
£l JaT , k=2a>0;

2k-2a et
Osk

2dhdt>l/2
fl , k=a>o0.

1@+l
(10)

s=t?

Let

(6]

D(M<L>>={feL2<IH“>:J MO (B, (D, ><oo} (11)

0

For every feD(L*) and L%f € L*(H")nH(H"), we
prove

ng—zx(Laf) :ng,a(f)> @kH—zx(Laf) = SkH,zx(f)’ gk otA Laf) gka/\(f)

(12)
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The above relations, together with Theorem 20, indicate
that

LF e~ lgka D s~ ISeaD 1~ [gker Dl (13)

see Proposition 23. Finally, in Theorem 24, we obtain the
desired characterizations of Hp*(H") via the fractional
square functions defined in (10): for every f € Hy*(H"),

1 lgse ~ 1Ny + 1O ~ 1y + [1SE O

H,x (14)
~1f Ny + gt Ol

For the Poisson semigroup, via the operators {Df”}, we
can also obtain the corresponding square function character-
izations of HL(H") and H}*(H"), see Theorems 21 and 25
for the details.

Remark 3.

(i) As far as the authors know, even on R”, the regular-
ities of the time-fractional derivatives of the heat ker-
nels obtained in Section 2.2 are new. The results
obtained in Section 2.3 generalize those of [27] to
the setting of Heisenberg groups. Moreover, all
results in Sections 2.2 and 2.3 apply to some other
operators, for example, the degenerate Schrodinger
operators, the Schrédinger operators on stratified
Lie groups, and so on

(i) Lemma 22 implies that the operators Q%, and D%,
can be expressed by the spectrum integral of Schro-
dinger operator. In the sequel, sometime, we formally
denote by t*0¢** and t*07e V" by Q. i and DL,
respectively

The paper is organized as follows. In Section 2.1, we give
some knowledge to be used throughout this paper. Sections
2.2 and 2.3 are devoted to the regularity estimates of {Q%,}
and {D},}, respectively. In Sections 3.1 and 3.2, we establish
the fractional square function characterizations of Hj (1H")
and Hy*(H"). As an application, we deduce an equivalence
of the norms of Hardy-Sobolev spaces associated with L.

1.1. Notations. Throughout this article, we will use c and C to
denote the positive constants, which are independent of main
parameters and may be different at each occurrence. By B,
~ B,, we mean that there exists a constant C > 1 such that
1/C<B,/B,<C.

2. Preliminaries

2.1. Heisenberg Groups and Hardy Spaces. The (2n+1)
-dimensional Heisenberg group H" is the Lie group with

underlying manifold R*" x R with the multiplication

(x, ) (y,5) = <x+y,t+s+2i (xn+jyj—xjyn+j)>. (15)
j=1

The Lie algebra of left-invariant vector fields on H" is
given by

0 0 0 0 0
Xops1 = a—t,Xj: z +2x”*j§,’X”+j: 5 +2x;

J n+j

(16)

The sub-Laplacian Ay is defined as Ay = ijfl X3. The
gradient V. is defined by V. = (X, -+, X,,). The left-
invariant distance is d(h, g) = |~ g|. The ball of radius r cen-
tered at g is denoted by B(g, ) = {h € H" : |h ™' g| < r} whose
volume is given by |B(g, r)| = c,r?, where c, denotes the vol-
ume of the unit ball in H” and @ = 2n + 2 is the homogenous
dimension of H". Let U" be the Siegel upper half-space in
C™ e,

U" = {ZE(C”+1 :

n
Imz,,, > Z |zj|2}. (17)

J=1

Then, U" is holomorphically equivalent to the unit ball in
C™!. It is well known that the Heisenberg group IH" is a nil-
potent subgroup of the automorphism group of U", which
consists of the translations of U"”. The Heisenberg group
H" can be also identified with the boundary dU" via its
action on the origin. We use the Heisenberg coordinates
(g>s) = (x, t,5) to denote the points in U", where

X +iX,, ;=2

t=Rez

j:l,...’n;

n+l > (18)

n
s=Imz,,, - Z |zj{2.
1

A nonnegative locally L7-integrable function V on H" is
said to belong to the reverse Holder class Bq, l<g<oo,if

there exists C > 0 such that the reverse Holder inequality

IA

(ﬁ JE Vq(h)dh> b | < | L V(hydh  (19)

holds for every ball B e H". In the sequel, we always assume
that 0=V € Bg,.

The following auxiliary function p(g, V) = p(g) was first
introduced by Shen [28] and widely used in the research of
function spaces related to Schrodinger operators:



Definition 4. The auxiliary function p(-) is defined by

r>0

p(9) —sup{ rleJ V(h)dhsl},ge]H”. (20)
B(g:r)

The following atomic characterization of Hj (H") was
obtained by Lin-Liu-Liu [25].

Definition 5. A function a is called a (1, q) -atom of the Hardy
space H] (H") related with a ball B(g,, r) if

(i) supp a C B(gy,1);
)|l/q—l.

>

(i) |all o <|B(go> 7

(iii) if r < p(g), then IB< a(h)dh =0

The atomic norm of Hj (H") is defined by |/f|| L-atomg
=inf {} |¢; |}, where the infimum is taken over all decom-
positions f = Xc;a;, and a; are H!-atoms.
Proposition 6. Let 1<q<oo. The norms ||f||;_yom, and
”f”Hi are equivalent, that is, there exists a constant C >0

SLICh that C71||f||H; = Hf“L—atom,q < C”f”H}

Below, we give some results on the tent spaces introduced
by Coifman-Meyer-Stein.

Definition 7. Assume that 0<p,q<o00. The tent space
T(IH") is defined as the set of all functions f (-, - ) on IH" sat-

istying A, (f)() € L(H"), where

%WZOL@W“)ﬂQ . ()= {(h oy g <1}
e1)

Coifman, Meyer, and Stein established the following
atomic decomposition of T5(U"). A function a(-, - ) is called
a Th-atom if (i) a is supported in B for some ball B ¢ H"; (ii)
| Jzla(gt) |*(dgdt/t) <1/|B].

The following proposition is one of the main results of
tent spaces.

Proposition 8. Every element f € T5(U") can be written as

_ 1
f=X;Aa; where a; are T, -atoms, A; € C, and }; | a;|<C

[naieve

2.2. Time-Fractional Derivatives of the Heat Semigroup. In
this part, we estimate the time-fractional derivatives of the
heat kernel associated with L. For k € N, define

Qi (9 h) = UK (g, )| . (22)

s=t?
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In ([29], Proposition 2.9), the authors obtained the fol-
lowing estimates about the kernel Q, (-, - ).

Proposition 9.

(i) For M > 0, there exists a constant C; > 0 such that

s M
QLt )| <Cy 0 g~ h|i? (1 L L) (23
sl ] < Cut e Yo em) o

(ii) Assumethat0< &' <min {1,8}. For any M > 0, there
exists a constant C,; > 0 such that, for all |w | <\/t

‘th go.h) - Qg h)}<C (l |) e ffle”h\zuz<1+ﬁ+ﬁ>’“.
(24)

(iii) For any M > 0, there exists a constant C,; > 0 such

that
Cu(tlp(g))”
J QL (g hydh| < PO (25)
B (L+1/p(g))
Denote by Qi,z(" -) the kernel of t*L*¢™'L, In the follow-

~L
ing proposition, we investigate the regularities of Q, (-, - ).
Proposition 10. Let o > 0.

(i) For M > 0, there exists a constant Cy; > 0 such that

L 1 tnc/2 \/’ \/’
o) 25 8) 0

(i) Assume that 0< 8’ <8 with 0<8' <a. For any M
>0, there exists a constant Cy >0 such that for

all |w| <yt

!

wl\? .
e min
NG

Quulge.h) - Q.| < Cu
R U A
12’ |g,1h|@+zx ( ) (h) .

(iii) For any M > 0, there exists a constant Cy; > 0 such
that

(27)
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CM(\/E/P(Q))y .
(1+Vip(9)"

J Qi h)dh’ <
]I_IYI

Proof.

(i) The proof of (i) is divided into the following two
cases.

Case 1. a € (0,
calculus that

1). For this case, it follows from functional

tocLoce—tL — taJ J a —(t+r)L deS. (29)
0 Jo

51+zx

By (i) of Proposition 9, we obtain

‘Qi”(g’ h)) =t J J ’Q‘/F: g:h) t‘-ilrrrs(ljj"‘

e [ ()
~Jo Jo (t+r)@’2 P(9) (30)

( \/t+r>M dr ds
. 1+—

p(h) t+rsite’

On the one hand, a direct computation gives

S A e

o Jo (t+71) p(9) p(h) t+rsite

« M M
<t*p(g)" p(h) L (Jr Slﬁ) (1 + )@ dr

pen( VY (VYT
p(g) phy)

On the other hand, because the heat kernel decays rap-
idly, we can get

(31)

Qurlg: h)] < t"‘P(g)MP(h)Mro

0

. X [ -(@+a)2 O\
Jo (40T s i e

< pl9)p(h) ([ ) enyesear

‘g71h|@+a . 51+(x
a M M oo
g_ 0

< i 1+ \/E - 1+£ -
" |gther P(9) p(h))

(32)

5
Case 2. a > 1. Let a — [a] = 8. Write
L% " = oLl = t“L[fX]JOO JS 0,e (L  drds (33)
o Jo s
Since m = [a] + 1, we can get
tzthxe—tL _ tth[ot] P ( ) (t+r)L drds
o Jo sl+a— o
A°F p1 drds
=t JO L (—=L)™e(+7) o (34)

o s dr ds
_ 4 L - -
=t JO JO Q\/t+r,m (g’ h) (t + r)m g2ta—m’

It can be deduced from (i) of Proposition 9 that

Qulgh|=e| "] e (g) _

. <\/m> M dr ds

p(h) t+ )" sTram

(35)

Similarly, an application of (i) of Proposition 9 again
yields

Quul )| =pl) o]

_ —(@+a)/2
r e ds
(JO (t+r)” ( s dr Fram

p(g)"p()" [ ( [ L) (t+ vy omag,

IN

‘g,1h|@+a §2ta—m
o M h M oo
< P(g)lh(;(ﬂx) J rm—tx—l (t + r)—M—mﬂx/Zdr
g 0

<L 1+£ h 1+£ B
gt p(9) ph)y)

(36)

(i) We first consider the case « € (0, 1). By (ii) of Propo-
sition 9, we obtain



Qg ) = Qo (9. 1)

s dr ds
o L _NL e
=t Jo -[0 ‘Q‘/H_r(gw’ h) Qm(g, ") t+rsite

! -M
0 ¢ N |w | o t+r
< i 5:2/2( ) e‘g h|/r+r>< 1+
J, e (G o9

-M
- t+r dr ds
p(h) t+rsire’

Changing the order of integration, we obtain

(37)

Qi,t(gw’ h) - éi,t(g’ h)’

ef ()

(VT (v ar as
p(9) p(h) ) ttrste

< lol”plg)p)" [ (e
(2o () 8)

Alternatively, we can also get

Qg h) - Oy (9. )|

< ta‘w|6,P(9>MP(h)MJ J (t + r)—@/Z—(S'/Z—M—l
0 0
_ —(G+a)2 )
(g drds _ 1*|w|® p(g)"p(h)" [
t+r glta = ‘g_1h|@+a 0
00 &'
(t+ r)—8’/2—M—l+u/2 (J Sisa) dr < <%)
r t

. \/; -M \/{ -M o2
Pr(9) p(h) ) |gthC

For a > 1, by (ii) of Proposition 9, we can get

(39)

Qg h) = Qo )|

(SO

dr ds

§ )= Qi (9> h)‘ e

Q\/,:; gw,

0

5 -M
J J (t+7) @/2( " ) el (14 VIET
o Jo Vitr P(9)

14 Vitt+r dr ds
Py ) TrnrEen
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Similar to the case a € (0, 1), the rest of the proof can be
finished by applying change of order of integration. We omit
the details.

(iii) For € (0, 1), by (iii) of Proposition 9, we change the
order of integration to obtain

dr ds
t+rsita

J' QL (g. Wydn
.

[ Qstona

|
0 o0 [JH"

I A P —
o Jo Jo\ p(9) (1+\/m/p(g)>Mt+rSl+“.

(41)
If v/t > p(g), then
AL <aw5\/m6,7Mdrds
. amarf e[| (W) Frrste
< M-¢' i Ooﬁ L
<t P(g) JO (Jr 51+¢x) (t+r)( )/2+1
(1+Vip(g)"
(42)
If /t < p(g), then

]

<t"‘[ t+r 1 dr
o \P@) ) (1 viETIp(g))t (B

j Q% (g, hydh
.

<epie)” [ (en g
0 s
(Viip(9)”
(1+lp(g)™
(43)
For a > 1, we have
~L
| duo h)dh\
.
ds

dr
Dt —(g, B
JIH” \/t+r(~q h)dh (t+1‘) 52+¢x m

0 S
o
0 0

<t"‘J00 JS Vitr ’ 1 dr ds
< 0 Jo P(g) (] + (\/m/P(g))>M (t + r)m g2+a-m’

(44)

If V't > p(g), then
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<tp(g)"?

[ o
.

(t+r)(6'—M)/2—m (J Szfl%) dr

)M—é’ (t+7) (8’—M)/2—mrm—a—1 dr

<t'p(g

(45)

<t"‘JOO Vitr ' 1 dr
- P(9) (1 + W/P(g))M (t+r)"ratl-m (46)
§p-1dr

<ot dr _ (\ﬁ/P(g))y
s JO G (1+Virp(g)"

The following lemma can be deduced from the functional
calculus immediately.

Lemma 11. Let a > 0. The operators t*0 e and t*L*e™' are
equivalent.

Proof. For a € (0, 1), we have

totLote—tL — taJOO JS are—(tJrr)L drds — taJm (JOO ﬁ) are—(Hr)Ldr

1+a 1+a
o Jo S 0 $

r

00
= t“J ro0,e “hdr = 700 L.
0

(47)
For a > 1, let a — [a] = 3. Since m = [a] + 1, it holds
- _ o0 _ _gds
L% tL _ tth[ot]LBe tL _ taL[oc]J (—L)e (s+t)le B
’ T (as)

— tocjoo (_L)me—(t-v-s)Lsm—a? — taa;xe—tL.
0

Denote by Q% (-, -) the integral kernel of Q%,. By Propo-
sition 10 and Lemma 11, we have the following result.

Corollary 12. Let « > 0.

(i) For M > 0, there exists a constant C > 0 such that

. Ct® t t \M
[Quilo ] = (|lg~'h| + £ & (1 O P(h)> @)

(i) Let 0<8' <& with 0< &' <a. For any M >0 there
exists a constant C > 0 such that, for all |w | </t

QL (g0, ) ~ Q¥ (g, )| <C(M)B,L
a,t > t 4 - t (|g_1h| +t)@+0¢

.<1+$+ﬁ)‘”’.

(iii) For any M > 0, there exists a constant C > 0 such that

(50)

C(tlp(g))”

Tripg) Y

[ o]
]I_IYI

2.3. Time-Fractional Derivatives of the Poisson Semigroup. In
this part, our aim is to give some regularity estimates of the

Poisson kernel associated with v/L. For k € N, define Dﬁt( g

Jh) = tkafPf(g, h). In ([29], Proposition 2.12), the authors
obtained the following estimates about the kernel Dy (-, - ).

Proposition 13 (see [29], Proposition 2.12).

(i) For M > 0, there exists a constant C,; > 0 such that

Cyt*

(1+ . t>_M
(tz+|g-1h\2)<@”‘)’2 p(g) ph))

(52)

|Di:(9:h)| <

(ii) Assume that 0 <8’ <min {1,8}. For any M > 0 there
exists a constant Cy; > 0 such that, for all |w | <t

Dt . )" t
} ki (9@, h) = Dy (95 h)| <Cyu 5 (G+k)/2
(2 +1gh)

(s am)

(iii) For any M > 0, there exists a constant C,; > 0 such
that

(53)

(t/p(9))”

<Cy—"tTl
(1+tlp(g))

(54)

J DY, (g h)dh
.

Denote by Di,t(-, -) the kernel t*L“*PL(., -). Similar to
Proposition 10, we have

Proposition 14. Let o > 0.

(i) For every M, there is a constant C,, such that



D, (gh)‘<C min L (1+t+t>_M
R (P R P9 ph))

(55)

(ii) Assume that 0 <8’ <8 with0< ' < a. For any M >0
there exists a constant C > 0 such that for all |w | <t

~L ~L | | & . 1 t*
Da,t(gw’ h) - sz,t(g’ h)‘ < CM <T> min {t_@’ |g—1h|@+a}
. (1 + ! + ! )_M
plg)  ph))
(56)

(iii) For any M > 0, there exists a constant C,; > 0 such
that

Cu(tlp(g))”

1+ 1ip(g)" 7)

J e h)dh’ <

0

Proof. Let us prove (i) first. The following two cases are
considered.
Case 1. a € (0, 1). By the functional calculus, we obtain

e (s drds
tocL(x/Ze—tﬁ — taJ J are (t+r)VL SH(X , (58)
0 0

which, together with Proposition 13, implies that

0 s dr ds
|, Do)

> 1+a
0 t+rs

~L o
B (g h) =t j

0

<taJ°° JS t+r
- Q+1)/2
o o ((terpeigp) &)

(1+ t+r+t+r>"M dr ds
pg) p(h)) ttrstre

One the one hand, we use the change of order of integra-
tion to get

~L s tr\ M/e+r\™ dr ds
D,,(g.h st“J J t+r‘@() () —
9 >’ 0 0( ) p(9) p(h) t+rsite

<J j—l) (t+ r)’@’ZM’ldr
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One the other hand, for a € (0, 1),

(t+r) "

at(g’ h)’ < "‘JO L (1+ |g71h|2/(t+r)2))<@m)/2

t+r t+7r\ Mdrds
P(h 51+oc

OOJS aled ds

_1 ]’l ‘ @+a gl+a

0

M 00
lh‘QJrot ,[O

Bt

Case 2. a> 1. Since, for a € (0,1), (L™= 1*[° [
0,e” VI (drds/s'**). We can get

“(t+1)" Mg,

(61)

tthot/Zeft\/Z — tth[tx]/ZL(tx—[tx])/Ze—t\/Z. (62)
Setting f=a —

[a], we obtain

pap a2 VI _ gy (a2 B2 tVE _ gy [l JOO r 5 (1 drds
0 0

sl
(63)
Since m = [ + 1,
gt gl [ [0 Cpyieeemve drds
o Jo sl+a—[q]
A°0F ~(t+ryyz drds
=t JO JO( L>m/2 (t+ \/_Szﬂx — (64)

:f“J JDL o ds

0 0 t+r,m(g’ ) (t+r>mm'
It follows from Proposition 13 that

sl Lo () ()

00 s M ds
<t'p(9)"p)" [ [ (t4ryerar

52+a7m

< t“p(g)Mmh)Mjgo (] s ey eeomar

(65)
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Also, noticing that a < m, we obtain

(t+ r)’@’m

at(g’ h)‘ < “JO JO (1 ; (|g—1h|2/(t+r)2>>(@+a>/2

(i) Giw) s

< Mr) JS (t + 1) 21y ds

|g,1h|@+tx 0 0 m
« M M roo
< t p(g) Z_('-h) J rm—u—l(t+r)(x—2M—mdr
g~ = o

- |g1t;|@*“ (1 " p(tg))M(l i ﬁ) R

(66)
(i) We first consider the case a € (0, 1). Since
-~ o dr ds
D,,(g:h)=t JO J Dy,,1(g:h) PR (67)

we apply (ii) of Proposition 13 to obtain

~L ~L
Dey(g@, h) =Dy (g, )|

ACF (wl o t+r
StJ J f+r (@+1)/2 68
0 N (e 1) (68)
o 1+t+r M 1+t+r M dr ds
p(9) p(h))  trste

One the one hand, we have

Dy, (9, h) = Dy, (9 )\
|w| t+r Mo gy ds
< t —
- t+ r plg p h (t+ r)@+1 slta
< ta|w| p MJO 51+a> 6’—@—2M—ldr

(0
“('“”)( i) (am)

On the other hand, since « < 1, it holds

(69)

Dy, (9. h) - Dy, (9. >\
(t+r)_@

TLE) it
() U)M ;?:,j;
P(

o M s
< t ‘w| p( )@ h) J J (t+r)75’+tx72M71dr ‘ljs
|g,1h| +o 0 0 S +a
o S M M roo
< t ‘w| P(g)@j)(h) J r—tx(t_’_r)fé’ﬂx—ZM—ldr
lg~th|™™ 0
e () (i) (o)
T gt e\t p(9) p(h))
(70)
For a > 1, noticing
~L ~ 1 N 00 [
Duslga )~ Dlyam=r] |
0
dr ds
) [ t+rm(gw h) - t+rm(g’ )]Wm
(71)

we can use (ii) of Proposition 13 to get

~L ~L
Dyy(g@. h) = Dy (g, 1)
<taJOO JS (l“’l )6, (t+r)"
= t+r GQ+m)/2
o Jo \I+7 ((t+r)2+|g*1h\2)( )

X<1+t+r>M<l+t+r)M dr ds
p(9) p(h))  (t+r)"s¥rem

(72)

The rest of the proof can be completed by the procedure
of the case a > 1 in (i), so we omit the details.

(iii) For a € (0, 1), it follows from (iii) of Proposition 13
that

dr ds
t+ st

' J  Dl(g ke

o L[ Pt
o JolJmH"

<) e

(73)

If t/p(g) > 1, then
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8'-M
- o0 S d d
J Dit(g,h)dhst"‘J J<ﬂ> A as
H 0o Jo \P(9) ttrs™
! o o d !
<tp(g)"? J (J 51—+Sa) (t+7)° Mgy

(t1p(9)° _ o (tIp(g))”
(tip(g))™ ~ (1+tip(g))™

<

(74)

If t/p(g) < 1, then

[ o manse[” (47) ’ T

<t%p(g)? j °° (t+n)°rdr < (ﬁ) 6/

Lo (@)
(1+tp(g)™
(75)

For a > 1, using (iii) of Proposition 13 again, we have
o0 S
|
0 0
0 sty
=[], ()
o Jo \P(9)
1 dr ds
(1+ (t+rip(g)))M (t+1)" s¥rem”

dr ds
J]H" DtLJrr,m (g’ h)dh‘ T o\m

(t+ )" g2ra-m

J Bt (g, h)dh
y

(76)
If t/p(g) > 1, we obtain
-~ ACF [(t+r IM gy ds
J, Ptomanse| [ () e
< t“p(g)Mf‘SIJO ([ Szfl%) (t+ r)‘SLM*mdr
_ (tp@)” _ o (tp(9)”
(tip(g))™ ~ (1+tlp(g))™

(77)

If t/p(g) < 1, similarly, we can get

J » D9 Wydh < tuJ :O (%) 5, (1+(t+ i/P(g)))M r“”""i; )"

) , &
< t“p(g)’SIJO (t+7)° N dr < (rtg))
o (pa)”

(1+1t/p(g))

(78)

The following result can be obtained similar to Lemma 11.
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Lemma 15. Let a > 0. The operators t*0%e™"" and t*L¥?e~V"
are equivalent.

Proof. For a € (0, 1), we have

0 (9 drds
aral2 —tVL _ 4« —(t+r)VL
'L eV =t . JO 0,e e

=t* ” (Jm ds >a e (VI gy
sl+a r

JO r

(79)

00
=t| 00, Vigy
0
_ ~tVL
=t%07e V.

For a > 1, let a — [a] = 8. Noticing m = [«] + 1, we obtain
(L2 VL pecy [ai2] BI2 —tVE

" 0 _ _gds

_ gop a2 (_\/z)e (stt)VEg1-p B

0 s

— t:xJoo (_\/Z> [a]+le—(t+s)ﬁsl—a+[¢x] é (80)

0 N
— t:xJOO (_ﬁ) me—(t+s)\/ism—a é

0 N
— ~tVL
=t*ofe "

Define an operator D ,(f) = t*0¢ PF. Denote by D% (-, -)
the integral kernel of D ,. The following estimates are imme-
diate corollaries of Proposition 14 and Lemma 15.

Corollary 16. Let a > 0.

(i) For every M, there is a constant C, such that

|Dii(9h)| < Cu” Fy ! >_M. (81)

I+ ——+—=
(tZ + \g—zhf) (@2 ( p(g)  p(h)

(ii) Assume that 0<8’ <8 with0< ' <a. Forany M >0
there exists a constant C,; > 0 such that for all |w | <t

Cyt®

()
G+a)l2 \ ¢
(t2+|g*1h|2)< +a) t

(s am)

(82)

}Di,t(g“% h) - Di’tPf(g, h)’ <

(iii) For any M > 0, there exists a constant C,; > 0 such
that
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Cultlp(9))”
(1+t/p(g))"

<

j DL (g, h)dh

0

(83)

3. Square Function Characterizations of Hardy-
Sobolev Type Spaces

3.1. Fractional Square Functions Characterizations of
H!(H"). Define

172
ewino=([],,, IPasror )
B(g.t

00 t 21 dhdt 1/2
I, 2
. JW (W) Dz f (9)] t@T) .

(84)

3=}
5 %
B
o
—
~
N
=
«Q
=
ii
/N
—

In this section, we will characterize the Hardy space Hj
(H") by the fractional square functions defined by (9) and
(84). Now, we first prove the following reproducing formulas.

Lemma 17. Let o > 0.

(i) The operator Q, defines an isometry from L?(H")
into L?(U", dgdt/t). Moreover, in the sense of L*(IH"

>

N
£=C,lim lim J (Q{;’t)zf?. (85)

e—>0N—00

(ii) The operator D, defines an isometry from L?(H")
into L?(U",dgdt/t). Moreover, in the sense of
L*(H"),

f=C,lim lim J (Dfm)zf? (86)

e—>0N—o00 e

Proof. The proofs of (i) and (ii) are standard and can be
deduced from the spectral techniques. For completeness, we
give the proof of (i) and omit the details of the proof of (ii).

Since e 'L = [ ¢"AE(), we have

t2 ﬁ e—sL

ds 5

s=t

=—t2Le"2L=—J e M dE(L).  (87)
0

11
Thus, for all f € L*(H"), we get
0 dtd
Jouaf 3= [ letnio)f
u Jo t
_[® L \2 dt
0 <( ) f’f> t (88)
— 0 |:J0 t4a/\2a€2t2/\?:| dEer(/\)

= CallfII5-

For the second part, it suffices to show that, for every pair
of sequences n, — co &g, — 0,

ny+m dt & dt

. I 2 T L 2 _

b [ QG [ (@) 0wz,

(89)

Indeed, if (89) holds, we can find h € L*(H") such that

limkaoof:: (QLf )*(dt/t) =h. Therefore, it follows from a
polarized version of the first part that for g € L*(H"),

dt
t

(h, g) = lim J (Quf> Qi9)

©0 d 90
= L <th,tf’ Qfe,t9> Tt 0

=Culf 9)

which implies h = C,f. To prove (89), we use again the func-
tional calculus to deduce that

2

00
SJ
5 0

Computing the integral inside one yields [ (1 +2Ang)

2 dt

Jnk ' (QLf) " dE; ;(A).

g

J””m o) 20,200 ?

ny

(o1)

e‘z’\”idEf)f(/\)asnk — 00, which by dominated convergence
tends to 0. Observe that the last step makes use of the fact that
0 is not an eigenvalue of L because V(g) > 0 for almost every
g, and (Lf, f) > (Vf,f) >0 unless f = 0. One proceeds simi-
larly when ¢, — 0.

The following boundedness of square functions can be
deduced from the spectral theorem immediately.

Lemma 18. Let a > 0 and A > Q/2.

(i) The operators @y ., Oy, and gy, are bounded on
L?(H"). Moreover, there exist constants C, C, and
C, such that ||gyof |2 = Cllf 2 Guofll- < C
1112 N18Eanf 12 < Coll £l

(ii) The operators @p,, ®p, and g, are bounded on
L?*(H"™). Moreover, there exist constants C, C, and
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C, such that |gpfll;2=Clfll2 1Gpfll2 < C;
(RAIFES ”g;,a,/\fHLZ <GClIfll2

Proof. We only prove (i), and (ii) can be done similarly. For
Q. using the reproducing formula on L*(H"), we can get

© dt
||9H,o¢f||iz=go <Q§,tf’ Q:fxf>7
7 L \2 dt
- 0 <(th,t) f’f> t (92)
«© —ima © 420 212 dt
= e J t A e — dEf)f(A)
Jo 0 t
=C||flz:-
For & ,, we have
©0 1 dhdt
ISua = [ [ | 0| IQEus 0 S
o Jur 112 )i t
0 dhdt
<[] 1eks@f S = lan I
0o Jur
<G|l
(93)

For gy, the relation: gg,a’J(g) <CBy,(f)(g) indi-
cates that ||g; 1 f1l,. < Gl fl 2

Proposition 19. Let a > 0 and A > Q/2.

(i) There exists a constant C such that for any function f
which is a linear combination of H] -atoms

H(gH,afHLI < CHf”H}_’

QH,JHLI < CHfHH}_’

il < CIf M-
(94)

(ii) There exists a constant C such that for any function f
which is a linear combination of H} -atoms

1Safll,s < Uil

|9P,af||Lz < CHfHH}_’

gl*’,oc,/\HLl < CHfHHi
(95)

Proof. We only prove (i), and (ii) can be dealt with similarly.
Firstly, by Lemma 18, we can get ||gy ,(f)|l;> = C||f| ;2. For
f €H}(H"), it holds an atomic decomposition: f = 2 €ia;.
Then,

Journal of Function Spaces

2
dhdt
t@+l

1/2

SuN@=([ [ [T e@a)m
B(g.t)
0 gt j

<2 161®h(a;) (9)-
J

(96)

So we only need to verify that 8 ,(a) is in L' (H") for
any Hi—atom a uniformly. By Lemma 18,

0 dhdt
HcsH,a(a)Hizsj J QL a(m) [
0 H" t

= ||8ea()||7: < Cllall}:
< C|B(go,r)|_1.

(97)

Write |8 ,(a)|l, =A + B, where A= fB(g ) |®y a(g
)|dg and B= ij o) |®y .a(g)|dg. For A, it is clear that
0

12
A<|B(g, 4r)|"? J Gy .a(g 2dg
Blaoan ([, (0uaato) o)

<[B(go» 47)|"*C|B(go> )| " < C.

For the estimate of B, the following two cases are
considered.

Case 1. r < p(g,)/4. By the cancelation property of the atom a
, we have ®;; ,a(g) < B, + B,, where

2 12
197" 9,172 dhdt
B = (J | (j @ (h2) - Gl g0\||a<z>|dz> t@—) :
0 lg7thl<t \ J B(gy-r)

2 12
0 dhdt
B <J | (j @ h2) - Gl go\||a(z>|dz> t@—) .
1971 gol/2 J1g~ hi<t \ J B(gyor)

(99)

For B}, since 0< ¢ < |g™'g,|/2 and |g'h| < t, we can get
|h™" gyl ~ |97 g |- For z € B(g,, r) and g € B(g,, 4r), we have
|gs 2| <r < C|g,'h|/4. Using (ii) of Corollary 12 and the
symmetry, we can get

19~ gol/2 t*
R (.
0 jgni<t \JBigor)  (t+1go"h]) ™
21g, 1\" “dndr )"
N
) ( ; > |a(z) | dz> t@T)
<o Jlglﬂomj 2o (1‘)25' dhdt 2
sCy o g hl<t (t+|g51g | )2(Q+zx) t @l

/ - 1/2 ’
0 g tal2 "o,
<Cyy——+— —dt < — .
M -1 |G+« t25,720¢+1 —1 @+’
90" 9| 0 90" 9]

(100)
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The above estimate for B, implies that

00 ré’dg

J Bidg<Cy Z J 1 ja+d
B gy dr) k=2 J2hrslgig <2 [gl gy

0o 0 (2k+1 )@

<Cu ).
k=2

(101)

2k |@+5'

Next, we estimate B,. Since |z g,| <7 < |g 7' g,|/2 <t, the
estimate

00 to(
(e a
’ M( lg~ gol/2 Ig‘hl<t( Blgyn) (t+lgy )
1/2
|z~ g, | dhdt
(8 ) 22

o 2 20 dhdr\
<Cy J B J B (?) 1 (G+a) 1Q+1
g~ goli2 J g hl<t (t+1go hl)

’
Cu 0

T g90% 1970 g,

(102)
implies that
o
B (g4 9 g0lz4r |97 G
Case 2. p(g,)/4<r<p(g,). In this case, we write
(844a(g))* =D, + D, + D5, where
2 dhdt
2
D, = J Q) s
0 Jigthi«e
197 90114 > dhdt
D, = J {Qéyta(h)‘ a1’ (104)
2 lg-thi<t t
o 2 dhdt
D3 = J ‘Qéyta(h)‘ t@T .
lg7'g,l/4 J |g1hl<t

We first estimate the term D;. Since |g ™' g,| > 4r, |g;'2|
<rand |gth| <t<r/2, |h' g,| > 7r/2. For z€ B(g,, 1), |27
9ol <7 <|g7'g,|/4. Using the triangle inequality, we apply
(i) of Corollary 12 to estimate D, as follows.

2
712 t* dhdt
DISCMJ J J —————la(z)ldz | &t
o Jigtni<e \JBeg,n (t+lg7'h 1) t

r/2 t2¢x dhdt
SCMJ J (@+a) $@+1

o Jigtn<t (t+lglg, I)

C

r/2
< 7Mm 5 J o ldt < 7(:”’2@ .
19790 Jo 197 g0

(105)
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For D,, since z € B(g,, 1), Iz g, | <r < p(g,), then p(z)
~p(g,) ~r. We have

197 g5l/4
D, < cM[ J
lg- hl<t

(J la(z) | dz ) dhdt
s T >@*“ (T+ Wp(h) + (tp2)") T

c Fg gom J 2 (1 t )ZM dhdt
< + —_
M i<t (t+lg 2@\ p(gy)) 19
|g ] |/4 t20¢ 1 C 2M
< CMJ 0 t TG S ) Mrzsz :
197" 9] 197" 9ol

(106)

At last, we estimate D;. For |z7!g, | <r < p(g,), we have

p(g,) ~ p(2). Then, we can get
D;<Cy, J
1971 g,l/4 J |g hi<t
e la(z) | dz * dhdt
' ) (Lt (tp(h)) + (tlp(2)))T ) T
Blgyr) (t+lh'z]) " (1+ (tp(h)) +(t/p(2)))

o
<C J
= ~M

1971 g,l/4 J |g~ hi<t

FNM ? dhdt
. (1 + ) s |a(z) |dz T
B(gyr) P(90) (t+ln'z]) t

B TZM 00 1 B CMTZM
T M gig, T gg M

] |g’lg0|/4 t2M+1
(107)

The above estimates for D;, i = 1, 2, 3, indicate that

| Suatgags Y, |
B k=2 J2kr<igigyl<2ktr

- [Di*(9) + D;)*(9) + Di*(g)|dg < C.
(108)

Now, we give the following characterizations of H} (H").

Theorem 20. Let a>1/2 and A > Q/2. The following asser-
tions are equivalent:

(i) f € Hi (H");

(i) f € L'(H") and gy,,(f) € L' (H");
(i) f € L'(H") and ® (f) € L'(H");
(iv) f € L'(H") and gy, (f) € L' (H")

Moreover, for every f € H} (H"),

1 ez ~ WA+ 8eaa O, ~ 1AL + 1S (D]

(109)
~f 1l + l8rar O]
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Proof. By Proposition 19, for f € H} (H"), we know that gy,
(F) €L "), 8y, (f) €L (L), and g (f) € L) (E
respectively.

For the reverse, we first show that for &, ,(f) € L' (H"),
f € Hi(H"). Assume that f € L'(H") N L*(H"). When G,
(f) € L'(H"), we can see that

1/2
| 16uesanaa=[ ([7] QL PRt} gy,
0o Jegn e

(110)
which implies that Q},f(g) € T}, where Q% ,f(g) = [, Q&
(g.h)f(h)dh. By Proposition 8, Q% f(g)= Zk/\kak(g, ),
where a,(-, - ) are T-atoms and = | A; | <co. Assume that

the atom a(-, - ) is supported on B(g,, r). By Lemma 17,

flg)= Cf” Q (kz May(9, t)) ? = L ATilg) (1)

where Ty(g) = [ QL,a,(g,t)(dt/t). For simplicity, we

denote T (g) by T(g) for k=1,2,---. Write
sup|eT(g)] (sup e T(9) I) X
>0 ! >0 !

. (112)

(SE(? e T(g) |> X5y

- =1, +1,,

where B* = B(g,,2r). For I;, we use Holder’s inequality to
deduce that

di\ -
7= s [ ([ Qheatot 7)«5
lgl,<1J H"
< sup (ij )
lloll,<1 0 JH”" (113)
. 00 L ) dgdt 1/2
(L JH" |Q;0(9) T)

< sup [B[""¢||, < |B| """,
I¢l<1

which gives I, < |B*|"*|B|"* < C.
Now, we deal with I,. For s> 0, by functional calculus
and Proposition 2.9, we have

o dt dAdt
(] a0 )

«© sza K , Al «
Jo .[0 5+t+/\}_t2 9t) Tt

= UO t2a|asaKsL+t|S:t2a(g’ t) T‘
©  aht)|  dhdt
CJ 2 —1 Q+a ¢
o ((s+t*)+lgthl)

<

(114)
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When h € B(g,,r) and g€ (B
g !> and

e[ )
0 ’ t

*), we have |[g7th|~ | g7

< C|g,1g0 }*(@+IX/2)

T 1/2
. ( tza_ldhdt>
0JB

([ oy

< C|B|71/2|g—1go|—(@+“)
T 1/2
. ( tz“ldhdt>
0JB
< Cr“|g_1go ’_(@M).
(115)
Finally, we get
IZSJ L _ag<c. (116)
B(g0r) 197" 9o

When f € Hj (H"), let @H’a be the bounded extension of
Gy, (f) from L* N H}(H") to H} (H"). Since L* N H} (H")
is dense in Hj (H"), there exists a sequence {f,} ¢ L>*NH]
(H") such that f, — f as n — 0o in H} (H"). By Corollary
12, we conclude that & ,(f,) = ®y,(f) as n— oco. By
the definition of & ,, we know that 8y .(f,) = Gy, (f)
as n— oco. Therefore, 8, (f) =8 (f) for feH!(H"),
which gives

A1l = | i fo] < Jimn |00 (F)l
17)
= H(QH,(X I = H(gH,tx(f)HLl'

For the Littlewood-Paley g-function, it is sufficient to
prove (|8, (), < Cllasa ()l ;- For B>0, we define

@H,ﬁ(f ) by

1/2

2
dhdt

00

G1s/)(9) = (] J sy Q9

Similarly, we can prove that f € H} (H") if and only if
Oup(f) €L'(H") and feL'(H"). Moreover, ||f]|; ~

184, -
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(07e*],_pf)(g) and V(g,s)=e""F(g).
(0% L _.f)(g). Therefore,

Let F(g)(1) =
Then V(g,s)(t) =

i dt h o _—(s+r
| Wi 9wr =] |(@ee|
0 0 r=t

|l )

2 dt

t1—40¢

)@

2 tdt
(t2 _ S)I—Za '
(119)

)Za—l

When « > 1/2, we have (2 —s <11 Hence,

Supro V(g s)(t)Pt** dt < Jm ‘ (a;*e%}r:tz f) 9) ‘mefl g
0

= (8naf(9))*
(120)

Let X =L?*((0,00), t**'dt). Then, sup,,|e~tF(g)|x <

dn.of(g) € L'(H"). Therefore, F € Hy(H"), where Hy (H")
can be seen as a vector-valued Hardy space (cf. [30]). This

shows that @?F(g) € L'(H"), where

- o0 dhdt
®?F<g>=<J J, o e ||§t@ﬂ> - (2
0 Jighl<at

We can assume that 1/2 <« < 1. Then, the identity (6)

gl\/es
=C J

9,KL, . tz) a b *dadb

B“KL

t=s2 SSStI

(1] )

a+t ‘ g:sz>

C

aiK/HsH ‘S 12, t:Sz> Al_zadl

cm 0K o], e )b dadb

(122)
When a > 1/2, we get 97 KE|,_,0°KE|_» = 07°KE,, | 2t
. Via integration by substitution, we can change the orders of
integration to obtain

Gx 2_® 202 5L 2 % Vdsdhdt
[(92 F(g)] 7J0 Lg 1h|<2tJ ‘t 9% | h)(s)| e+t

. J jf "2 J 02| f(h)f ts** dhdtds
> € —_—
0 Jo g ih<VET =t (12— g2)lrar2e
) j\/‘ 12

J |02t | _ f(h)[*t*1"Cs*  dhdsdt
0 lgthl<t =

e[ et ol
g~ hl<t = s
~ 2
=¢(6./(9)) .
(123)

15

which implies &, ,(f) € L' (H"), and therefore, f € H} (H").

Since (¢/(lg ' h+t))™* > 272" in the cone I'(g) = {(h, t): | g~
h|<t},wehave

) ¢ 21
G1alf)(9) < UW ()
<24}, (f)(9)-

1/2
o dhdt
Qi (h)? t@ﬁ]

(124)
This completes the proof of Theorem 20.

Theorem 21. Let > 1/2 and A > @/2. The following asser-
tions are equivalent:

(i) f € Hi (H")

(i) f € L'(H") and gp,(f) € L' (H")
(iii) f € L'(H") and ®,,(f) € L'(H")
(iv) f € L'(H") and g ., (f) € L'(H")

Moreover, for every f € Hi (H"),

112 O~ W1l + [[SpalHI,
Ny

Proof. This theorem can be proved similarly as the proof of
Theorem 20, so we omit it.

~MIfll; + [lgpa

125
~[I£1l; .

3.2. Fractional Square Functions Characterizations of
H[*(H"). In this part, we will give the characterizations of
Hardy-Sobolev space H}“(IH") by fractional square func-
tions. Firstly, we give the following Lemma, which will be
used in the sequel. Similar to ([31], Proposition 2.4), we can
express the operators d%e 'L and 97e™"V" as follows.

Lemma 22. Let o> 0.

(i) For every f € L*(H"),

e f = ei”"‘J A (VYf, £ 0. (126)
0
(ii) For every f € L*(H"),
3te IS = ef"“J APEIGE (VY t>0. (127)
0

Proof. Let E(A) denote a resolution of the identity. It follows
from the spectral decomposition:

e 'tf = J eMdE;(A) YV fel*(H") (128)
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that

affe’th=e”'"kJ NeMdE (), k=1,2,--.  (129)

0

By (6) and (129), we have

a —th

% pke N gE, (s, (130)
I'(k-a) Jo Jo ( )

where k is the smallest integer satisfying k > . Then, the inte-
gral

J J /\k t+sA|dE( )l k—a—lds (131)
0

0

is absolutely convergent. By the fact that ||8‘t"e’th I, <C,
|Ifll,»/t% the integral in (6) is absolutely convergent in
L*(H"). Hence, by (130), we can get for g € L*(H"),

et (o] [ e

e*lﬂ()( 00
— Ak (t+s) AdE 2 Sk—tx—lds
I'(k-a) Jo Jo ( )
e—imx o k —(t+s)A k a-1
= Ae dsdE
rw—mJOL ro

- <e-imL Ae M dE;(2), g>,

which implies (i). The assertion (ii) can be obtained by the
aid of functional calculus similarly.

(132)

The following result can be deduced from Lemma 22
immediately.

Proposition 23.

(i) LetO<a<k ke Nand > @Q.Iff € D(L*) n Hi (H")
and L*f € L*(H") N Hi (H"). Then,

I F Nl ~ | Frea O~ (1Sl ~ | Gran ()| - (133)

(i) Let0<a<k ke Nand A > Q. Iff € D(L*) n H}(H")
and L°f € L*(H") N HL (H"). Then,

HL’ Hgkal )HL"
(134)

1% Wy ~ gia GO ~ N1Skal

Proof. We only prove (i), and (ii) can be dealt with similarly.

Journal of Function Spaces

Using Lemma 22, we can get

o et e L) = e () = OKS

s=t? (thf) = L

(f),

2

(135)

therefore,

= Si () Blaa (LF) = g ()-
(136)

8 o(Lf) = 8o (f), SiLa(L7)

Using Theorem 20, we can get

ILF e ~ (| 8Ea ) s ~ [1SEa) ] ~ |8t ()] (137)

Let G, = {f € H! (H"): L*f € C®°(H")}. Since C°(H")
is dense in H}(H"), G, is dense in H*(IH"). Note that
G, ¢ D(L*) N H;(H"), and

L*G,; = C®(H") c L*(H") n H} (H"). (138)

Using Proposition 23, gf!, S, and gjlzl’x’f)L can be extended
to Hy*(H") as bounded operators from H;*(H") to L' (H").
Let g be the extension of g, to H*(IH") as a bounded

operator from Hy*(H") to L' (H"). Then, there exists C > 0
such that for f € HP*(H"),

11y + |8, = €I e (139)

Below, we give the square function characterizations of
the Hardy-Sobolev space H,“(IH") as follows.

Theorem 24. Let o > 1/2, k € N{0}, and A > @. Then, the fol-
lowing assertions are equivalent:

(i) f € H*(H")
(ii) f € H{(H") and g (f) € L'(H") for k>«

(iii) f € HL(H") and S (f) € L'(H") for a<k—- (@ +1
)2

(iv) f € H{(H") and gi", (f) € L'(H") for a <k — (@ +
1)/2

Moreover, for every f € HP*(H"),

g~ 1 Wy + OO ~ 1 g+ [1SEa ()]

~ Wy * Nl gier OO -
(140)

Proof. We first prove |[f[l + l1gt',(£)l, < Cllfll e By

(139), it is sufficient to prove g (f) :gzl;(f) For NeNN
and h € H} (H"), by the subordination formula, we obtain
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o~ B
SiKi(h)(g)|=Ct * quP|Tf2/2(h)(9)|~ (141)
Then,
5 2d 12

00 t

tZk_Zafo h hiad

(JW K| o) t)
(142)

- 12
<C (J t14adl‘) sup ’ TzLZ/z (h)(g)|
1N t>0

< CN** ?EOP | sz/z(h)(g) | :

By the definition of H} (H"), we conclude that the oper-

ator
o0 2 dt
h— J gl & (143)
UN t

is bounded from Hj (H") to L'(H"). Therefore, if f = L™*h,
where h € H} (H") N L*(H"), we have
2
dt
t
Ll

H (JI/N
2 12
_ r" dt
UN t X

L
<Cllhll

k
k=20 0
osk ™ *

s=t?

1/2
ak
t2k—2a KL

Sk (L))

2

s=t
k- 144
2w O L (144)

£ ask—a s

(h)(9)

s=t?

where the positive constant C is independent of N € N. Let-
ting N — oo yields

A

< Clf] e

2 172
dt
t

1

(145)

ak
2k—2a L
t 35 K;

et

Since G, is dense in H}“(H"), for f € Hy*(H"), we

obtain
(

et

2 172
dt
t
Ll

(146)

ak
2k-2a L
t 5 K,

(Ee]»

s=t?

=l

The proofs for S, and gg;:A are similar, and so is
omitted.
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For the reverse, we only deal with the case of g, for
simplicity.
Step I. We prove

Ha?KSL|S:t2(f)||H; SCt_ZOC”fHHi' (147)

For m € N and m > «, by (141), we obtain

supT} (KL . (/)(9))

B>0
L «© m—a—1 am L
T, T dan e

<

(o))

s=t?

c (148)

iggj; ST s ())(9) (£ +5) s

00 Sm—(x—l

sCap|th (o] gt

<Cr fthP’Tt%/z(f)(g)’

Therefore, (147) follows from the definition of H} (H").

Step II. Assume that f € H} (H") and g’ (f) € L' (H").
Let {f,} be a sequence in C®°(H") such that lim, ,_f, =f
in H}(H"). For fixed t>0, set u(t,-)=e"t(f)(-) and
u,(t,-)=eT(f, )(-), ne N. Then, u(t,-) and u,(t,-) belong
to Hj (H"). By Lemma 22 and (147), we have

0f1, (5, )| = Lu, (£%,+) € HL (H"), (149)

which implies that u,(t,-) € H*(H") with ||u, (¢, ')HHk,a =
o ()1 + 10724, (5, )|l - By (147) again,

lim |07 u,,(s, )| — OF u(s, =0. (150)

n—00 ) |5:t2 ||Hi

This indicates that {u,(t*,-)} is a Cauchy sequence in
H“(H"). Therefore, there exists v(t,-) € Hy*(H") such that
lu, (£, ) = v(t, )| e = O as n — 00. Hence,

L
l|lu, (£, ) — v(t, )l — 0 as n— oo, which yields u(t?,) =
v(t,-) € Hi’“(]H”) and
n— 0o.

Step III. Noting that u,(#,-) € L*(H") n H} (H") and
L*u,(#*,-) € L*(H") n H; (H"), by Proposition 23, we get

4, (£2,2) = (%, ) | e > 0 s

(%) [+ [t (D)~ [ () e (251)

Letting n — co, we have ||u(#?, Mgpe < Cllu(t, ) +
||g{c—{(xu(t2> ) ||1) Since
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i . ak ds 172
o= ([} 2 Sat) e or)
i k - < 172
= (JO e—tzLSZk—Zu% L ) z(f)( ) 2%)
2 172
P KJO Ph-2agk L . () %) ] 9),

(152)

we get [|gil (u(t, )|, < llgi',(f)]l,- Furthermore, this gives

(2, | e = C (1) |, + 18], )-

where C > 0 is independent of ¢. By (153), we know {u(#?,-)}
are uniformly bounded in H;*(H"), i.e., {L*(u(t?,-))} are
uniformly bounded in H} (H"). Since H} (H") is a Banach
space, we can find g € H; (H") such that L%(u(t%,-)) — g
as j— 0o, where {u;(t*,-)} is a subsequence of {u(#*,-)}.
Since Hj (H") is the dual space of VMO, (H") and C°(H"
) is dense in VMO, (H") with norm of VMO, (H") (cf.
[32]), we get lim;_ (L%(u;(£,)), §) = (g, §).¢ € C*(H").
Let h=L""g. Then, he HI“(IH”) and lim;_, ((u;(£%,-)), ¢)

= (h, ¢),¢ € C°(H"). By the arguments analogous to ([33]
page 776), which relay on the decay of the kernel of e*f, we
can get

(153)

lim(u(2,),6)=(f,4), $eCO(H).  (154)
It follows that f =h and
e < C (W1l + gDl ). (155)

This completes the proof of Theorem 24.

For the Poisson semigroup {Pr}, , we define the frac-
tional square functions as follows:

%m;@
Stalf) = (‘:O J.BW)
&) = (Jw J, o)

P}
otk

12
* dt
Lf ) , kza>0;

172

Wj,kwm;

1@+1

LOkPt
otk

-f

k
kfaa I%
otk

2dhdt>2
— |, kza>0.

1@+1

(156)

Similar to the proof of Theorem 24, we can apply (ii) of
Proposition 23 to establish the following characterization of
Hp“(H") via the fractional square functions related to the
Poisson semigroup. We omit the proof.
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Theorem 25. Let a>1/2, ke N\ {0} and A> @. Then, the
following assertions are equivalent:

(i) f € H*(H")
(ii) f € H{(H") and g ,(f) € L'(H") for k>«

(iii) f € HL(H") and S;,(f) € L'(H") for a<k-(Q+
1)/2

(iv) f € H(H") and g,
1)/2

(f) e L'(H") for a <k - (@ +

Moreover, for every f € HP*(H"),

Hf”H”“ ~ ||f||H1 + ||g5<)oc HU ~ ”fHHi + ||S£,a(f)HLl

||f||H1 + Hgka/\ )HLI'
(157)

3.3. Equivalent Norms of Hardy-Sobolev Spaces. We define
the following Hardy-Sobolev space #*(H") as the set of
all functions f € Hj (H") such that (I + L)*f € H; (H"), with
the norm

I e = N+ L) Fll gy + 1S - (158)

The purpose of this section is to characterize % “(H")
by the fractional square functions defined by (10) and
(156), respectively. As an application, it follows from the
fractional square function characterizations of #}*(H")
and H;*(H") that the two Hardy-Sobolev spaces are
equivalent.

Let E; be the spectral decomposition of the operator L.
For a bounded function M on (0, o), the spectral multiplier
M(L) is defined by

M(L)f:ijWEL(A)f, feDM(L),  (159)

0

where D(M(L)) denotes the domain, i.e.,

00

D(L)) = { £ € L) [ MO 7. ) <oo |

(160)

0

We say that a function M on (—0c0, + 00) belongs to the
space C(s), s> 0, if

i sup ‘M(k>

A)‘<oo, seZ;

||MHC(S) = [S]

+ z sup ‘M(k)
k=0

HMQSD A) ’<oo, s¢Z.

Lip(s-1s)
(161)
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We have the following version of spectral multiplier
theorems.

Proposition 26 (see [34], Theorem 1.11). Let M be a bounded
continuous function on (0, o). If for some &> 0 and a non-
zero function ¢ € C2°(0,00), there exists a constant C > 0 such
that for every t > 0,

()Mt - )HC(@/2+5) <G (162)

then the operator M(L) is bounded on H! (H").
Let a, 3> 0. For A > 0, define

A% (I+2A)"

MI(A):W) Z(A):T)La’

(163)

Then, it is clear that M;,i=1,2,3, are smooth and
bounded on (0, 00). It follows from Proposition 26 that

Proposition 27. Let o, 3> 0. The operators M;(L),i=1,2,3,
can be extended to bounded operators on H} (H").

Theorem 28. Let O<a<k, keN and A>Q . If
feD((I+L)")nH}(H")and (I+L)"f € L?(H")nH; (H"),
I+ L) F Ul ~ WMz + |9 OO
N e+ 1ISEa O~ 1 e + [ Gican (-
(164)

Proof. We give the proof of ”(I“LL)af”HiNHf”HiJF

||ng)a(f)||L1. The proofs for the cases of SkHa(f) and nga*A(f)
are similar. By Proposition 27, we know that the operators L*

(I+L)™ and (I+L)*(I+L%) " are bounded on H!(H").
Then, following from Proposition 23, we obtain

NI+ L) gy = ||+ L)@+ L2 1+ L9
<141
<C(If My + 1L 1)
<C(Iflly + N8O, )-

H,

(165)

For the reverse, we take the function M, (1) =A%(1+1)™,
A > 0. For any r € (0,00),

T [+

L AdE, () = JO ﬁ (14 0)%dE,(\)f ”

r

O] RERRVWLAE
0

Letting r — co, we get L*(f)=M,(A)(I+L)*(f). By
Proposition 27 again, we obtain ||L%f ||y < Cl[(I+L)*f |z,
and

My(3) = (B+1)".
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Il = NI+ L)+ L)l < CHE+ L) |- (167)

Theorem 28 follows from Proposition 23.

Similar to Theorem 28, we also can obtain

Theorem 29. Let O0<a<k, keN and A>@Q . If feD(
(I+L)?)nHL(H") and (I + L)™*f € L>(H") n HL(H"),

1+ L)F |y = 1S s + 1| 9a )]

Wy + IS6a N2 ~ W Vg + gma (-
(168)

Let

G, ={f € H[(H"): (I+L)*f e CX(H")}. (169)
Since CX°(H") is dense in %) (H"), G, is dense in
7 1*(H"). Note that G,; < D((I+L)*)nH}(H"), and
(I+L)*G,; =C®(H") cL*(H")nH(H").  (170)
Using Theorem 28, git., S, and gi-", can be extended to
HP®(H") as bounded operators from % “(H") to L'(H").
Let gl be the extension of gi!, to #[“(H") as a bounded
operator from 1 (H") to L'(H"). Then, there exists C > 0
such that for f € 71 (H"), [|f | + g5 (N, < Cllf |71
Similar to Theorems 24 and 25, we will give the following

characterizations of the Hardy-Sobolev space 9 [ (H") as fol-
lows. We omit the proof.

Theorem 30. Let « > 1/2, k€ N\ {0} and A > @. The follow-
ing assertions are equivalent:

(i) f e o (H")
(ii) f € H{(H") and g (f) € L'(H") for k>«
(iii) f € H{(H") and S ,(f) e L'(H") for a<k-(Q+

)2
(iv) f € H{(H") and g7, (f) € L'(H") for a <k — (@ +
)2

Moreover, for every f € F1*(H"),

A e~ 1L+ GO s~ Ly + 1S
~ ez + [l (O -
(171)

Theorem 31. Let a > 1/2, k€ N\ {0} and A > G. The follow-
ing assertions are equivalent:

(i) f e 1 (H")
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(ii) f € H{(H") and g, (f) € L'(H") for k>«

(iii) f € HL(H") and S (f) € L'(H") for a<k—- (@ +1
)2

(iv) f € H{(H") and g;;,(f) € L'(H") for a<k— (@ +
1)/2

Moreover, for every f € Z}*(H"),

1 ez~ f Ly + NGO s = 1A ey + 1S

NS Ny + 1gEan O] -
(172)

Theorems 24, 25, 30, and 31 indicate the following equiv-
alence relation:

Corollary 32. Let a > 1/2. % [*(H") = HP*(H").
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