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In this article, radial basis function collocation scheme is adopted for the numerical solution of fractional partial differential
equations. This method is highly demanding because of its meshless nature and ease of implementation in high dimensions and
complex geometries. Time derivative is approximated by Caputo derivative for the values of α ∈ ð0, 1Þ and α ∈ ð1, 2Þ. Forward
difference scheme is applied to approximate the 1st order derivative appearing in the definition of Caputo derivative for α ∈ ð0, 1Þ,
whereas central difference scheme is used for the 2nd order derivative in the definition of Caputo derivative for α ∈ ð1, 2Þ.
Numerical problems are given to judge the behaviour of the proposed method for both the cases of α. Error norms are used to
asses the accuracy of the method. Both uniform and nonuniform nodes are considered. Numerical simulation is carried out for
irregular domain as well. Results are also compared with the existing methods in the literature.

1. Introduction

Fractional order calculus is a dynamic branch of calculus,
which is concerned with the integration and differentiation
of noninteger order. This branch of mathematics attracted
researchers in the last few decades [1–7]. Fractional partial
differential equations (FPDEs) are commonly used to model
problems in the field of science, engineering, and many
other fields including fluid mechanics, chemistry, viscoelas-
ticity, finance, and physics. Some interesting applications of
FPDEs can be found in [8–11]. Many researchers did
considerable work to find the analytic solution of FPDEs
[12–14], but it is difficult and sometimes impossible to find
the analytic solution of most of FPDEs. Therefore, many
researchers referred to numerical techniques to find the
solution of FPDEs [15–20]. There are two widely used def-

initions of fractional derivatives, namely, Caputo and
Riemann-Liouville. The main difference between these two
operators is the order of evaluation. Many authors analyzed
time-fractional partial differential equations (PDEs), for
example, Wyss [14], Agrawal [21 ], Liu et al. [22], Jiang
and Ma. [23], and Chang et al. [24].

Radial basis function (RBF) method has been used to find
the solution of FPDEs. RBF collocation schemes are used to
find the solution of PDEs, integral equations, integrodifferen-
tial equation, etc. The main idea behind the RBF method is to
approximate space derivatives by RBFs which converts PDE
to a system of linear equations. The solution of this system
of linear equations leads to the solution of governing equa-
tion. This method is getting fame due to its meshless nature
and easy to use in high dimensions and complex geometries.
To utilize this advantage of RBF scheme, it is applied to time-
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fractional PDEs for higher dimensions and with different
types of domains. In this paper, implicit scheme (IS) and
Crank-Nicolson scheme (CNS) are coupled with RBF. Many
authors used meshless RBF method to solve FPDEs [25–35].
In this paper, multiquadric (MQ) RBF is used to approximate
solution. MQ-RBF is defined by

φ rij
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ij + c2

q
, ð1Þ

where rij = ∥zi − zj∥, i, j = 1, 2,⋯,N , N is the number of col-
location points and c is the shape parameter. Furthermore,
z = z1 in one dimensional, and z = ðz1, z2Þ in two-
dimensional case.

Kansa [36] has applied the multiquadric radial basis
function (MQ-RBF) collocation method to solve PDEs. After
that, there are a lot of applications and developments of the
MQ-RBF as an efficient meshless method to solve engineer-
ing problems. However, the ill-conditioned behaviour and
the sensitivity to the shape parameter are the main obstacles
in the Kansa’s MQ-RBF method. Many researchers have dis-
cussed the optimal shape parameter used in the MQ-RBF
[37–39]. Formulation of the method flows in the following
major steps:

(1) Approximate time-fractional derivative by using
Caputo definition

(2) Approximate the space variable by RBFs

(3) Substitute the values obtained from the previous two
steps in the problem to get a system of linear equations

∂αv
∂tα

=

1
Γ 1 − αð Þ

ðt
0

∂η+1v
∂tη+1

t − τð Þη−αdτ, η < α < η + 1,

∂η+1v
∂tη+1

, α = η + 1:

8>>><
>>>:

ð2Þ

Definition 1. Caputo derivative of noninteger order α of a
function vðz, tÞ is defined by [9]

In this paper, we have tackled the following two cases of
Caputo derivative:

Case I. 0 < α < 1

Case II. 1 < α < 2

1.1. Governing Equation. We emphasize on the following
time-fractional PDE

∂αv
∂tα

+ L vð Þ = ψ z, tð Þ, z ∈Ω, η < α < η + 1, t > 0: ð3Þ

The boundary conditions (BCs) are

v z, tð Þ =G z, tð Þ, z ∈ ∂Ω, t > 0, ð4Þ

and the initial conditions (ICs) are

v z, 0ð Þ = μ zð Þ, vt z, 0ð Þ = ν zð Þ, ð5Þ

where vðz, tÞ is the solution, ∂αv/∂tα is the Caputo fractional
derivative of order α, ψðz, tÞ is the source term, Ω is the
bounded domain, and ∂Ω is the boundary. Equation (3)
can be fractional diffusion, fractional wave diffusion, or frac-
tion anomalous diffusion equation depending on LðvÞ. Here,
LðvÞ is a linear operator defined by

L vð Þ = aΔv + b∇v + cv, ð6Þ

where a, b, and c are functions of z or constants and Δ and ∇
denote Laplacian and gradient operator, respectively.

1.2. Main Objective of the Paper. This paper is aimed at solv-
ing FPDEs by using the combination of Caputo fractional
derivative operator and RBFs. Caputo fractional derivative
operator is applied to approximate the time derivative
whereas RBFs are adopted to approximate the space deriva-
tives. The organization of the rest of the paper is as follows:
Section 2 is dedicated to construct meshless scheme for the
first case, i.e., 0 < α < 1. In Section 3, we consider the second
case, i.e., 1 < α < 2. In section 4, the numerical method is
applied to different problems and comparison is made with
some other methods. Section 5 is authoritative to give the
concluding note of this work.

2. Formulation of the Method for Case I

In this section, we take 0 < α < 1 and find ∂αv/∂tα, by using
Caputo derivative. Finite difference scheme is applied to
approximate the 1st order time derivative appearing on the
right-hand side of Caputo derivative. Then, θ-weighted
scheme is applied to the governing equation, and the value
of the time derivative is also substituted.

2.1. Time-Fractional Derivative. Caputo fractional derivative
for α ∈ ð0, 1Þ is defined by

∂αv
∂tα

=

1
Γ 1 − αð Þ

ðt
0

∂v
∂t

t − τð Þ−αdτ, 0 < α < 1,

∂v
∂t

, α = 1:

8>>><
>>>:

ð7Þ

Taking derivative at t = tn+1, we get

∂αv z, tn+1
� �
∂tα

= 1
Γ 1 − αð Þ

ðtn+1
0

∂v
∂t

tn+1 − τ
� �−α

dτ: ð8Þ

This implies

∂αv
∂tα

= 1
Γ 1 − αð Þ〠

n

k=0

ðtk+1
tk

∂v
∂t

tn+1 − τ
� �−α

dτ: ð9Þ

Now, we use finite difference scheme to approximate
∂n+1v/∂tn+1, as follows:
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∂v
∂t

= vk+1 − vk

dt
+ o dtð Þ, ð10Þ

where dt is the time step size.
Then

∂αv z, tn+1
� �
∂tα

≈
1

Γ 1 − αð Þ〠
n

k=0

ðtk+1
tk

vk+1 − vk

dt
+ o dtð Þ

� �

� tn+1 − τ
� �−α

dτ, ∂
αv
∂tα

= aα 〠
n

k=0
bk vn−k+1 − vn−k
� �

+ o dtð Þ2−α� �
,

ð11Þ

where aα = dt−α/Γð2 − αÞ and bk = ðk + 1Þ1−α − k1−α, k = 0, 1,
⋯, n.

Finally, we can write in more precise form as

∂αv
∂tα

=
aα vn+1 − vn
� �

+ aα 〠
n

k=1
bk vn−k+1 − vn−k
� �

, n ≥ 1,

aα v1 − v0
� �

, n = 0:

8>><
>>:

ð12Þ
2.2. θ-Weighted Scheme. Applying θ-weighted scheme to Eq.
(3) and substituting Eq. (12) in Eq. (3), we get

Now, we employ Kansa’s method and interpolate
vðz, tn+1Þ by RBFs. We interpolate the solution atN different
points zi ∣ i = 1, 2,⋯,N , where zi ∣ i ∈Ω are interior points
while z1 and zN are boundary points.

v z, tn+1
� �

= 〠
N

i=1
λn+1i φ ∥zi − zj∥

� �
, j = 1, 2,⋯,N

= 〠
N

i=1
λn+1i φ rij

� �
,

ð14Þ

where φðrijÞ are the RBFs, k:k is Euclidian norm, and λi
’s are

the unknown constants.

We can write Eq. (14) in matrix form as

vn+1 =Aλn+1 ð15Þ
or

λn+1 =A−1vn+1: ð16Þ
Provided that collocation matrix A must be nonsingular

to ensure the invertibility of matrix A. This depends on the
choice of RBF and the location of mesh points. Matrix A is
invertible for distinct mesh points. The shape parameter
has an important effect on condition number [40]. Once we
find the constants λn+1i , we can find solution v from Eq. (14).

Putting the value from Eq. (15) in Eq. (13), we get the fol-
lowing form
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Figure 1: Comparison of E∞ of IS and CNS for the Problem 3.

aαv
n+1 + θL vn+1

� �
=

aαv
n − 1 − θð ÞL vnð Þ − aα 〠

n

k=1
bk vn−k+1 − vn−k
� �

+ ψn+1, n ≥ 1,

aαv
0 − 1 − θð ÞL v0

� �
+ ψ1, n = 0:

8>><
>>: ð13Þ

aαAλn+1 + θL Aλn+1
� �

=
aαAλn − 1 − θð ÞL Aλnð Þ − aα 〠

n

k=1
bk vn−k+1 − vn−k
� �

+ ψn+1, n ≥ 1,

aαAλ0 − 1 − θð ÞL Aλ0
� �

+ ψ1, n = 0:

8>><
>>: ð17Þ

λn+1 =M−1ℕλn +M−1Gn+1, n ≥ 0, ð18Þ
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where

M = aαA + θL Að Þ,N = aαA − 1 − θð ÞL Að Þ,

MGn+1 =
Gn+1

1 +Gn+1
2 , n ≥ 1,

ψ1, n = 0:

( ð19Þ

Here,

Gn+1
1 = gn+11 , 0,⋯,gn+12

	 

,

Gn+1
2 = −aα 〠

n

k=1
bk vn−k+1 − vn−k
� �

+ ψn+1,
ð20Þ

where gn+1
1 and gn+12 are some known functions given in BCs.

Finally, from Eq. (18) and Eq. (16), we get

vn+1 =AM−1NA−1vn +AM−1Gn+1: ð21Þ

We can use this scheme to find the solution at any time
level tn.

2.3. Stability and Convergence. The scheme (21) is basically a
recurrence relation which gives the values of solution at the
time tn+1 by using solution at time tn. The matrix E =AM−1

NA−1 is known as amplification matrix, and the elements of
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Figure 2: (a) Eabs and (b) exact and approximate solution at α = 0:2 for the Problem 3.
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Figure 3: Approximate solution at different time levels by using (a) IS and (b) CNS for the Problem 3.
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this matrix depend on the constant κ = dt/hς, where dt is the
time step, h is the distance between any two successive nodes,
and ς is the order of spatial differential operator. Let us
denote the exact solution of Eq. (3) by vn at time tn.

We state a well-known theorem of Fasshauer [41] (see
[42] for proof):

Dα f zð Þ −DαPf zð Þ�� �� ≤ Chk−∣α∣χ,Ω
ffiffiffiffiffiffiffiffiffiffiffiffi
CΦ xð Þ

p
f N ϕ Ωð Þ
��� ���, ð22Þ

provided that hχ,Ω ≤ h0. Here,

CΦ zð Þ = max
β,γ∈ℕs

0
∣β∣+∣γ∣=2k

max
w,z∈Ω∩B x,c2hχ,Ωð Þ

Dβ
1D

γ
2Φ w, zð Þ

��� ���:
ð23Þ

Theorem 2. [41] Suppose Ω ⊆ℝs is open and bounded and
satisfies an interior cone condition. Suppose Φ ∈ C2kðΩ ×ΩÞ
is symmetric and strictly conditionally positive definite of
order m on ℝs. Denote the interpolant to f ∈N ϕðΩÞ on the
ðm − 1Þ -unisolvent set χ by Pf . Fix α ∈ℕs

0 with ∣α ∣ ≤k. Then,
there exist positive constants h0 and C (independent of z, f ,
and Φ) such that

Application of Theorem 2 to infinitely smooth functions
such as Gaussians or generalized (inverse) multiquadrics
immediately yield arbitrarily high algebraic convergence
rates, i.e., for every k ∈ℕ and ∣α ∣ ≤k, we have

Dα f zð Þ −DαPf zð Þ�� �� ≤ Ckh
k−∣α∣ vN ϕ Ωð Þ
��� ���, ð24Þ

whenever f ∈N ϕðΩÞ and N ϕðΩÞ represent the native space
of RBFs. A considerable amount of work has gone into
investigating the dependence of the constant Ck on k [43].

In this work, MQ-RBF is used, so it is concluded that

Dαv̂ zð Þ −Dαv zð Þj j ≤ Ckh
k−∣α∣ vN ϕ Ωð Þ
��� ���, ð25Þ

where v̂ and v are the exact and approximate solution,
respectively. Now let us assume that the scheme (21) is pth

order accurate in space, then

vn+1 = Evn +AM−1Gn+1 + o dtð Þ2−α + hp
� �

, dt, h→ 0: ð26Þ

Let us define the residual by εn = v∧n − vn, then

εn+1 = Eεn + o dtð Þ2−α + hp
� �

, dt, h→ 0: ð27Þ

By Lax-Richtmyer definition of stability, the scheme (21)
is stable if

Ek k ≤ 1, ð28Þ

when matrix E is normal then kEk = ρðEÞ; otherwise, the
inequality ρðEÞ ≤ kEk is always true. It is assumed that the
step size h is to be small enough, and the solution and IC of
the given problem must be sufficiently smooth. We must
have dt→ 0 to keep κ = dt/hp constant. Therefore, there exist
some constant C such that

εn+1
�� �� ≤ Ek k εnk k + C dtð Þ2−α + hp

� �
, n = 0, 1, 2,⋯, T ×M:

ð29Þ

Since the residual εn obeys zero IC and BCs, so ε0 = 0. So
by mathematical induction, we have

εn+1
�� �� ≤ 1 + Ek k2 + Ek k3+⋯+ Ek kn−1� �

C dtð Þ2−α + hp
� �

,
n = 0, 1, 2,⋯, T ×M:

ð30Þ

Table 1: Error norms and computational order for different values
of dt with c = 5:1,N = 50 for the Problem 3.

θ dt E∞ ERMS C1-order

1

0.1 3.2163e-05 1.7837e-05 —

0.05 2.6247e-05 1.0503e-05 0.2932

0.01 1.4223e-05 1.1387e-05 0.3807

0.005 6.7040e-06 3.0043e-06 1.0851

0.001 4.0082e-06 1.7611e-06 0.3196

1
2

0.1 1.0700e-01 7.4900e-02 —

0.05 5.1100e-02 3.5800e-02 1.0662

0.01 9.8000e-03 6.9000e-03 1.0261

0.005 4.9000e-03 3.4000e-03 1.0000

0.001 9.8295e-04 6.8233e-04 0.9981

Table 2: Error norms for different values of α for the Problem 3.

α
IS CNS

E∞ ERMS E∞ ERMS
0:2 7.7846e-05 4.7558e-05 1.0700e-01 7.4900e-02

0:4 2.2439e-04 1.4815e-04 1.0710e-01 7.5000e-02

0:6 5.5165e-04 3.8107e-04 1.0750e-01 7.5300e-02

0:8 1.2000e-03 8.3507e-04 1.0830e-01 7.5900e-02

Table 3: Comparison with of E∞ [35] for the Problem 4.

α IS CNS [35]

0:20 2.0316e-06 3.9338e-06 2.3228e-05

0:50 9.9440e-07 3.6707e-06 1.9343e-05

0:75 2.3590e-06 1.6847e-06 1.4279e-05

0:90 7.3325e-06 7.9323e-06 8.4900e-06
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Using the condition given in Eq. (28), we have

εn+1
�� �� ≤ nC dtð Þ2−α + hp

� �
, n = 0, 1, 2,⋯, T ×M: ð31Þ

Hence, the scheme is convergent.

3. Formulation of the Method for Case II

In this section, we take 1 < α < 2 and find ∂αv/∂tα by using
Caputo derivative. We approximate the 2nd order time deriv-
ative (appearing in the Caputo derivative) by the central dif-
ference scheme. We then apply θ-weighted scheme to the
governing equation.

3.1. Time-Fractional Derivative. Caputo fractional derivative
for α ∈ ð1, 2Þ is defined by

∂αv
∂tα

=

1
Γ 2 − αð Þ

ðt
0

∂2v
∂t2

t − τð Þ1−αdτ, 1 < α < 2,

∂2v
∂t2

, α = 2:

8>>><
>>>:

ð32Þ

Taking derivative at t = tn+1, we get

∂αv z, tn+1
� �
∂tα

= 1
Γ 2 − αð Þ

ðtn+1
0

∂2v
∂t2

tn+1 − τ
� �1−α

dτ: ð33Þ
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Figure 4: (a) Eabs and (b) exact and approximate solution at α = 0:2 for the Problem 4.
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Figure 5: Approximate solution at different time levels by using (a) IS and (b) CNS for the Problem 4.
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This implies

∂αv
∂tα

= 1
Γ 2 − αð Þ〠

n

k=0

ðtk+1
tk

∂2v
∂t2

tn+1 − τ
� �1−α

dτ: ð34Þ

Now, we approximate ∂2v/∂t2 by finite difference
scheme, as follows:

∂2v z, τk+1
� �
∂τ2

= vk+1 − 2vk + vk−1

dt2
+ o dtð Þ2: ð35Þ

Repeating the same process as we did in Section 2.1,

we get

∂αv
∂tα

= aα vn+1 − 2vn + vn−1
� �

+ aα 〠
n

k=1
bk vn−k+1 − 2vn−k + vn−k−1
� �

+ o dt 3−αð Þ
� �

, n ≥ 0,

ð36Þ

where aα = dt−α/Γð3 − αÞ and bk = ðk + 1Þ2−α − k2−α

,k = 0, 1,⋯, n.
Now there exist v−1 for n = 0 and k = n, for which we use

the second IC, i.e.,

v0t =
v1 − v−1

2dt ,

v−1 = v1 − 2dtv0t :
ð37Þ

Hence, we get the following value of ∂αv/∂tα,

3.2. θ-Weighted Scheme. Applying θ-weighted scheme to Eq.
(3) and substituting Eq. (38) in Eq. (3), we get the following
scheme for n = 0 and n ≥ 1, respectively.

2aαv1 + θL v1
� �

= 2aαv0 + 2aαdtv0t − 1 − θð ÞL v0
� �

+ ψ1, n = 0
ð39Þ

aαv
n+1 + θL vn+1

� �
= 2aαvn − aαv

n−1 − 2aαbn v1 − v0 − dtv0t
� �

− aα 〠
n−1

k=1
bk vn−k+1 − 2vn−k + vn−k−1
� �

− 1 − θð ÞL vnð Þ + ψn+1, n ≥ 1:
ð40Þ

Proceeding in the same way as in the Section 2.2, we get v1
and vn+1, respectively,

v1 =AM−1ℕA−1v0 +AM−1ℍ, ð41Þ

where

M = 2aαA + θL Að Þ,
ℕ = 2aαA − 1 − θð ÞL Að Þ,
ℍ =ℍ1 +ℍ2,
ℍ1 = g1, 0,⋯,g2f g,
ℍ2 = ψ1 + 2aαdtv0t :

ð42Þ

Also,

vn+1 =AM−1
1 ℕA−1vn +AM−1

1 ℙA−1vn−1 +AM−1
1 Gn+1, n ≥ 1,

ð43Þ

Table 4: Error norms and computational order for different time
steps with c = 5:1,N = 50 and t = 1 for the Problem 4.

θ dt E∞ ERMS C1 − order

1

0.1 1.2261e-04 9.3157e-05 –

0.05 1.9822e-05 1.5126e-05 2.6289

0.01 6.4769e-06 2.8484e-06 0.6950

0.005 4.0646e-06 2.2878e-06 0.6722

0.001 2.0397e-06 8.3217e-07 0.4284

1
2

0.1 1.1200e-02 8.5000e-03 –

0.05 5.1000e-03 3.9000e-0 1.1350

0.01 1.1000e-03 7.6660e-04 0.9527

0.005 5.3126e-04 3.8540e-04 1.0500

0.001 1.0499e-04 7.7472e-05 0.9756

Table 5: Comparison with of E∞ [44] for the Problem 3.

α IS CNS [44]

0:20 3.3143e-07 5.5885e-06 2.6640e-05

0:50 2.9331e-07 2.5374e-06 8.1200e-06

0:75 1.0587e-06 2.9157e-06 9.5300e-06

0:90 5.4445e-06 3.9059e-06 4.3240e-05

∂αv
∂tα

=
aα vn+1 − 2vn + vn−1
� �

+ aα 〠
n−1

k=1
bk vn−k+1 − 2vn−k + vn−k−1
� �

+ 2aαbn v1 − v0 − dtv0t
� �

, n ≥ 1

,
2aα v1 − v0 − dtv0t
� �

,
n = 0:

8>>>>><
>>>>>:

ð38Þ
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where

M1 = aαA + θL Að Þ,
ℙ = −aαAλn−1,

Gn+1 =Gn+1
1 +Gn+1

2 ,
Gn+1
1 = gn+1

1 , 0,⋯,gn+1
2
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Figure 6: (a) Eabs and (b) exact and approximate solution for α = 0:50 for the Problem 5.
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Figure 7: Approximate solution at different time levels by using (a) IS and (b) CNS for the Problem 3.

Table 6: Error norms and computational order for different time
steps for N = 50, c = 8:1 and t = 1 for the Problem 3.

θ dt E∞ ERMS C1-order

1

0.1 1.4900e-02 1.0400e-02 —

0.05 5.5000e-03 3.8000e-03 3.3107

0.01 5.0083e-04 3.4937e-04 3.4282

0.005 1.8363e-04 1.2741e-04 3.3330

0.001 1.4575e-05 9.1709e-06 3.6248

1
2

0.1 9.0800e-02 6.3600e-02 —

0.05 4.3100e-02 3.0200e-02 2.4753

0.01 8.0000e-03 5.6000e-03 2.4094

0.005 3.9000e-03 2.7000e-03 2.3867

0.001 8.3394e-04 5.7298e-04 2.2069

Table 7: Comparison of E∞ with [20] for the Problem 4.

α IS CNS [20]

1:15 4.6987e-04 9.0819e-04 9.1195e-04

1:25 4.7856e-04 9.3809e-04 9.0865e-04

1:5 4.9736e-04 9.7102e-04 8.9931e-04
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Gn+1
2 = −2aαbn v1 − v0 − dtv0t

� �
−aα 〠

n−1

k=1
bk vn−k+1 − 2vn−k + vn−k−1
� �

+ ψn+1: ð44Þ

We can use Eq. (41) and Eq. (43) to find the solution at
any time level tn for n ≥ 1.

4. Numerical Results

This section is devoted to the numerical implementation of
the schemes constructed in Section 2 and Section 3. We have
applied schemes over six problems including one-
dimensional and two-dimensional time-fractional PDEs.
Problems with different types of domains and geometries
are also included. We assess the accuracy of the method by
taking different values of t and α. We have utilized the follow-
ing error norms:

Eabs = v̂ ið Þ − v ið Þj j, i = 1, 2,⋯,N ,
E∞ =max v̂ ið Þ − v ið Þj j,

ERMS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
Eabs

2
 !vuut :

ð45Þ

Computational orders for time and space are calculated,
respectively, by the formula,

C1 − order = log E∞ dt1ð Þ/E∞ dt2ð Þð Þ
log dt1/dt2ð Þ ,

C2 − order = log E∞ dx1ð Þ/E∞ dx2ð Þð Þ
log dx1/dx2ð Þ :

ð46Þ

Figures are incorporated to show the performance of the
method. We have applied IS and CNS and have compared
the results. An attempt is made to apply the schemes for
some nonuniform nodes including Chebyshev, random, Hal-
ton, and scattered data nodes. Also, numerical simulation is
performed for some irregular domains. Moreover, we have
compared our results with the results reported in [28, 44].
Convergence order is calculated in all the problems, and
there is uniform convergence in all the problems.

∂αv
∂tα

−
∂2v
∂z21

= ψ z1, tð Þ, 0 ≤ z1 ≤ 1, 0 < α < 1, t > 0, ð47Þ

where

ψ z1, tð Þ = 2
Γ 3 − αð Þ t2−α sin 2πz1ð Þ� �

+ 4π2t2 sin 2πz1ð Þ,

ð48Þ

with the exact solution

v z1, tð Þ = t2 sin 2πz1ð Þ: ð49Þ

Problem 3. In the first problem, we take the following time-
fractional PDE [23].

IC is given as vðz1, 0Þ = 0 with homogeneous BCs. In
Figure 1, E∞ is plotted for different values of α. It can be
observed that increasing value of α causes less accuracy of
results. Also, it is clear that IS gives more accurate results
than CNS. Figure 2 displays exact/approximate solution
and absolute error at t = 1, c = 5:1, and dt = 0:001. In
Figure 3, numerical solutions at different time levels are
plotted. Table 1 is concerned with the convergence order,
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Figure 8: (a) Eabs (b) exact and approximate solution for α = 1:15 for the Problem 6.
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and it shows that the scheme is convergent as proved theoret-
ically. In Table 2, we have computed the numerical results
utilizing the IS and the CNS for various values of α’s. It is
observed from the table that the IS produced better results
as compared to CNS.

∂αv
∂tα

−
∂2v
∂z21

+ v = ψ z1, tð Þ, 0 ≤ z1 ≤ 1, 0 < α < 1, t > 0, ð50Þ

where

ψ z1, tð Þ = Γ 2 + αð Þez1 t, ð51Þ

with the exact solution

v z1, tð Þ = ez1 t1+α, ð52Þ

where IC is considered as vðz1, 0Þ = 0 while the BCs are
vð0, tÞ = t1+α, vð1, tÞ = et1+α. In Table 3, IS and CNS are com-
pared with collocation finite element scheme (CFES) [44]
which indicates the admirable performance of both the
schemes. Figure 4 shows the behaviour of IS scheme by
plotting absolute error and approximate/exact solution.
One can examine that error decays with increasing x. In
Figure 5, we have plotted numerical results for different
values of t. Convergence order is calculated in Table 4, and
the uniform convergence is obtained.

∂αv
∂tα

−
∂2v
∂z21

− v = ψ z1, tð Þ, 0 ≤ z1 ≤ π, 0 < α < 1, t > 0,

ð53Þ

where

Table 8: Error norms at t = 1 for different time steps with c = 5:9,
N = 50 for the Problem 4.

θ dt E∞ ERMS C1 − order

1

0.1 5.2500e-02 3.8000e-02 —

0.05 2.5600e-02 1.8500e-02 1.0362

0.01 5.0000e-03 3.6000e-03 1.0147

0.005 2.5000e-03 1.8000e-03 1.0000

0.001 1.2000e-03 8.9473e-04 0.4560

1
2

0.1 7.7300e-02 5.5900e-02 —

0.05 3.7400e-02 2.7100e-02 1.0474

0.01 7.3000e-03 5.3000e-03 1.0151

0.005 3.7000e-03 2.7000e-03 0.9804

0.001 9.6490e-04 7.0544e-04 0.8351

Table 9: Error norms and computational order for different dx with
c = 100, α = 1:5, and t = 0:1 for the Problem 4.

θ dx E∞ ERMS C2-order

1

0.1 2.1000e-03 1.5000e-03 —

0.05 1.7000e-03 1.2000e-03 0.3049

0.01 4.0345e-04 3.2477e-04 0.8937

0.005 1.3119e-04 1.1574e-04 1.6207

0.001 4.8815e-05 3.5377e-05 0.6143

1
2

0.1 2.1000e-03 1.5000e-03 —

0.05 1.7000e-03 1.2000e-03 0.3049

0.01 3.9522e-04 3.1891e-04 0.9065

0.005 1.2686e-04 1.1204e-04 1.6394

0.001 5.0791e-05 3.7090e-05 0.5687
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Figure 9: Approximate solution at different time levels by using (a) IS and (b) CNS for Problem 4.
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ψ z1, tð Þ = 2
Γ 3 − αð Þ t

2−α sin z1ð Þ, ð54Þ

with the exact solution

v z1, tð Þ = t2 sin z1ð Þ: ð55Þ

Problem 4. We consider the following problem [44].

Problem 5. In this problem, we take the following time-
fractional PDE [44]

IC is vðz1, 0Þ = 0 and with BCs vð0, tÞ = 0, vðπ, tÞ = 0.
Table 5 shows the performance of IS, CNS, and CFES. One
can see that IS and CNS give less error than CFES. Figure 6
is aimed at showing absolute error and exact and approxi-
mate solution for α = 0:20. We can inspect that results
obtained from IS scheme agree with that obtained from the
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Figure 10: Approximate solution for different values of α for the Problem 7.
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Figure 11: (a) Irregular domain and (b) absolute error for Problem 7.
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Figure 12: (a) Irregular domain and (b) numerical solution for the Problem 7.
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Figure 13: (a) Irregular domain and (b) numerical solution for the Problem 7.
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Figure 14: (a) Irregular domain and (b) absolute error for Problem 7.
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exact solution. Figure 7 concerns with the numerical solution
at different time levels. In Table 6, the order of convergence is
calculated which shows the convergence of scheme.

∂αv
∂tα

−
∂2v
∂z21

= ψ z1, tð Þ, 0 ≤ z1 ≤ 1, 1 < α < 2, t > 0, ð56Þ

where

ψ z1, tð Þ = 2t2−α
Γ 3 − αð Þ z1 z1 − 1ð Þ − 2t2, ð57Þ

with the exact solution

v z1, tð Þ = t2z1 z1 − 1ð Þ: ð58Þ

Problem 6. In this problem, we take LðvÞ = −∂2v/∂z21 [28] and
consider

ICs are given by vðz1, 0Þ = 0, vtðz1, 0Þ = 0 and with BCs
vð0, tÞ = 0, vð1, tÞ = 0. In Table 7, E∞ error norm is given
for IS, CNS, and meshless Galerkin method (MGM) [28].
We can see that IS produces more accurate results than both
CNS and MGM. Figure 8 displays Eabs and relationship
between exact and numerical solution. Figure 9 is devoted
to plot solution at different time levels. In Tables 8 and 9,
convergence orders are calculated in time and space, respec-

tively. It can be seen that the method is uniformly convergent
in time as well as space.

∂αv
∂tα

= ∂2v
∂z21

+ ∂2v
∂z22

 !
+ ψ z1, z2, tð Þ,Ω

= 0, 1½ � × 0, 1½ �, 1 < α < 2, t ∈ 0, 1ð �,
ð59Þ

where

ψ z1, z2, tð Þ = sin πz1ð Þ sin πz2ð Þ Γ 3 + αð Þ
2 t2 + 2t2+α

 �
, ð60Þ

and the exact solution is

v = t2+α sin πz1ð Þ sin πz2ð Þ, ð61Þ

with the ICs

v z1, z2, tð Þ = 0, vt z1, z2, tð Þ = 0, z1, z2ð Þ ∈Ω, t = 0 ð62Þ

and the BCs

v z1, z2, tð Þ = t2+α sin πz1ð Þ sin πz2ð Þ, z1, z2ð Þ ∈ ∂Ω: ð63Þ
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Figure 15: Approximate solution for different values of α for the Problem 8.
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Figure 16: Continued.

14 Journal of Function Spaces



Problem 7. In this problem, two-dimensional time fractional
diffusion-wave equation [(40)] is considered

In this problem, we have taken c = 5:5, dt = 0:001, T =
0:1, and N = 30. We have plotted approximate solution for
uniform nodes and different values of α in Figure 10. Numer-
ical simulation is performed for irregular domains as well.
Numerical solution for different types of irregular domains
are presented in Figures 11–14. It can be seen that the better
approximate solution is achieved for the irregular domain.

∂αv
∂tα

= ∂2v
∂z21

+ ∂2v
∂z22

 !
, z1, z2ð Þ ∈Ω

= 0, 1½ � × 0, 1½ �, 0 < α < 1, t ∈ 0,0:5ð Þ,
ð64Þ

with the exact solution

v z1, z2, tð Þ = Eα −
1
2π

2tα
� �

cos π

2 z1
� �

cos π

2 z2
� �

, ð65Þ

where Mittag-Leffler function (one parameter) is defined by

Eα ξð Þ = 〠
∞

j=0

ξj

Γ αj + 1ð Þ , α > 0: ð66Þ

We consider IC from vðz1, z2, 0Þ = cos ðπ/2z1Þ cos ðπ/2z2Þ,
and the BCs are drawn from the exact solution. We have per-
formed computations for c = 13, t = 1, dt = 0:01, and N = 30:
In Figure 15, we have given an approximate solution for
different values of α for uniform nodes, while in Figure 16,
we have plotted E∞ error norm for different types of nonuni-
form nodes for N = 100. We got reasonable accuracy for
these cases as well.

Problem 8. In this problem, we take the following time
FPDE [45].

5. Conclusion

In this work, an attempt is made to propose IS and CNS
schemes for the solution of time-fractional PDEs. The time
derivative is defined and simplified in Caputo sense and then
its value is substituted in governing equation along with
replacement of space derivatives by RBFs. This paper has
an edge over the existing papers in the sense that in this
paper, the scheme is constructed for 0 < α < 1 and 1 < α < 2
and for IS and CNS. Problems are given to show the behav-
iour of the method. Numerical results for different values of
α are demonstrated to examine the effect of α over solution.
Results produced by IS are compared with that by CNS.
Results are also compared with some other methods in the
literature. This comparison clearly indicates the impressive
performance of our schemes. In order to utilize the advantage
of RBF collocation method for nonuniform nodes and irreg-
ular domain, numerical simulation is performed and remark-
able results are achieved for nonuniform nodes and irregular
domain.
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