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Laplace transform is a powerful tool for solving differential and integrodifferential equations in engineering sciences. The use of
Laplace transform for the solution of differential or integrodifferential equations sometimes leads to the solutions in the Laplace
domain that cannot be inverted to the real domain by analytic methods. Therefore, we need numerical methods to invert the
solution to the real domain. In this work, we construct numerical schemes based on Laplace transform for the solution of
fractional-order Volterra integrodifferential equations in the sense of the Atangana-Baleanu Caputo derivative. We propose two
numerical methods for approximating the solution of fractional-order linear and nonlinear Volterra integrodifferential
equations. In our scheme, the inverse Laplace transform is approximated using a contour integration method and Stehfest
method. Some numerical experiments are performed to check the accuracy and efficiency of the methods. The results obtained
using these methods are compared.

1. Introduction

Fractional calculus has a large number of applications in
engineering andmathematical sciences [1–5]. Problems from
engineering and other sciences which involve derivatives or
integrals of noninteger orders are large in number and still
growing. That is why the research community has showed
great interest in the area of fractional calculus. One can find
various applications of fractional calculus in numerous phe-
nomena such as frequency-dependent damping behavior of
viscoelastic materials [6], control theory [7], economics [8],
mass and heat diffusion processes, electromagnetic theory,
biological species [9], robotics, and many other engineering
problems [10]. Accurate models of systems under consider-
ation can be obtained using fractional differential and inte-
grodifferential equations [11]. Many remarkable works on
fractional calculus are available in literature for the approxi-

mation of the solution fractional differential or integrodiffer-
ential equations, for example, the sinc-collocation method
[12], Legendre collocation method [13], Laguerre polyno-
mials [14], Adomian decomposition method [15], Varia-
tional iteration method [16–18], and their references.

Numerous essential phenomena in nature are resolved
using the solutions of fractional integrodifferential equations
[11, 19]. For example, one can find applications of fractional
integrodifferential equations (FIDEs) in electromagnetics
[20], heat conduction [21], etc. Due to the wide range of
applications, FIDEs have attracted researchers. Therefore, a
large number of analytic and numerical methods have been
developed for finding the solutions of FIDEs [22–26]. For
example, the authors [27] utilized the fractional differential
transformmethod for the solution of fractional integrodiffer-
ential equations. A Legendre wavelet method [28] is pro-
posed for the solution of FIDEs. In [29], the analytic
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solution of FIDEs is obtained using the homotopy analysis
method. The author in [30] obtained the analytic solution
of FIDEs using the fractional residual power series method.

In many cases, the analytic solutions of fractional differ-
ential or integrodifferential equations are hard to obtain, so
numerical methods must be used. In this connection, the
researchers have developed numerous numerical methods.
For instance, the authors in [19, 31] have solved FIDEs using
the reproducing kernel Hilbert space method. A hybrid collo-
cation method [32] is proposed to solve the FIDEs. The
authors in [33] solved the first-order Volterra equation by
the collocation method. The author in [34] utilized the
shifted Chebyshev polynomial and least squares method for
the approximation of the solution of FIDEs. Mahdy and
Shwayyea [35] obtained the approximate solution of FIDEs
using the shifted Laguerre polynomial pseudospectral
method and least squares method. The authors in [36]
approximated the solution of Volterra-type FIDEs via Ber-
noulli wavelet approximation. In [14], Laguerre polynomials
are utilized to approximate FIDEs of Volterra type. More
work on the solution of FIDEs can be found in [31, 33, 37,
38] and their references.

There are various definitions of fractional derivatives
such as Caputo-Liouville’s and Riemann-Liouville’s [11,
39]. These derivatives have certain disadvantages due to non-
local and nonsingular kernel functions involved in these
derivatives. In order to avoid these difficulties, it is better to
use the ABC derivative. The ABC derivative contains a non-
singular kernel and therefore can model a phenomenon
which cannot be handled by fractional-order derivatives hav-
ing singular kernels [40]. Some recent articles on the applica-
tion of the ABC derivative can be found in References [41–
45]. In the present work, we consider a FIDEs of Volterra
type with the ABC derivative of the form

ABC
0 Dβ

t ζ tð Þ =H t, ζ tð Þ,T ζ tð Þð Þ, ð1Þ

T ζ tð Þ =
ðt
0
B t, τð ÞQ ζ tð Þð Þdτ, ð2Þ

ζ 0ð Þ = α, ð3Þ
where β ∈ ð0, 1�, 0 ≤ t, τ ≤ 1, α ∈R,H ,B,Q ∈ C½0, 1�:

Here, ABC
0 Dβ

t is the ABC derivative of order β.

1.1. Preliminaries

Definition 1. The ABC fractional derivative of order 0 < β < 1,
of ζ ∈ S1ða, bÞwith base point a at t ∈ ða, bÞ, is defined as [46]

ABC
0 Dβ

t ζ tð Þ = M βð Þ
1 − β

ðt
a
ζ′ sð ÞEβ

−β
1 − β

t − sð Þβ
� �

ds, ð4Þ

where S1 is a Sobolev-space of first-order fitted with L2

-norm defined over the Ω ⊂R defined as follows:

S1 Ωð Þ = ζ ∈ L2 Ωð Þ: ζ′ ∈ L2 Ωð Þ
n o

, ð5Þ

where MðβÞ is defined as follows:

M βð Þ = β

Γ βð Þ + 1 − β ; ð6Þ

also, EβðtÞ is a one-parameter Mittage-Leffler (ML) function
defined as

Eβ tð Þ = 〠
∞

m=0

tm

Γ mβ + 1ð Þ , β > 0,−∞ < t <∞: ð7Þ

Definition 2. The ABC fractional integral of order 0 < β < 1 of
ζ ∈ S1ða, bÞ with base point a at t ∈ ða, bÞ is defined as [46]

I
β
t ζ tð Þ = 1 − β

M βð Þ ζ tð Þ + β

M βð ÞΓ βð Þ
ðt
a
ζ sð Þ t − sð Þβ−1ds: ð8Þ

Definition 3. The Laplace transform of a piecewise continues
function ζðtÞ is defined as

L ζ tð Þf g = bζ sð Þ =
ð∞
0

e−stζ tð Þdt: ð9Þ

Definition 4. If 0 < β ≤ 1, then the Laplace transform of the
ABC derivative is defined by

L ABC
0 Dβ

t ζ tð Þ
n o

= M βð Þsβbζ sð Þ −M βð Þsβ−1ζ 0ð Þ
sβ 1 − βð Þ + β

: ð10Þ

2. Proposed Method

We provide a description of our proposed schemes. Our
numerical scheme has three main steps. In our first step, we
apply the Laplace transform to the given model, with which
the problem is reduced to an algebraic equation. In the sec-
ond step, we solve the reduced equation in Laplace space
for the unknown. Finally, the solution of the original problem
is obtained using numerical inversion of Laplace transform.
In this work, the numerical approximation of Laplace trans-
form is obtained using two schemes. One is the contour inte-
gration method (CIM), and second is the Stehfest method
(SM). We discuss these methods in the next sections. First,
we apply Laplace transform to Eq. (1); we get

M βð Þsβbζ sð Þ −M βð Þsβ−1ζ 0ð Þ
sβ + 1 − sβ

� �
β

= Ĥ , ð11Þ

which can be rearranged as

bζ sð Þ = Ĝ sð Þ
sβM βð Þ , ð12Þ

where

Ĝ sð Þ =M βð Þsβ−1α + Ĥ sβ 1 − sβ
� �

β
� �

: ð13Þ
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In order to obtain the solution of problem (1), we apply
Laplace inverse on (12), and the Laplace inverse is then
approximated using the contour integration method and
the Stehfest method, which are discussed as follows.

3. Contour Integration Method (CIM)

In CIM, we represent the solution ζðtÞ of (1) as Bromwich
integral:

ζ tð Þ = 1
2πι

ð
Γ

estbζ sð Þds, Res ≥ ϑ, ð14Þ

where ϑ ∈ R and Γ is an initially appropriately chosen line Γ0
in a complex plane parallel to the y axis, with Ims→ ±∞.
Then, in (14), ζðtÞ is the inverse transform of ζbðsÞ, satisfying
the condition that all the singularities of ζbðsÞ lie to the left of
Γ0. However, for our purposes, we assume that bζðsÞ may be
continued analytically in an appropriate way; we shall want
to take for Γ0 a deformed contour Γ in Σϑ

ϕ = f0g ∪ fs ≠ 0 : ∣
args∣<ϕg, which has asymptotic behavior in the left complex
plane, with Res→ −∞ when Ims→ ±∞, which force est to
decay towards both ends of Γ. In our work, we choose Γ as

s γð Þ = ϑ + ρ − ρ sin η − ιγð ÞÞ, γ ∈R, ð15Þ

where

0 < η < ϕ −
π

2 ,

ρ > 0,
ϑ > 0:

ð16Þ

Letting s = ς + ιζ, we see that (15) represents the left
branch of the hyperbola given by

ς − ϑ − ρ

ρ sin η

� 	2
−

ζ

ρ cos η

� 	2
= 1, ð17Þ

where ζ = ±ðς − ϑ − ρÞ cot η are the asymptotes for (17) and
s = ϑ + ρð1 − sin ηÞ is its x-intercept. It is confirmed from
Eq. (16) that Γ lies in the sector Σϑ

φ = ϑ + Σφ ⊂ Σφ and grows
into the left half plane. From (15) and (14), we get

ζ tð Þ = 1
2πι

ð∞
−∞

es γð Þτbζ s γð Þð Þs′ γð Þdγ: ð18Þ

The approximation of Eq. (18) using the trapezoidal rule
with uniform step k is given as

ζk tð Þ = k
2πι 〠

N

j=−N
esjtbζ sj

� �
sj′, γj = jk, sj = s γj

� �
, s′j = s′ γj

� �
:

ð19Þ

3.1. Error Analysis. While solving the fractional-order prob-
lem defined in Eqs. (1)–(3), the first step is the application

of Laplace transform to the given problem. The Laplace
transform reduces the problem to a time-independent prob-
lem in Laplace space, and in this process, no error occurs.
Next, the problem is solved in complex space for the
unknown, and this process also incurs no error. In the final
step, the solution of the given problem is retrieved using
the Laplace inverse. We represent our solution as integral
(18). We approximate this integral by the trapezoidal rule.
During this process, integral (18) converges at different time
rates which depends on Γ. In the process of numerical
approximation of the Bromwich integral (18), the orders of
convergence greatly depend on the step k of the trapezoidal
rule and the temporal domain ½t0, T�. For useful results and
strong convergence, a suitable temporal domain is chosen.
The next theorem gives the order of quadrature error.

Theorem 5 (see [47], Theorem 2.1). Let ζðtÞ be the solution of
(1) with bζðsÞ analytic in Σϑ

φ. Let Γ ⊂Ωr ⊂ Σϑ
φ and define

cosh ðbÞ = ðθτ1 sin ðηÞÞ−1, for b > 0, where 0 < τ0 < T , τ1 =
t0/T , 0 < θ < 1:0, and let β = θ�rN/bT . Then, for Eq. (19), with
k = b/N ≤�r/log 2, we have ∣ζðtÞ − ζkðtÞ ∣ ≤CQeϑτ1 lð∥ζ0∥+∥Ĥ
∥Σϑ

ϕ
ÞðρrNÞe−μN , for μ =�rð1 − θÞ/b, ρr = θ�rτ1 sin ðη − r1Þ/b, �r

= 2πr1, r1 > 0, τ0 ≤ t ≤ T ,lðxÞ =max ð1, log ð1/xÞÞ, and C =
Cη,r1 ,β1 : Hence, we have

errorest = ∣ζk tð Þ − ζ tð Þ∣ =O e−μN
� �

l ρrNð Þ: ð20Þ

4. Stehfest Method (SM)

In the Stehfest method, the approximate value of ζðtÞ is given
as

ζ tð Þ = ln 2
t

〠
M

i=1
wi
bζ ln 2

t
i

� 	
, ð21Þ

where the weights wi are given by

wi = −1ð ÞM/2+i 〠
min i,M/2ð Þ

h= i+1ð Þ/2b c

hM/2 2h!ð Þ
M/2 − hð Þ!h! h − 1ð Þ! i − hð Þ! 2h − ið Þ! :

ð22Þ

Solving (12) for the corresponding Laplace parameters s
= ðln 2/tÞi, i = 1, 2, 3,⋯,M:

The solution of the original problem can be obtained
using (21).

4.1. Error Analysis. The authors [48, 49] performed a large
number of numerical experiments to study the effect of the
parameter on numerical accuracy, and they summarized
there experimental work as the following: “If j significant
digits are desired, then let M be the positive integer d1:1je.
Given M, set the system precision at d2:2Me. Given M and
the system precision, calculate the weights wi, 1 ≤ i ≤ 2M,

using (22). Then, given the transform bζðsÞ and the argument
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Table 1: The approximate solutions for various values of β and t ∈ ½0, 1� corresponding to Problem 1.

t
β = 1 β = 0:9 β = 0:8 β = 0:7

CIM SM CIM SM CIM SM CIM SM

0.1 0.0998 0.0998 0.2171 0.2171 0.3349 0.3349 0.4519 0.4519

0.2 0.1987 0.1987 0.3163 0.3163 0.4312 0.4312 0.5416 0.5416

0.3 0.2955 0.2955 0.4070 0.4070 0.5131 0.5131 0.6118 0.6118

0.4 0.3894 0.3894 0.4905 0.4905 0.5839 0.5839 0.6680 0.6680

0.5 0.4794 0.4794 0.5668 0.5668 0.6447 0.6447 0.7120 0.7120

0.6 0.5646 0.5646 0.6355 0.6355 0.6959 0.6959 0.7450 0.7450

0.7 0.6442 0.6442 0.6965 0.6965 0.7376 0.7376 0.7673 0.7673

0.8 0.7174 0.7174 0.7492 0.7492 0.7698 0.7698 0.7794 0.7794

0.9 0.7833 0.7834 0.7934 0.7934 0.7925 0.7925 0.7816 0.7816

1 0.8415 0.8415 0.8286 0.8287 0.8057 0.8057 0.7740 0.7740

Table 2: For various values of β,N ,M the absolute errors corresponding to Problem 1.

(N ,M)
β = 1 β = 0:9 β = 0:8

CIM SM CIM SM CIM SM

(30, 6) 3:19 × 10−4 1:15 × 10−1 1:03 × 10−2 7:88 × 10−2 3:10 × 10−2 3:18 × 10−2

(60, 8) 5:21 × 10−6 2:56 × 10−2 1:28 × 10−2 1:64 × 10−2 3:58 × 10−2 4:30 × 10−3

(90, 10) 4:25 × 10−8 4:70 × 10−3 1:28 × 10−2 1:51 × 10−2 3:58 × 10−2 3:58 × 10−2

(120, 12) 6:69 × 10−11 1:90 × 10−3 1:28 × 10−2 1:46 × 10−2 3:58 × 10−2 3:75 × 10−2

(150, 14) 7:99 × 10−12 6:96 × 10−5 1:28 × 10−2 1:28 × 10−2 3:58 × 10−2 3:59 × 10−2

(180, 16) 1:13 × 10−13 6:41 × 10−5 1:28 × 10−2 1:28 × 10−2 3:58 × 10−2 3:57 × 10−2

(210, 18) 2:68 × 10−15 2:97 × 10−7 1:28 × 10−2 1:28 × 10−2 3:58 × 10−2 3:58 × 10−2

(240, 20) 2:55 × 10−15 5:45 × 10−6 1:28 × 10−2 1:28 × 10−2 3:58 × 10−2 3:58 × 10−2
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Figure 1: In (a), the error function for quadrature nodesN and β = 1 corresponding to Problem 1 is shown. In (b), the absolute error is shown
for β = 1; a very high accuracy is evident.
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Figure 2: In (a), the absolute error versus error estimate corresponding to Problem 1 for β = 1 is shown. From the figure, we see that the
observed error agrees with the error estimate. In (b), the plots of approximate solutions for various β are shown.

Table 3: The approximate solutions for various values of β using the two numerical schemes corresponding to Problem 2.

t
β = 1 β = 0:9 β = 0:8 β = 0:7

CIM SM CIM SM CIM SM CIM SM

0.1 -0.0999 -0.0999 -0.2177 -0.2177 -0.3360 -0.3360 -0.4535 -0.4535

0.2 -0.1998 -0.1998 -0.3194 -0.3194 -0.4362 -0.4362 -0.5486 -0.5486

0.3 -0.2993 -0.2993 -0.4149 -0.4149 -0.5251 -0.5251 -0.6279 -0.6279

0.4 -0.3978 -0.3978 -0.5056 -0.5056 -0.6056 -0.6056 -0.6961 -0.6961

0.5 -0.4947 -0.4947 -0.5914 -0.5914 -0.6785 -0.6785 -0.7547 -0.7547

0.6 -0.5891 -0.5891 -0.6718 -0.6718 -0.7435 -0.7435 -0.8034 -0.8034

0.7 -0.6799 -0.6799 -0.7457 -0.7457 -0.7997 -0.7997 -0.8416 -0.8416

0.8 -0.7658 -0.7658 -0.8119 -0.8119 -0.8459 -0.8459 -0.8680 -0.8680

0.9 -0.8453 -0.8453 -0.8690 -0.8690 -0.8808 -0.8808 -0.8812 -0.8812

1 -0.9166 -0.9166 -0.9153 -0.9153 -0.9025 -0.9025 -0.8796 -0.8796
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Figure 3: In (a), the graphs of numerical solutions for different values of β corresponding to Problem 2 are shown. In (b), the absolute error
vs. error estimates for β = 1 are shown.
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Figure 4: In (a), absolute error versus t for β = 1 corresponding to Problem 2 is shown. In (b), the plot of error versus N for β = 1 is shown.

Table 4: The approximate solutions for different values of β using the two numerical schemes N = 240,M = 22, corresponding to Problem 3.

t
β = 1 β = 0:9 β = 0:8 β = 0:7

CIM SM CIM SM CIM SM CIM SM

0.1 1.1052 1.1054 1.2491 1.2501 1.4114 1.4113 1.5894 1.5917

0.2 1.2214 1.2223 1.3893 1.3896 1.5744 1.5758 1.7719 1.7730

0.3 1.3499 1.3506 1.5383 1.5398 1.7426 1.7441 1.9558 1.9571

0.4 1.4918 1.4929 1.6994 1.6996 1.9213 1.9226 2.1492 2.1496

0.5 1.6487 1.6494 1.8749 1.8751 2.1139 2.1157 2.3560 2.3575

0.6 1.8221 1.8223 2.0667 2.0678 2.3229 2.3245 2.5795 2.5795

0.7 2.0138 2.0145 2.2771 2.2781 2.5508 2.5520 2.8226 2.8241

0.8 2.2255 2.2261 2.5082 2.5086 2.8003 2.8014 3.0880 3.0888

0.9 2.4596 2.4599 2.7623 2.7633 3.0738 3.0753 3.3786 3.3770

1 2.7183 2.7183 3.0422 3.0420 3.3742 3.3743 3.6974 3.6982
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Figure 5: In (a), the numerical solutions for various values of β corresponding to Problem 3 are shown. In (b), absolute error vs. error
estimates for β = 1 are shown.
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t, calculate ζðtÞ in (21).” According to these conclusions, the

error is 10−j+1 ≤ ðbζ − ζÞ/ζ ≤ 10−j, where M = d1:1je [50].

5. Results and Discussion

In order to check the accuracy and efficiency of the two
numerical schemes. We consider linear and nonlinear and
system of fractional-order VIDEs. In our numerical compu-
tations, the accuracy is achieved using the optimal parame-
ters. The optimal values of the parameters utilized for CIM
in our work are θ = 0:1, τ = t0/T , η = 0:15410, �r = 2πr, r =
0:13870, ½t0, T� = ½0:5,5�, ϑ = 2:0. The MATLAB command γ
= −N : k : N is used to generate the quadrature nodes for
CIM. The parameter used in our numerical computation
for the Stehfest method is M.

5.1. Problem 1. Here, we consider the fractional linear Vol-
terra integrodifferential equation [31]:

ABC
0 Dβ

t ζ tð Þ = 1 −
ðt
0
ζ τð Þdτ, t, β ∈ 0, 1½ �: ð23Þ

The exact solution of this problem is ζðtÞ = sin ðtÞ. In
Table 1, the approximate solutions of ζðtÞ = sin ðtÞ for vari-
ous values of β and t ∈ ½0, 1� using the two proposed methods
are presented, and in Table 2, the absolute errors are shown.
The plot of error function for various quadrature nodes N is
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Figure 6: In (a), the error function for t ∈ ½0, 1� and β = 1 and in (b), for different quadrature nodes N and β = 1 for Problem 3 are shown.

Table 5: The approximate solutions of ζ1 for various values of β
using the two numerical schemes N = 240,M = 22, corresponding
to Problem 4.

t
β = 1 β = 0:9 β = 0:8 β = 0:7

CIM SM CIM SM CIM SM CIM SM

0.1 0.1 0.1 0.2312 0.2313 0.3789 0.3791 0.5406 0.5409

0.2 0.2 0.2 0.3395 0.3395 0.4926 0.4927 0.6550 0.6554

0.3 0.3 0.3 0.4422 0.4422 0.5950 0.5953 0.7526 0.7529

0.4 0.4 0.4 0.5415 0.5416 0.6906 0.6910 0.8408 0.8408

0.5 0.5 0.5 0.6384 0.6385 0.7815 0.7818 0.9225 0.9228

0.6 0.6 0.6 0.7333 0.7332 0.8688 0.8687 0.9994 0.9996

0.7 0.7 0.7 0.8266 0.8267 0.9533 0.9534 1.0726 1.0730

0.8 0.8 0.8 0.9186 0.9187 1.0354 1.0353 1.1426 1.1431

0.9 0.9 0.9 1.0095 1.0096 1.1154 1.1158 1.2101 1.2102

1 1 1 1.0993 1.0995 1.1936 1.1939 1.2754 1.2756

Table 6: The approximate solutions of ζ2 for various values of α
using the two numerical schemes N = 240,M = 20, corresponding
to Problem 4.

t
β = 1 β = 0:9 β = 0:8 β = 0:7

CIM SM CIM SM CIM SM CIM SM

0.1 1.1 1.1 1.2312 1.2312 1.3789 1.3789 1.5406 1.5406

0.2 1.2 1.2 1.3395 1.3395 1.4926 1.4926 1.6550 1.6549

0.3 1.3 1.3 1.4422 1.4421 1.5950 1.5949 1.7526 1.7526

0.4 1.4 1.4 1.5415 1.5415 1.6906 1.6906 1.8408 1.8408

0.5 1.5 1.5 1.6384 1.6384 1.7815 1.7816 1.9225 1.9225

0.6 1.6 1.6 1.7333 1.7333 1.8688 1.8688 1.9994 1.9995

0.7 1.7 1.7 1.8266 1.8266 1.9533 1.9533 2.0726 2.0726

0.8 1.8 1.8 1.9186 1.9186 2.0354 2.0353 2.1426 2.1427

0.9 1.9 1.9 2.0095 2.0095 2.1154 2.1153 2.2101 2.2101

1 2 2 2.0993 2.0993 2.1936 2.1937 2.2754 2.2754

Table 7: Absolute errors for β = 1 using the two numerical schemes
for different values of N and M corresponding to Problem 4.

(N ,M)
CIM SM

ζ1 ζ2 ζ1 ζ2

(30,6) 3:19 × 10−4 2:06 × 10−2 2:10 × 10−3 2:10 × 10−3

(60, 8) 5:21 × 10−6 9:70 × 10−5 1:54 × 10−4 1:54 × 10−4

(90, 10) 4:25 × 10−8 2:60 × 10−6 3:47 × 10−5 3:47 × 10−5

(120, 12) 6:69 × 10−11 7:08 × 10−8 9:62 × 10−7 9:62 × 10−7

(150, 14) 7:99 × 10−12 5:92 × 10−10 3:60 × 10−7 3:63 × 10−7

(180, 16) 1:13 × 10−13 9:22 × 10−12 4:49 × 10−8 3:38 × 10−8

(210, 18) 3:88 × 10−15 3:38 × 10−13 2:01 × 10−7 3:88 × 10−7

(240, 20) 1:00 × 10−15 5:71 × 10−15 1:07 × 10−6 3:38 × 10−5
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shown in Figure 1(a), and the plot of the error function for
t ∈ ½0, 1� is shown in Figure 1(b). The graphs of approximate
solutions for β are presented in Figure 2(b), and Figure 2(a)
displays the plot absolute error vs. error estimate for β = 1.
The numerical results using the Stehfest method are obtained
by using M = 18. All the plots are obtained using the CIM. It
is evident that these methods can solve such type of equations
efficiently.

5.2. Problem 2. Here, we consider the fractional nonlinear
Volterra integrodifferential equation [31]:

ABC
0 Dβ

t ζ tð Þ = −1 +
ðt
0
ζ2 τð Þdτ, t, β ∈ 0, 1½ �: ð24Þ

The problem has exact solution ζðtÞ = ðð1/28Þt4 − tÞ
ðð1/12Þt3 + 1Þ−1. The Stehfest parameter used is M = 18.
The numerical results for various values of β and t ∈ ½0, 1�
are presented in Table 3. The graphs of numerical solutions
for various values of β are shown in Figure 3(a), whereas
Figure 3(b) presents the graph of error estimate vs. absolute
error for β = 1. For t ∈ ½0, 1� and β = 1, the error function is
shown in Figure 4(a), and the error function for various N ,
and β = 1 is shown in Figure 4(b). A similar performance is
observed as was observed for Problem 1.

5.3. Problem 3. Here, we consider the fractional nonlinear
Volterra integrodifferential equation [51]:

ABC
0 Dβ

t ζ tð Þ = et 1 + et
� �

− t2/4 1 − e2t + 2te2t
� �

− ζ2 tð Þ

+
ðt
0
t2τζ2 τð Þdτ, t, β ∈ 0, 1½ �:

ð25Þ

The exact solution of this problem is ζðtÞ = et . The
approximate solutions for different values of β and t ∈ ½0, 1�
are presented in Table 4. The Stehfest parameter used in this
experiment is M = 22. The graphs of approximate solutions
for various values of β are depicted in Figure 5(a), whereas
Figure 3(b) presents the plot of error estimate vs. observed

error for β = 1. In Figure 6(a), for β = 1 and t ∈ ½0, 1�, the
error function is shown, and in Figure 6(b) for different
nodes N and for β = 1 is shown.

5.4. Problem 4. Here, we consider the fractional system of
nonlinear Volterra integrodifferential equations [51]:

ABC
0 Dβ

t ζ1 tð Þ = 1 + t3 + t4 −
ðt
0
t2 ζ1 τð Þ + ζ2 τð Þð Þdτ, t, β ∈ 0, 1½ �,

Dβ
t ζ2 tð Þ = 1 − t3

2 −
t4

3 +
ðt
0
tζ1 τð Þζ2 τð Þdτ, t, β ∈ 0, 1½ �:

ð26Þ

The exact solutions of this system are ζ1ðtÞ = t and ζ2ðtÞ
= 1 + t. The approximate solution of ζ1ðtÞ for various values
of β and t ∈ ½0, 1� and M = 22 is using the two numerical
schemes N = 240,M = 22, corresponding to Problem 3 pre-
sented in Table 5, and the approximate solution of ζ2ðtÞ for
various values of β and t ∈ ½0, 1� and M = 20 is presented in
Table 6. In Table 7, the errors obtained using the two pro-
posed schemes are shown. For β = 1 and various nodes N
for ζ1ðtÞ, the error function is shown in Figure 7(a), and
for ζ2ðtÞ, the error function is shown in Figure 7(b). The plots
of numerical solutions of ζ1ðtÞ for different fractional-order
β are displayed in Figure 8(a), and the plots of numerical
solutions of ζ2ðtÞ for various values of β are displayed in
Figure 8(b).

5.5. Problem 5. Here, we consider the fractional system of
nonlinear Volterra integrodifferential equations [31]:

ABC
0 Dβ

t ζ1 tð Þ = 1 − ζ21 tð Þ
2 +

ðt
0

t − τð Þζ2 τð Þð
+ ζ1 τð Þζ2 τð ÞÞdτ, t, τ, β ∈ 0, 1½ �,

Dβ
t ζ2 tð Þ = 2t +

ðt
0

t − τð Þζ1 τð Þ − 1ð Þdτ, t, τ, β ∈ 0, 1½ �: ð27Þ
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Figure 7: In (a), absolute error versus N for fractional-order β = 1 corresponding to Problem 4 for ζ1 is shown. In (b), the absolute error
versus N for β = 1 corresponding to Problem 4 for ζ2 is shown.
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The exact solutions are ζ1ðtÞ = sinh ðtÞ, and ζ2ðtÞ = cosh
ðtÞ. The numerical solutions for various values of β and t ∈
½0, 1� are presented in Table 8.

The absolute errors for β = 1, and quadrature nodes N
using the CIM are presented in Table 9. The plots of numer-
ical solutions of ζ1ðtÞ for different fractional-orders β are dis-
played in Figure 9(a), and the plots of numerical solutions of
ζ2ðtÞ for various values β are displayed in Figure 9(b). In
Figure 10(a), the plots of error function of ζ1ðtÞ for β = 1,
and t ∈ ½0, 1� are displayed, and in Figure 10(b), the plots of
error function of ζ2ðtÞ for β = 1, and t ∈ ½0, 1� are displayed.
The plots of error function of ζ1ðtÞ for various nodes N and
β = 1 and are displayed in Figure 11(a), and the plots of error
function of ζ2ðtÞ for quadrature nodes N and β = 1 are dis-
played in Figure 11(b).

6. Conclusion

In this work, we have successfully applied the Laplace trans-
form to fractional VIDEs. The numerical inversion of
Laplace transform is performed using the CIM and SM
methods. In our numerical experiments, we considered lin-
ear, nonlinear, and system of fractional VIDEs with the

Table 9: The absolute error fractional-order β = 1 and different
quadrature nodes N using the CIM numerical scheme,
corresponding to Problem 5.

N ζ1 ζ2

30 3:18 × 10−4 2:03 × 10−2

60 5:21 × 10−6 9:17 × 10−5

90 4:25 × 10−8 2:61 × 10−6

120 6:69 × 10−11 7:07 × 10−8

150 7:99 × 10−12 5:84 × 10−10

180 1:13 × 10−13 9:34 × 10−12

210 4:21 × 10−15 3:40 × 10−13

240 1:99 × 10−15 6:65 × 10−15
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Figure 8: In (a), the numerical solutions corresponding to Problem 4 for fractional-order β for ζ1ðtÞ are shown. In (b), the numerical
solutions corresponding to Problem 4 for fractional-order β for ζ2ðtÞ are shown.

Table 8: The approximate solutions for various values of β using the CIM numerical schemes for N = 240, corresponding to example 5.

t
β = 1 β = 0:9 β = 0:8 β = 0:7

ζ1 ζ2 ζ1 ζ2 ζ1 ζ2 ζ1 ζ2
0.1 0.1002 1.0050 0.2319 1.0172 0.3803 1.0311 0.5428 1.0466

0.2 0.2013 1.0201 0.3433 1.0460 0.4993 1.0752 0.6648 1.1071

0.3 0.3045 1.0453 0.4525 1.0858 0.6118 1.1308 0.7766 1.1792

0.4 0.4108 1.0811 0.5629 1.1366 0.7238 1.1975 0.8868 1.2624

0.5 0.5211 1.1276 0.6764 1.1985 0.8383 1.2756 0.9993 1.3567

0.6 0.6367 1.1855 0.7947 1.2720 0.9575 1.3653 1.1171 1.4624

0.7 0.7586 1.2552 0.9194 1.3576 1.0835 1.4673 1.2423 1.5803

0.8 0.8881 1.3374 1.0520 1.4561 1.2179 1.5823 1.3768 1.7112

0.9 1.0265 1.4331 1.1940 1.5684 1.3625 1.7113 1.5226 1.8561

1 1.1752 1.5431 1.3469 1.6953 1.5190 1.8552 1.6813 2.0161
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Figure 9: In (a), the numerical solutions corresponding to Problem 5 for fractional-order β for ζ1ðtÞ are shown. In (b), the numerical
solutions corresponding to Problem 5 for fractional-order β for ζ2ðtÞ are shown.
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Figure 10: In (a), for β = 1 and t ∈ ½0, 1�, the error function of ζ1ðtÞ corresponding to Problem 5 is shown. In (b), for β = 1 and t ∈ ½0, 1�, the
error function of ζ2ðtÞ corresponding to Problem 5 is shown.
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Figure 11: In (a), the plot shows various nodes N along Γ and β = 1 the error function of ζ1ðtÞ corresponding to Problem 5. In (b), the plot
shows various nodes N along Γ and β = 1 the error function of ζ2ðtÞ corresponding to Problem 5.

10 Journal of Function Spaces



ABC derivative. The obtained results led us to the conclusion
that the two proposed methods are capable of solving such
type of equations. However, it was observed that the CIM is
more accurate and converges faster than SM. Hence, the
two proposed numerical schemes are the best alternative
methods for solving such type of equations.

Data Availability

All data required for this paper is included within this paper.

Conflicts of Interest

The authors do not have any competing interests.

Authors’ Contributions

Xiaoli Qiang wrote the paper, Kamran proved the results,
Abid Mahboob revised the paper and arranged the funding,
and Yu-Ming Chu supervised this work.

Acknowledgments

The research was supported by the National Natural Science
Foundation of China (Grant Nos. 11971142, 11871202,
61673169, 11701176, 11626101, and 11601485).

References

[1] Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, and S. M. Kang,
“Generalized riemann-liouville k-fractional integrals associ-
ated with ostrowski type inequalities and error bounds of
hadamard inequalities,” IEEE Access, vol. 6, pp. 64946–
64953, 2018.

[2] W. Iqbal, K. M. Awan, A. U. Rehman, and G. Farid, “An exten-
sion of Petrović's inequality for h-convex (h-concave) func-
tions in plane,” Open Journal of Mathematical Sciences,
vol. 3, no. 1, pp. 398–403, 2019.

[3] X. Yang, G. Farid, W. Nazeer, Y. M. Chu, and C. Dong, “Frac-
tional generalized hadamard and Fejér-Hadamard inequalities
for <i>m</i>-convex functions,” AIMS Mathematics, vol. 5,
no. 6, pp. 6325–6340, 2020.

[4] I. A. Baloch, S. S. Dragomir, and S. S. Dragomir, “New inequal-
ities based on harmonic log-convex functions,” Open Journal
of Mathematical Analysis, vol. 3, no. 2, pp. 103–105, 2019.

[5] S. M. Kang, G. Farid, W. Nazeer, and B. Tariq, “Hadamard and
Fejér–Hadamard inequalities for extended generalized frac-
tional integrals involving special functions,” Journal of
Inequalities and Applications, vol. 2018, no. 1, 2018.

[6] R. L. Bagley and P. J. Torvik, “A theoretical basis for the appli-
cation of fractional calculus to viscoelasticity,” Journal of Rhe-
ology, vol. 27, no. 3, pp. 201–210, 1983.

[7] G. W. Bohannan, “Analog fractional order controller in tem-
perature and motor control applications,” Journal of Vibration
and Control, vol. 14, no. 9-10, pp. 1487–1498, 2008.

[8] R. T. Baillie, “Long memory processes and fractional integra-
tion in econometrics,” Journal of Econometrics, vol. 73, no. 1,
pp. 5–59, 1996.

[9] M. Rahman, Integral Equations and Their Applications, WIT
press, 2007.

[10] L. Debnath, “Recent applications of fractional calculus to sci-
ence and engineering,” International Journal of Mathematics
and Mathematical Sciences, vol. 2003, no. 54, p. 3442, 2003.

[11] I. Podlubny, Fractional Differential Equations: An Introduction
to Fractional Derivatives, Fractional Differential Equations, to
Methods of their Solution and some of their Applications, Vol-
ume 198, Elsevier, 1998.

[12] S. Alkan and V. F. Hatipoglu, “Approximate solutions of
Volterra-Fredholm integro-differential equations of fractional
order,” Tbilisi Mathematical Journal, vol. 10, no. 2, pp. 1–13,
2017.

[13] A. Saadatmandi and M. Dehghan, “A legendre collocation
method for fractional integro-differential equations,” Journal
of Vibration and Control, vol. 17, no. 13, pp. 2050–2058, 2011.

[14] D. V. Bayram and A. Daşcıoğlu, “Amethod for fractional Vol-
terra integro-differential equations by Laguerre polynomials,”
Advances in Difference Equations, vol. 2018, no. 1, 2018.

[15] D. Rani and V. Mishra, “Modification of Laplace adomian
decomposition method for solving nonlinear volterra integral
and integro-differential equations based on newton raphson
formula,” European Journal of Pure and Applied Mathematics,
vol. 11, no. 1, pp. 202–214, 2018.

[16] Y. Nawaz, “Variational iteration method and homotopy per-
turbation method for fourth-order fractional integro-
differential equations,” Computers & Mathematics with Appli-
cations, vol. 61, no. 8, pp. 2330–2341, 2011.

[17] H. Ahmad, A. R. Seadawy, and T. A. Khan, “Study on numer-
ical solution of dispersive water wave phenomena by using a
reliable modification of variational iteration algorithm,”Mathe-
matics and Computers in Simulation, vol. 177, pp. 13–23, 2020.

[18] M. Rafiq, H. Ahmad, and S. T. Mohyud-Din, “Variational iter-
ation method with an auxiliary parameter for solving Volter-
ra’s population model,” Nonlinear Science Letters A, vol. 8,
no. 4, pp. 389–396, 2017.

[19] O. A. Arqub and B. Maayah, “Numerical solutions of integro-
differential equations of Fredholm operator type in the sense of
the Atangana–Baleanu fractional operator,” Chaos, Solitons &
Fractals, vol. 117, pp. 117–124, 2018.

[20] V. E. Tarasov, “Fractional integro-differential equations for
electromagnetic waves in dielectric media,” Theoretical and
Mathematical Physics, vol. 158, no. 3, pp. 355–359, 2009.

[21] R. P. Agarwal, B. de Andrade, and G. Siracusa, “On fractional
integro-differential equations with state-dependent delay,”
Computers & Mathematics with Applications, vol. 62, no. 3,
pp. 1143–1149, 2011.

[22] S. Kermausuor, “Simpsons type inequalities for strongly (s,
m)-convex functions in the second sense and applications,”
Open Journal of Mathematical Sciences, vol. 3, no. 1, pp. 74–
83, 2019.

[23] G. Farid, W. Nazeer, M. S. Saleem, S. Mehmood, and S. M.
Kang, “Bounds of riemann-liouville fractional integrals in gen-
eral form via convex functions and their applications,” Math-
ematics, vol. 6, no. 11, p. 248, 2018.

[24] S. Mehmood, G. Farid, K. A. Khan, and M. Yussouf, “New
hadamard and fej’er–hadamard fractional inequalities for
exponentially m-convex function,” Engineering and Applied
Science Letters, vol. 3, pp. 45–55, 2020.

[25] W. Nazeer, S. M. Kang, M. Tanveer, and A. A. Shahid, “Fixed
point results in the generation of Julia and Mandelbrot sets,”
Journal of Inequalities and Applications, vol. 2015, no. 1, Arti-
cle ID 298, 2015.

11Journal of Function Spaces



[26] M. Z. Sarikaya and S. Kaplan, “Some estimations Čebyšev-
Grüss type inequalities involving functions and their deriva-
tives,” Open Journal of Mathematical Sciences, vol. 2, no. 1,
pp. 146–155, 2018.

[27] A. Arikoglu and I. Ozkol, “Solution of fractional integro-
differential equations by using fractional differential transform
method,” Chaos, Solitons & Fractals, vol. 40, no. 2, pp. 521–
529, 2009.

[28] E. A. Rawashdeh, “Legendre wavelets method for fractional
integrodifferential equations,” Applied Mathematical Sciences,
vol. 5, no. 2, pp. 2467–2474, 2011.

[29] H. Jaradat, F. Awawdeh, and E. A. Rawashdeh, “Analytic solu-
tion of fractional integro-differential equations,” Annals of the
University of Craiova-Mathematics and Computer Science
Series, vol. 38, no. 1, pp. 1–10, 2011.

[30] M. I. Syam, “Analytical solution of the fractional Fredholm
integrodifferential equation using the fractional residual power
series method,” Complexity, vol. 2017, Article ID 4573589, 6
pages, 2017.

[31] O. A. Arqub and B. Maayah, “Fitted fractional reproducing
kernel algorithm for the numerical solutions of ABC – frac-
tional Volterra integro-differential equations,” Chaos, Solitons
& Fractals, vol. 126, pp. 394–402, 2019.

[32] X. Ma and C. Huang, “Numerical solution of fractional
integro-differential equations by a hybrid collocation method,”
Applied Mathematics and Computation, vol. 219, no. 12,
pp. 6750–6760, 2013.

[33] O. A. Agbolade and T. A. Anake, “Solutions of first-order Vol-
terra type linear integrodifferential equations by collocation
method,” Journal of Applied Mathematics, vol. 2017, Article
ID 1510267, 5 pages, 2017.

[34] D. S. H. Mohammed, “Numerical solution of fractional
integro-differential equations by least squares method and
shifted Chebyshev polynomial,” Mathematical Problems in
Engineering, vol. 2014, Article ID 431965, 5 pages, 2014.

[35] A. M. Mahdy and R. T. Shwayyea, “Numerical solution of frac-
tional integro-differential equations by least squares method
and shifted Laguerre polynomials pseudo-spectral method,”
International Journal of Scientific & Engineering Research,
vol. 7, no. 4, pp. 1589–1596, 2016.

[36] N. Rajagopal, S. Balaji, R. Seethalakshmi, and V. S. Balaji, “A
new numerical method for fractional order Volterra integro-
differential equations,” Ain Shams Engineering Journal,
vol. 11, no. 1, pp. 171–177, 2020.

[37] C. Yang and J. Hou, “Numerical solution of integro-
differential equations of fractional order by Laplace decompo-
sition method,”WSEAS Transactions on Mathematics, vol. 12,
no. 12, pp. 1173–1183, 2013.

[38] F. Rabiei, F. A. Hamid, Z. A. Majid, and F. Ismail, “Numerical
solutions of Volterra integro-differential equations using gen-
eral linear method,” Numerical Algebra, Control & Optimiza-
tion, vol. 9, no. 4, p. 433, 2019.

[39] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and
Applications of Fractional Differential Equations, Volume
204, Elsevier Science Limited, 2006.

[40] J. Hristov, “On the Atangana–Baleanu derivative and its rela-
tion to the fading memory concept: the diffusion equation for-
mulation,” in Fractional Derivatives withMittag-Leffler Kernel.
Studies in Systems, Decision and Control, J. Gómez, L. Torres,
and R. Escobar, Eds., vol. 194, pp. 175–193, Springer, Cham,
2019.

[41] H. Bai, M. S. Saleem, W. Nazeer, M. S. Zahoor, and T. Zhao,
“Hermite-Hadamard- and Jensen-type inequalities for inter-
valh1,h2nonconvex function,” Journal of Mathematics,
vol. 2020, Article ID 3945384, 6 pages, 2020.

[42] H. U. R. I. Y. E. Kadakal, M. A. H. I. R. Kadakal, and I. M. D. A.
T. Iscan, “New type integral inequalities for three times differ-
entiable preinvex and prequasiinvex functions,” Open Journal
of Mathematical Analysis, vol. 2, no. 1, pp. 33–46, 2018.

[43] S. Zhao, S. I. Butt, W. Nazeer, J. Nasir, M. Umar, and Y. Liu,
“Some Hermite–Jensen–Mercer type inequalities for k-
Caputo-fractional derivatives and related results,” Advances
in Difference Equations, vol. 2020, no. 1, Article ID 262, 2020.

[44] G. Farid, “Existence of an integral operator and its conse-
quences in fractional and conformable integrals,” Open Jour-
nal of Mathematical Sciences, vol. 3, no. 3, pp. 210–216, 2019.

[45] S. I. Butt, M. Nadeem, and G. Farid, “On caputo fractional
derivatives via exponential (s,m)-convex functions,” Engineer-
ing and Applied Science Letter, vol. 3, no. 2, pp. 32–39, 2020.

[46] A. Atangana and D. Baleanu, “New fractional derivatives with
nonlocal and non-singular kernel: theory and application to
heat transfer model,” Thermal Science, vol. 20, pp. 763–769,
2016.

[47] W. McLean and V. Thomee, “Numerical solution via Laplace
transforms of a fractional order evolution equation,” Journal
of Integral Equations and Applications, vol. 22, no. 1, pp. 57–
94, 2010.

[48] J. Abate and P. P. Valko, “Multi-precision Laplace transform
inversion,” International Journal for Numerical Methods in
Engineering, vol. 60, no. 5, pp. 979–993, 2004.

[49] J. Abate and W. Whitt, “A unified framework for numerically
inverting Laplace transforms,” INFORMS Journal on Comput-
ing, vol. 18, no. 4, pp. 408–421, 2006.

[50] Z. J. Fu, W. Chen, and H. T. Yang, “Boundary particle method
for Laplace transformed time fractional diffusion equations,”
Journal of Computational Physics, vol. 235, pp. 52–66, 2013.

[51] R. M. Ganji and H. Jafari, “A new approach for solving nonlin-
ear Volterra integro-differential equations with mittag-leffler
kernel,” Proceedings of the Institute of Mathematics and
Mechanics, National Academy of Sciences of Azerbaijan,
vol. 46, pp. 144–158, 2020.

12 Journal of Function Spaces


	Numerical Approximation of Fractional-Order Volterra Integrodifferential Equation
	1. Introduction
	1.1. Preliminaries

	2. Proposed Method
	3. Contour Integration Method (CIM)
	3.1. Error Analysis

	4. Stehfest Method (SM)
	4.1. Error Analysis

	5. Results and Discussion
	5.1. Problem 1
	5.2. Problem 2
	5.3. Problem 3
	5.4. Problem 4
	5.5. Problem 5

	6. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

