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Let E be a weighted Nakano sequence space or generalized Cesáro sequence space defined by weighted mean and by using
s−numbers of operators from a Banach space X into a Banach space Y. We give the sufficient (not necessary) conditions on E such
that the components SE(X, Y) ≔ T ∈ L(X, Y): (sn(T))∞n�0 ∈ E􏼈 􏼉 of the class SE form pre-quasi operator ideal, the class of all finite
rank operators are dense in the Banach pre-quasi ideal SE, the pre-quasi operator ideal formed by the sequence of approximation
numbers is strictly contained for different weights and powers, the pre-quasi Banach Operator ideal formed by the sequence of
approximation numbers is small, and finally, the pre-quasi Banach operator ideal constructed by s−numbers is simple
Banach space.

1. Introduction

All through the paper,

L(X, Y) � T: X⟶ Y; T is a bounded linear operator; X andY are Banach spaces􏼈 􏼉, (1)

and if X � Y, we write L(X); by w, we denote the space of all
real sequences and θ is the zero vector of E. Due to the
immense applications in geometry of Banach spaces, spectral
theory, geometry of Banach spaces, theory of eigenvalue
distributions etc., the theory of operator ideals goals pos-
sesses an uncommon essentialness in useful examination.
Some of operator ideals in the class of Banach spaces or
Hilbert spaces are defined by different scalar sequence
spaces. For example, the ideal of compact operators is de-
fined by the space c0 of null sequences and Kolmogorov
numbers. Pietsch [1] examined the quasi-ideals formed by
the approximation numbers and classical sequence space
ℓp(0<p<∞). He showed that the ideals of nuclear

operators and of Hilbert Schmidt operators between Hilbert
spaces are defined by ℓ1 and ℓ2, respectively. Also, he proved
that the class of all finite rank operators is dense in the
Banach quasi ideal and the algebra L(ℓp), where (1≤p<∞)

contains one and only one nontrivial closed ideal. Pietsch [2]
showed that the quasi Banach operator ideal formed by the
sequence of approximation numbers is small. Makarov and
Faried [3] proved that the quasi-operator ideal formed by the
sequence of approximation numbers is strictly contained for
different powers, i.e., for any infinite dimensional Banach
spaces X and Y and for any q>p> 0, it is true that
S
app
ℓp (X, Y)⫋ S

app
ℓq (X, Y)⫋L(X, Y). In [4], Faried and Bakery

studied the operator ideals constructed by approximation
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numbers and generalized Cesáro and Orlicz sequence spaces
ℓM. In [5], Faried and Bakery introduced the concept of pre-
quasi operator ideal which is more general than the usual
classes of operator ideal; they studied the operator ideals
constructed by s− numbers, generalized Cesáro and Orlicz
sequence spaces ℓM, and showed that the operator ideal
formed by the previous sequence spaces and approximation
numbers is small under certain conditions. )e idea of this
paper is to study a generalized class SE by using the sequence
of s-numbers and E (weighted Nakano sequence space or
generalized Cesáro sequence space); we give sufficient (not
necessary) conditions on E such that SE constructs a pre-
quasi operator ideal, which gives a negative answer of
Rhoades [6] open problem about the linearity of E−type
spaces SE. )e components of SE as a pre-quasi Banach
operator ideal containing finite dimensional operators as a
dense subset and its completeness are proved. )e pre-quasi
operator ideal formed by the sequence of approximation
numbers is strictly contained for different weights and powers
are determined. Finally, we show that the pre-quasi Banach
operator ideal formed by E and approximation numbers is small
under certain conditions. Furthermore, the sufficient conditions
for which the pre-quasi Banach operator ideal constructed by
s−numbers is a simple Banach space.

2. Definitions and Preliminaries

Definition 1 (see[7]). An s-number function is a map de-
fined on L(X, Y) which associates to each operator
T ∈ L(X, Y), a nonnegative scaler sequence (sn(T))∞n�0,
assuming that the the following states are verified:

(a) ‖T‖ � s0(T)≥ s1(T)≥ s2(T)≥ · · · ≥ 0, for T ∈ L(X,

Y)

(b) sm+n−1(T1 + T2)≤ sm(T1) + sn(T2) for all T1, T2 ∈
L(X, Y), m, n ∈ N

(c) Ideal property: sn(RVT)≤ ‖R‖sn(V)‖T‖ for all
T ∈ L(X0, X), V ∈ L(X, Y) and R ∈ L(Y, Y0), where
X0 and Y0 are arbitrary Banach spaces

(d) If G ∈ L(X, Y) and λ ∈ R, we obtain
sn(λG) � |λ|sn(G)

(e) Rank property: if rank(T)≤ n then sn(T) � 0 for
each T ∈ L(X, Y)

(f ) Norming property: sr≥n(In) � 0 or sr<n(In) � 1,
where In represents the unit operator on the n-di-
mensional Hilbert space ℓn

2

)ere are several examples of s-numbers, wemention the
following:

(1) )e n-th approximation number, denoted by αn(T),
is defined by

αn(T) � inf ‖T − B‖: B ∈ L(X, Y) and rank(B)≤ n{ }.

(2)

(2) )e n-th Gel’fand number, denoted by cn(T), is
defined by cn(T) � αn(JYT), where JY is a metric

injection from the normed space Y to a higher space
l∞(Λ) for an adequate index set Λ. )is number is
independent of the choice of the higher space l∞(Λ).

(3) )e n-th Kolmogorov number, denoted by dn(T), is
defined by

dn(T) � inf
dimY≤n

sup
‖x‖≤1

inf
y∈Y

‖Tx − y‖. (3)

(4) )e n-th Weyl number, denoted by xn(T), is defined
by

xn(T) � inf αn(TB): B: ℓ2⟶ X
����

����≤ 1􏽮 􏽯. (4)

(5) )e n-th Chang number, denoted by yn(T), is de-
fined by

yn(T) � inf αn(BT): B: Y⟶ ℓ2
����

����≤ 1􏽮 􏽯. (5)

(6) )e n-th Hilbert number, denoted by hn(T), is de-
fined by

hn(T) � sup αn(BTA): B: Y⟶ ℓ2
����

����􏽮

≤ 1 and A: ℓ2⟶ X
����

����≤ 1􏽯.
(6)

Remark (see[7]). Among all the s-number sequences de-
fined above, it is easy to verify that the approximation
number, αn(T), is the largest and the Hilbert number, hn(T),
is the smallest s-number sequence, i.e., hn(T)≤ sn(T)≤
αn(T) for any bounded linear operator T. If T is compact and
defined on a Hilbert space, then all the s-numbers coincide
with the eigenvalues of |T|, where |T| � (T∗T)1/2.

Theorem 1 (see [7], p.115). If T ∈ L(X, Y), then

hn(T)≤ xn(T)≤ cn(T)≤ αn(T),

hn(T)≤yn(T)≤dn(T)≤ αn(T).
(7)

Definition 2 (see [1]). A finite rank operator is a bounded
linear operator whose dimension of the range space is finite.
)e space of all finite rank operators on E is denoted by
F(E).

Definition 3 (see[1]). A bounded linear operator A: E⟶ E

(where E is a Banach space) is called approximable if there
are Sn ∈ F(E), for all n ∈ N such that limn⟶∞‖A − Sn‖ � 0.
)e space of all approximable operators on E is denoted by
Λ(E).

Lemma 1 (see [1]). Let T ∈ L(X, Y). If T is not approxim-
able, then there are operators G ∈ L(X, X) and B ∈ L(Y, Y),
such that BTGek � ek for all k ∈ N.

Definition 4 (see [1]). A Banach space X is called simple if
the algebra L(X) contains one and only one nontrivial
closed ideal.
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Definition 5 (see [1]). A bounded linear operator
A: E⟶ E (where E is a Banach space) is called compact if
A(B1) has compact closure, where B1 denotes the closed unit
ball of E. )e space of all compact operators on E is denoted
by Lc(E).

Theorem 2 (see [1]). If E is infinite dimensional Banach
space, we have

F(E)⫋Λ(E)⫋Lc(E)⫋ L(E). (8)

Definition 6 (see [1]). Let L be the class of all bounded linear
operators between any arbitrary Banach spaces. A subclass U
of L is called an operator ideal if each element U(X, Y) �

U ∩ L(X, Y) fulfills the following conditions:

(i) I5 ∈ U where 5 represents Banach space of one
dimension

(ii) )e space U(X, Y) is linear over R
(iii) If T ∈ L(X0, X), V ∈ U(X, Y) and R ∈ L(Y, Y0);

then, RVT ∈ U(X0, Y0) (see [8, 9])

)e concept of pre-quasi operator ideal is more general
than the usual classes of operator ideal.

Definition 7 (see [5]). A function g: Ω⟶ [0,∞) is said to
be a pre-quasi norm on the ideal Ω if the following con-
ditions holds:

(1) For all T ∈ Ω(X, Y), g(T)≥ 0 and g(T) � 0, if and
only if T � 0

(2) )ere exists a constant M≥ 1 such that g(λT) ≤
M|λ|g(T), for all T ∈ Ω(X, Y) and λ ∈ R

(3) )ere exists a constant K≥ 1 such that
g(T1 + T2)≤K[g(T1) + g(T2)], for all T1, T2 ∈ Ω
(X, Y)

(4) )ere exists a constant C≥ 1 such that if
T ∈ L(X0, X), P ∈ Ω(X, Y) and R ∈ L(Y, Y0); then
g(RPT) ≤C‖R‖g(P)‖T‖, where X0 and Y0 are
normed spaces.

Theorem 3 (see [5]). Every quasi norm on the ideal Ω is a
pre-quasi norm on the ideal Ω.

Let p � (pn) be a positive real and (βn)n∈N be a sequence
of positive real; the weighted Nakano sequence space is
defined by

ℓ pn( )
β � x � xk( 􏼁 ∈ ω: ρ(λx)<∞ for some λ> 0􏼈 􏼉 where ρ(x)

� 􏽘
∞

k�0
βk xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

pk
.

(9)

And (ℓ(pn)

β , ‖·‖) is a Banach space, where

‖x‖ � inf η> 0: ρ
x

η
􏼠 􏼡≤ 1􏼨 􏼩. (10)

When (pn) is bounded, we mark

ℓ pn( )
β � x � xk( 􏼁 ∈ ω: 􏽘

∞

k�0
βk xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pk <∞

⎧⎨

⎩

⎫⎬

⎭. (11)

If βn � 1 for all n ∈ N, then ℓ(pn)

β will reduce to ℓ(pn)

studied in [10, 11].
In [12], Şengönül defined the sequence space as

ces an( 􏼁, pn( 􏼁( 􏼁 � x � xk( 􏼁 ∈ ω: ∃λ> 0with ρ(λx)<∞􏼈 􏼉,

ρ(x) � 􏽘
∞

n�0
an 􏽘

n

k�0
xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

pk

,

(12)

where (an) and (pn) are the sequences of positive real and
pn ≥ 1 for all n ∈ N. With the norm,

‖x‖ � inf η> 0: ρ
x

η
􏼠 􏼡≤ 1􏼨 􏼩. (13)

Note

(1) Taking an � (1/(n + 1)) for all n ∈ N, then
ces((an), (pn)) is reduced to ces(pn) studied by
Sanhan and Suantai [13]

(2) Taking an � (1/(n + 1)) and pn � p for all n ∈ N,
then ces((an), (pn)) is reduced to cesp studied by
many authors (see [14–16])

Definition 8 (see [5]). Let E be a linear space of sequences,
then E is called a (sss) if

(1) For n ∈ N, en ∈ E

(2) E is solid; i.e., assuming x � (xn) ∈ w, y � (yn) ∈ E

and |xn|≤ |yn| for all n ∈ N, then x ∈ E

(3) (x[n/2])
∞
n�0 ∈ E, where [n/2] indicates the integral

part of [n/2], whenever (xn)∞n�0 ∈ E

Definition 9 (see [5]). A subclass of the (sss) is called a
premodular (sss) assuming that we have a map
ρ: E⟶ [0,∞[ with the following:

(i) For x ∈ E, x � θ⟺ ρ(x) � 0 with ρ(x)≥ 0
(ii) For each x ∈ E and scalar λ, we get a real number

L≥ 1 for which ρ(λx)≤ |λ|Lρ(x)

(iii) ρ(x + y)≤K(ρ(x) + ρ(y)) for each x, y ∈ E, holds
for a few numbers K≥ 1

(iv) For n ∈ N, |xn|≤ |yn|, we obtain ρ(xn)≤ ρ(yn)

(v) )e inequality, ρ(xn)≤ ρ(x[n/2])≤K0ρ(xn) holds,
for some numbers K0 ≥ 1

(vi) F � Eρ, where F is the space of finite sequences
(vii) )ere is a steady ξ > 0 such that

ρ(λ, 0, 0, 0, . . .)≥ ξ|λ|ρ(1, 0, 0, 0, . . .) for any λ ∈ R

Condition (ii) gives the continuity of ρ(x) at θ.)e linear
space E enriched with the metric topology formed by the
premodular ρ will be indicated by Eρ. Moreover, condition
(16) in Definition 8 and condition (vi) in Definition 9 explain
that (en)n∈N is a Schauder basis of Eρ.
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Notations. )e sets SE, SE(X, Y), S
app
E , and S

app
E (X, Y) (cf.

[5]) as follows:

SE ≔ SE(X, Y); X andY are Banach spaces􏼈 􏼉, where

SE(X, Y) ≔ T ∈ L(X, Y): si(T)( 􏼁(
∞
i�0 ∈ E􏼈 􏼉.Also,

S
app
E ≔ S

app
E (X, Y); X andY are Banach spaces􏼈 􏼉, where

S
app
E (X, Y) ≔ T ∈ L(X, Y): αi(T)( 􏼁(

∞
i�0 ∈ E􏼈 􏼉.

(14)

Theorem 4 (see [5]). If E is a (sss), then SE is an operator
ideal.

Theorem 5 (see [3]). If X and Y are infinite dimensional
Banach spaces and (μi) is a monotonic decreasing sequence
to zero, then there exists a bounded linear operator T such
that

1
16
μ3i ≤ αi(T)≤ 8μi+1. (15)

Now and after, define en � 0, 0, . . . , 1, 0, 0, . . .{ } where 1
appears at the nth place for all n ∈ N and the given inequality
will be used in the sequel:

an + bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pn ≤H an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pn + bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pn􏼐 􏼑, (16)

whereH � max 1, 2h− 1􏼈 􏼉, h � supnpn, and pn ≥ 1 for all n ∈ N
(see [17]).

3. Main Results

3.1. Linear Problem. We examine here the operator ideals
created by s−numbers and also weighted Nakano sequence
space or generalized Cesáro sequence space defined by
weighted mean such that those classes of all bounded linear
operators T between arbitrary Banach spaces with (αn(T))

in these sequence spaces type an ideal operator.

Theorem 6. ℓ(pn)

β is a (sss), if the following conditions are
satisfied:

(a1) Ie sequence (pn) is increasing and bounded from
above with pn > 0 for all n ∈ N

(a2) Either (βn) is monotonic decreasing or monotonic
increasing such that there exists a constant C≥ 1, for
which β2n+1 ≤Cβn

Proof (1) Let x, y ∈ ℓ(pn)

β . Since (pn) is bounded, we get

􏽘

∞

n�0
βn xn + yn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pn ≤H 􏽘

∞

n�0
βn xn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pn + 􏽘
∞

n�0
βn yn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pn⎛⎝ ⎞⎠<∞,

(17)

then x + y ∈ ℓ(pn)

β

(2) Let λ ∈ R and x ∈ ℓ(pn)

β . Since (pn) is bounded, we
have

􏽘

∞

n�0
βn λxn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pn ≤ sup

n

|λ|
pn􏽘

∞

n�0
βn xn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pn <∞ (18)

)en, λx ∈ ℓ(pn)

β .)erefore, by using Parts (1) and (2), we
have that the space ℓ(pn)

β is linear. Also, en ∈ ℓ
(pn)

β for all
n ∈ N, since

􏽘

∞

i�0
βi en(i)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pi � βn. (19)

(2) Let |xn|≤ |yn| for all n ∈ N and y ∈ ℓ(pn)

β . Since βn > 0
for all n ∈ N, then

􏽘

∞

n�0
βn xn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pn ≤ 􏽘
∞

n�0
βn yn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pn <∞, (20)

and we get x ∈ ℓ(pn)

β .

(3) Let (xn) ∈ ℓ(pn)

β , (βn) be an increasing sequence.
)ere exists C> 0 such that β2n+1 ≤Cβn and (pn) be
increasing; then, we have

􏽘

∞

n�0
βn x[n/2]

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pn � 􏽘
∞

n�0
β2n xn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p2n + 􏽘
∞

n�0
β2n+1 xn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p2n+1

≤ 􏽘

∞

n�0
β2n xn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pn + 􏽘

∞

n�0
β2n+1 xn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pn ≤ 2C 􏽘

∞

n�0
βn xn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pn ,

(21)

and then (x[n/2]) ∈ ℓ
(pn)

β . □

Theorem 7. ces((an), (pn)) is a (sss), if the following con-
ditions are satisfied:

(b1) Ie sequence (pn) is increasing and bounded with
p0 > 1

(b2) 􏽐
∞
n�0 (an)pn <∞

Proof (1) Given that x, y ∈ ces((an), (pn)) and λ1, λ2 ∈ R.
Since (pn) is bounded, we have

􏽘

∞

n�0
an 􏽘

n

k�0
λ1xk + λ2yk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

pn

≤H sup
n

λ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
pn 􏽘

∞

n�0
an 􏽘

n

k�0
xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

pn

⎛⎝

+ sup
n

λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
pn 􏽘

∞

n�0
an 􏽘

n

k�0
yk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

pn

⎞⎠<∞.

(22)

Hence, λ1x + λ2y ∈ ces((an), (pn)); then, the space
ces((an), (pn)) is linear. Also prove that em ∈ ces((an), (pn))

for all m ∈ N, since 􏽐
∞
n�0 (an)pn <∞. So we get

􏽘

∞

n�0
an 􏽘

n

k�0
em(k)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

pn

� 􏽘
∞

n�m

an( 􏼁
pn ≤ 􏽘
∞

n�0
an( 􏼁

pn <∞.

(23)

Hence, em ∈ ces((an), (pn)).
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(2) Let |xn|≤ |yn| for all n ∈ N and y ∈ ces((an), (pn)).
Since an > 0 for all n ∈ N, then

􏽘

∞

n�0
an 􏽘

n

k�0
xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

pn

≤ 􏽘

∞

n�0
an 􏽘

n

k�0
yk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

pn

<∞, (24)

and we get x ∈ ces((an), (pn)).

(3) Let (xn) ∈ ces((an), (pn)). Since (pn) is increasing
and the sequence (an) with 􏽐

∞
n�0 (an)pn <∞ is de-

creasing, then we have

􏽘

∞

n�0
an 􏽘

n

k�0
x[k/2]

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

pn

� 􏽘
∞

n�0
a2n 􏽘

2n

k�0
x[k/2]

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

p2n

+ 􏽘
∞

n�0
a2n+1 􏽘

2n+1

k�0
x[k/2]

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

p2n+1

≤ 􏽘
∞

n�0
a2n 􏽘

2n

k�0
2 xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + xn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠⎛⎝ ⎞⎠

pn

+ 􏽘
∞

n�0
a2n+1 􏽘

2n+1

k�0
2 xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

pn

≤ 2h− 1
􏽘

∞

n�0
2an 􏽘

n

k�0
xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

pn

+ 􏽘
∞

n�0
an 􏽘

n

k�0
xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

pn

⎛⎝ ⎞⎠ + 􏽘
∞

n�0
2an 􏽘

n

k�0
x[k/2]

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

pn

≤ 2h− 1 2h
+ 1􏼐 􏼑 􏽘

∞

n�0
an 􏽘

n

k�0
xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

pn

+ 2h
􏽘

∞

n�0
an 􏽘

n

k�0
xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

pn

≤ 22h− 1
+ 2h− 1

+ 2h
􏼐 􏼑 􏽘

∞

n�0
an 􏽘

n

k�0
xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

pn

<∞.

(25)

Hence, (x[n/2]) ∈ ces((an), (pn)).
By using)eorem 4, we can get the following corollaries:

Corollary 1. Let conditions (a1) and (a2) be satisfied; then,
S
app
ℓ(pn )

β

be an operator ideal.

Corollary 2. S
app
ℓ(pn ) is an operator ideal, if the sequence (pn) is

increasing and bounded from above with pn > 0 for all n ∈ N.

Corollary 3. If p ∈ (0,∞), then S
app
ℓp is an operator ideal.

Corollary 4. Conditions (b1) and (b2) are satisfied; hence,
S
app
ces((an),(pn)) is an operator ideal.

Corollary 5. Assume (pn) is increasing with p0 > 1 and
bounded, so S

app
ces(pn) is an operator ideal.

Corollary 6. If p ∈ (1,∞), then S
app
cesp is an operator ideal.

4. Topological Problem

)e following question arises naturally: which sufficient
conditions (not necessary) on the sequence space E
(weighted Nakano sequence space and generalized Cesáro
sequence space defined by weighted mean) are the ideal of
the finite rank operators in the class of Banach spaces dense
in SE? )is gives a negative answer of Rhoades [6] open
problem about the linearity of E−type spaces (SE).

Theorem 8. F(X, Y) � Sℓ(pn )

β
(X, Y), whenever conditions

(a1) and (a2) are satisfied.

Proof. First, we substantiate that each finite operator
T ∈ F(X, Y) belongs to Sℓ(pn )

β
(X, Y). Given that

en􏼈 􏼉n∈N ⊂ ℓ
(pn)

β and the space ℓ(pn)

β is linear, then for all finite
operators T ∈ F(X, Y), i.e., the sequence (sn(T))n∈N con-
tains only finitely many numbers different from zero.
Currently, we substantiate that Sℓ(pn )

β
(X, Y) ⊆ F(X, Y). On

taking T ∈ Sℓ(pn )

β
(X, Y),we obtain (sn(T))∞n�0 ∈ ℓ

(pn)

β ; hence,

ρ((sn(T))∞n�0)<∞; let ε ∈ (0, 1); at that point, there exists a
m ∈ N − 0{ } such that ρ((sn(T))∞n�m)< (ε/4C2) for some
C≥ 1. While (sn(T))n∈N is decreasing, we get

􏽘

2m

n�m+1
βn s2m(T)( 􏼁

pn ≤ 􏽘
2m

n�m+1
βn sn(T)( 􏼁

pn

≤ 􏽘

∞

n�m

βn sn(T)( 􏼁
pn <

ε
4C2.

(26)

Hence, there exists A ∈ F2m(X, Y); rank A≤ 2m and

􏽘

3m

n�2m+1
βn(‖T − A‖)

pn ≤ 􏽘
2m

n�m+1
βn(T − A)

pn <
ε

4C2. (27)

Since (pn) is a bounded, consider

􏽘

m

n�0
βn(‖T − A‖)

pn <
ε

4C2. (28)

Let (βn) be monotonic increasing such that there exists a
constant C≥ 1 for which β2n+1 ≤Cβn. )en, we have for
n≥m that

β2m+n ≤ β2m+2n+1 ≤Cβm+n ≤Cβ2n ≤Cβ2n+1 ≤C
2βn. (29)

Since (pn) is increasing, inequalities (26)–(29) give

Journal of Function Spaces 5



d(T, A) � ρ sn(T − A)( 􏼁
∞
n�0

� 􏽘
3m−1

n�0
βn sn(T − A)( 􏼁

pn + 􏽘
∞

n�3m

βn sn(T − A)( 􏼁
pn

≤ 􏽘
3m

n�0
βn(‖T − A‖)

pn + 􏽘
∞

n�m

βn+2m sn+2m(T − A)( 􏼁
pn+2m

≤ 3 􏽘
m

n�0
βn(‖T − A‖)

pn + C
2

􏽘

∞

n�m

βn sn(T)( 􏼁
pn < ε.

(30)

Since I3 ∈ Sℓ(n)

(1)

, condition (a1) is not satisfied which
gives a counter example of the converse statement. )is
finishes the proof.

From )eorem 8, we can say that if (a1) and (a2) are
satisfied, then every compact operator would be approxi-
mated by finite rank operators and the converse is not always
true.

Theorem 9. F(X, Y) � Sces((an),(pn))(X, Y); assume that
states (b1) and (b2) are fulfilled and the converse is not always
true.

Proof. Primary since en ∈ ces((an), (pn)), for each n ∈ N and
the space ces((an), (pn)) is linear, then for every finite
mapping T ∈ F(X, Y), i.e., the sequence (sn(T))n∈N contains
only fnitely many numbers different from zero. Hence,
F(X, Y) ⊆ Sces((an),(pn))(X, Y). By letting T ∈
Sces((an),(pn))(X, Y), we obtain (sn(T))n∈N ∈ ces((an), (pn)),
while ρ((αn(T))n∈N)<∞. Let ε ∈ (0, 1). )en, there exists a

number m ∈ N − 0{ } such that ρ((sn(T))∞n�m)< (ε/2h+2δC)

for some C≥ 1, where δ � max 1, 􏽐
∞
n�m a

pn
n􏽮 􏽯. As sn(T) is

decreasing for every n ∈ N, we obtain

􏽘

2m

n�m+1
an 􏽘

n

k�0
s2m(T)⎛⎝ ⎞⎠

pn

≤ 􏽘
2m

n�m+1
an 􏽘

n

k�0
sk(T)⎛⎝ ⎞⎠

pn

≤ 􏽘
∞

n�m

an 􏽘

n

k�0
sk(T)⎛⎝ ⎞⎠

pn

<
ε

2h+2δC
.

(31)

)en, there exists A ∈ F2m(X, Y) and rank A≤ 2m and

􏽘

3m

n�2m+1
an 􏽘

n

k�0
‖T − A‖⎛⎝ ⎞⎠

pn

≤ 􏽘
2m

n�m+1
an 􏽘

n

k�0
T − A⎛⎝ ⎞⎠

pn

<
ε

2h+2δC
,

(32)

and since (pn) is bounded, consider

sup
n�m

∞
􏽘

m

k�0
‖T − A‖⎛⎝ ⎞⎠

pn

<
ε
2hδ

. (33)

Hence, set

􏽘

m

n�0
an 􏽘

n

k�0
‖T − A‖⎛⎝ ⎞⎠

pn

<
ε

2h+3δC
. (34)

However, (pn) is increasing and (an) is decreasing for
each n ∈ N; by using inequalities (31)–(34), we have

d(T, A) � ρ sn(T − A)( 􏼁
∞
n�0

� 􏽘
3m−1

n�0
an 􏽘

n

k�0
sk(T − A)⎛⎝ ⎞⎠

pn

+ 􏽘
∞

n�3m

an 􏽘

n

k�0
sk(T − A)

pn⎛⎝ ⎞⎠

≤ 􏽘
3m

n�0
an 􏽘

n

k�0
‖T − A‖⎛⎝ ⎞⎠

pn

+ 􏽘
∞

n�m

an+2m 􏽘

n+2m

k�0
sk(T − A)⎛⎝ ⎞⎠

pn+2m

≤ 3 􏽘
m

n�0
an 􏽘

n

k�0
‖T − A‖⎛⎝ ⎞⎠

pn

+ 􏽘
∞

n�m

an 􏽘

2m− 1

k�0
sk(T − A) + an 􏽘

n+2m

k�2m

sk(T − A)⎛⎝ ⎞⎠

pn

≤ 3 􏽘
m

n�0
an 􏽘

n

k�0
‖T − A‖⎛⎝ ⎞⎠

pn

+ 2h− 1
􏽘

∞

n�m

an 􏽘

2m− 1

k�0
sk(T − A)⎛⎝ ⎞⎠

pn

+ 􏽘
∞

n�m

an 􏽘

n+2m

k�2m

sk(T − A)⎛⎝ ⎞⎠

pn

⎛⎝ ⎞⎠

≤ 3 􏽘

m

n�0
an 􏽘

n

k�0
‖T − A‖⎛⎝ ⎞⎠

pn

+ 2h− 1
􏽘

∞

n�m

an 􏽘

m

k�0
‖T − A‖⎛⎝ ⎞⎠

pn

+ 􏽘

∞

n�m

an 􏽘

n

k�0
sk+2m(T − A)⎛⎝ ⎞⎠

pn

⎛⎝ ⎞⎠

≤ 3 􏽘
m

n�0
an 􏽘

n

k�0
‖T − A‖⎛⎝ ⎞⎠

pn

+ 2h− 1sup∞n�m 􏽘

m

k�0
‖T − A‖)

pn 􏽘

∞

n�m

an( 􏼁
pn + 2h− 1

􏽘

∞

n�m

an 􏽘

n

k�0
sk(T)⎛⎝ ⎞⎠

pn

⎛⎝ ⎞⎠< ε.

(35)

Since I3 ∈ Sces((1),(1)), condition (b2) is not satisfied
which gives a counter example of the converse statement.
)is finishes the proof.

From )eorem 9, we can say that if conditions (b1) and
(b2) are satisfied, then every compact operators would be

approximated by finite rank operators and the converse is
not always true. □

Corollary 7. If (pn) is an increasing with pn > 0 for all n ∈ N
and bounded from above, then Sl(p) (X, Y) � F(X, Y).
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Corollary 8. If 0<p<∞, then Slp (X, Y) � F(X, Y).

Corollary 9. Sces(pn)(X, Y) � F(X, Y), if (pn) is increasing
with p0 > 1 and limn⟶∞suppn <∞.

Corollary 10. Scesp(X, Y) � F(X, Y), if 1<p<∞.

5. Completeness of the Pre-Quasi
Ideal Components

For which sequence space E are the components of pre-quasi
operator ideal SE complete?

Theorem 10. ℓ(pn)

β is a premodular (sss), if conditions (a1)
and (a2) are satisfied.

Proof. We define the functional ρ on ℓ(pn)

β as
ρ(x) � 􏽐

∞
n�0 βn|xn|pn :

(i) Evidently, ρ(x)≥ 0 and ρ(x) � 0⟺x � θ
(ii) )ere is a steady L � max 1, supn|λ|pn􏼈 􏼉≥ 1 such that

ρ(λx)≤ L|λ|ρ(x) for all x ∈ ℓ(pn)

β and λ ∈ R
(iii) We have the inequality ρ(x + y)≤H(ρ(x) + ρ(y))

for all x, y ∈ ℓ(pn)

β

(iv) Clearly follows from inequality (20) of )eorem 6
(v) It obtained from (27) )eorem 6 that K0 ≥ 2
(vi) It is clear that F � ℓ(pn)

β

(vii) )ere exists a steady 0< ξ ≤ |λ|p0− 1 such that

ρ(λ, 0, 0, 0, . . .)≥ ξ|λ|ρ(1, 0, 0, 0, . . .) for any λ ∈ R (36)

Theorem 11. ces((an), (pn)) is a premodular (sss), if con-
ditions (b1) and (b2) are satisfied.

Proof. We define the functional ρ on ces((an), (pn)) as
ρ(x) � 􏽐

∞
n�0 (an 􏽐

n
k�0 |xk|)pn :

(i) Clearly, ρ(x)≥ 0 and ρ(x) � 0⟺x � θ.
(ii) )ere is a number L � max 1, supn|λ|pn􏼈 􏼉≥ 1 with

ρ(λx)≤ L|λ|ρ(x) for all x ∈ ces((an), (pn)) and
λ ∈ R.

(iii) We have the inequality ρ(x + y)≤H(ρ(x) + ρ(y))

for all x, y ∈ ces((an), (pn)).
(iv) It clearly follows from inequality (24) of )eorem 7.
(v) It is clear from (27) )eorem 7, that

K0 ≥ (22h− 1 + 2h− 1 + 2h)≥ 1.
(vi) It is clear that F � ces((an), (pn)).
(vii) )ere exists a steady 0 〈 ξ ≤ |λ|p0− 1 such that

ρ(λ, 0, 0, 0, . . .)≥ ξ|λ|ρ(1, 0, 0, 0, . . .) for any λ ∈ R.
We state the following theorem without proof, and
this can be established using standard technique.

Theorem 12. Ie function g(P) � 9(si(P))∞i�0 is a pre-quasi
norm on SE9

, where E9 is a premodular (sss).

Theorem 13. If X and Y are Banach spaces and Eρ is a
premodular (sss), then (SEρ

, g), where g(T) � ρ((sn(T))∞n�0)

is a pre-quasi Banach operator ideal.

Proof. Since Eρ is a premodular (sss), then the function
g(T) � ρ((sn(T))∞n�0) is a pre-quasi norm on SEρ

. Let (Tm)

be a Cauchy sequence in SEρ
(X, Y), then by utilizing Part

(vii) of Definition 9 and since L(X, Y) ⊇ SEρ
(X, Y), we get

g Ti − Tj􏼐 􏼑 � ρ sn Ti − Tj􏼐 􏼑􏼐 􏼑
∞
n�0􏼐 􏼑≥ ρ s0 Ti − Tj􏼐 􏼑, 0, 0, 0, . . .􏼐 􏼑

� ρ Ti − Tj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 0, 0, 0, . . .􏼒 􏼓≥ ξ Tm − Tj

�����

�����ρ(1, 0, 0, 0, . . .).

(37)

)en, (Tm)m∈N is a Cauchy sequence in L(X, Y). While the
space L(X, Y) is a Banach space, so there exists T ∈ L(X, Y)

with limm⟶∞‖Tm − T‖ � 0, and while (sn(Tm))∞n�0 ∈ Eρ for
each m ∈ N; hence, using Parts (iii) and (iv) of Definition 9
and as ρ is continuous at θ, we obtain

g(T) � ρ sn(T)( 􏼁
∞
n�0( 􏼁 � ρ sn T − Tm + Tm( 􏼁( 􏼁

∞
n�0( 􏼁

≤Kρ s[n/2] T − Tm( 􏼁􏼐􏼐 􏼑
∞
n�0􏼑 + Kρ s[n/2] Tm( 􏼁

∞
n�0􏼐 􏼑􏼐 􏼑

≤Kρ Tm − T
����

����􏼐 􏼑
∞
n�0􏼐 􏼑 + Kρ sn Tm( 􏼁

∞
n�0( 􏼁( 􏼁< ε,

(38)

and we have (sn(T))∞n�0 ∈ Eρ, then T ∈ SEρ
(X, Y).

Corollary 11. If X and Y are Banach spaces and conditions
(a1) and (a2) are satisfied, then Sℓ(pn)

β
is a pre-quasi Banach

operator ideal.

Corollary 12. If X and Y are Banach spaces, (pn) is in-
creasing with pn > 0 for all n ∈ N and bounded from above,
then Sℓ(pn ) is a pre-quasi Banach operator ideal.

Corollary 13. If X and Y are Banach spaces and 0<p<∞,
then Sℓp is a pre-quasi Banach operator ideal.

Corollary 14. If X and Y are Banach spaces and the con-
ditions (b1) and (b2) are satisfied, then Sces((an),(pn)) is a pre-
quasi Banach operator ideal.

Corollary 15. If X and Y are Banach spaces and (pn) is
increasing with p0 > 1 and limn⟶∞suppn <∞, then Sces(pn)

is a pre-quasi Banach operator ideal.

Corollary 16. If X and Y are Banach spaces and p ∈ (1,∞),
then U

app
cesp (X, Y) is complete.

6. Smallness of the Pre-Quasi Banach
Operator Ideal

We give here the sufficient conditions on the weighted
Nakano sequence space such that the pre-quasi operator
ideal formed by the sequence of approximation numbers and
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this sequence space is strictly contained for different weights
and powers.

Theorem 14. For any infinite dimensional Banach spaces X
and Y and for any 0<pn < qn and 0< an < bn for all n ∈ N, it is
true that

S
app

ℓ pn( )
bn( )

(X, Y)⫋ S
app

ℓ qn( )
an( )

(X, Y)⫋ L(X, Y). (39)

Proof. Let X and Y be infinite dimensional Banach spaces
and for any 0<pn < qn and 0< an < bn for all n ∈ N, if
T ∈ S

app
ℓ(pn )

(bn )

(X, Y), then (αn(T)) ∈ ℓ(pn)

(bn) . One can see that

􏽘

∞

n�0
an αn(T)( 􏼁

qn < 􏽘
∞

n�0
bn αn(T)( 􏼁

pn <∞. (40)

Hence, T ∈ S
app
ℓ(qn )

(an )

(X, Y). Next, if we take (an) with

sup an <∞, (b−1
n ) ∈ ℓ(qn/pn)and μn � (1/

��
bn

pn
􏽰

). So by using
)eorem 5, one can find T ∈ L(X, Y) with

1
16

���
b3n

p3n
􏽰 ≤ αn(T)≤

8
����
bn+1

pn+1
􏽰 , (41)

such that T does not belong to S
app
ℓ(pn)

(bn)

(X, Y) and
T ∈ S

app
ℓ(qn )

(an )

(X, Y).

It is easy to see that S
app
ℓ(qn)

(an)

(X, Y) ⊂ L(X, Y). Next, if we
take μn � (1/ ��

an
qn
√

). So by using )eorem 5, one can find
T ∈ L(X, Y) with

1
16 ���

a3n
q3n
√ ≤ αn(T)≤

8
����
an+1

qn+1
√ , (42)

such that T does not belong to S
app
ℓ(qn )

(an )

(X, Y). )is finishes the
proof.

Corollary 17 (see [3]). For any infinite dimensional Banach
spaces X and Y and for any q>p> 0, it is true that
S
app
ℓp (X, Y)⫋ S

app
ℓq (X, Y)⫋ L(X, Y).

Lemma 2. If (an) is a sequence of positive real with an ≤ 1 for
all n ∈ N, (pn) is monotonic increasing bounded sequence
with pn ≥ 1 for all n ∈ N or an > 1 for all n ∈ N, and (pn) is
monotonic decreasing bounded sequence with pn ≥ 1 for all
n ∈ N, one has the following inequality:

􏽘

n

k�0
ak

⎛⎝ ⎞⎠

pn

< 2n suppn− 1( ) 􏽘

n

k�0
a

pk

k . (43)

Proof. By using inequality (16) and the sufficient conditions,
one has

􏽘

n

k�0
ak

⎛⎝ ⎞⎠

pn

� a0 + 􏽘

n

k�1
ak

⎛⎝ ⎞⎠

pn

< 2suppn− 1
a

pn

0 + 􏽘

n

k�1
ak

⎛⎝ ⎞⎠

pn

⎛⎝ ⎞⎠

� 2suppn− 1
a

pn

0 + a1 + 􏽘

n

k�2
ak

⎛⎝ ⎞⎠

pn

⎛⎝ ⎞⎠

< 2suppn− 1
a

pn

0 + 2suppn− 1
a

pn

1 + 􏽘
n

k�2
ak

⎛⎝ ⎞⎠

pn

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

< 2suppn− 1 2suppn− 1
a

pn

0 + 2suppn− 1
a

pn

1 + 􏽘

n

k�2
ak

⎛⎝ ⎞⎠

pn

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

< 22 suppn− 1( ) a
pn

0 + a
pn

1 + 􏽘
n

k�2
ak

⎛⎝ ⎞⎠

pn

⎛⎝ ⎞⎠

< 23 suppn− 1( ) a
pn

0 + a
pn

1 + a
pn

2 + 􏽘
n

k�3
ak

⎛⎝ ⎞⎠

pn

⎛⎝ ⎞⎠

⋮

< 2(n− 1s) suppn− 1( ) a
pn

0 + a
pn

1 + a
pn

2 + · · · + a
pn

n−2􏼐

+ 􏽘
n

k�n−1
ak

⎛⎝ ⎞⎠

pn

⎞⎠

< 2n suppn− 1( ) 􏽘

n

k�0
a

pn

k < 2
n suppn− 1( ) 􏽘

n

k�0
a

pk

k .

(44)

We give here the sufficient conditions on the generalized
Cesáro sequence space defined by weighted mean such that
the pre-quasi operator ideal formed by the sequence of
approximation numbers, and this sequence space is strictly
contained for different weights and powers.

Theorem 15. For any infinite dimensional Banach spaces X
and Y and for any 1<pn < qn for all n ∈ N, it is true that
S
app
ces((bn),(pn))(X, Y)⫋ S

app
ces((an),(qn))(X, Y)⫋ L(X, Y), where (pn)

and (qn) are the monotonic increasing bounded sequences.

Proof. Let X and Y be infinite dimensional Banach spaces
and for any 0<pn < qn and 0< an < bn for all n ∈ N; if
T ∈ S

app
ces((bn),(pn))(X, Y), then (αn(T)) ∈ ces((bn), (pn)). One

has

􏽘

∞

n�0
an 􏽘

n

k�0
αk(T)⎛⎝ ⎞⎠

qn

< 􏽘
∞

n�0
bn 􏽘

n

k�0
αk(T)⎛⎝ ⎞⎠

pn

<∞. (45)

Hence, T ∈ S
app
ces((an),(qn))(X, Y). Next, if we take (an) with

sup2(sup qn− 1)na
qn
n <∞, (b−1

n ) ∈ ℓ(qn/pn) and μn � (1/
��
bn

pn
􏽰

). So
by using)eorem 5 and Lemma 2, one can find T ∈ L(X, Y)

with
1

16
���
b3n

p3n
􏽰 ≤ αn(T)≤

8
����
bn+1

pn+1
􏽰 , (46)

such that T does not belong to S
app
ces((bn),(pn))(X, Y) and

T ∈ S
app
ces((an),(qn))(X, Y).
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It is easy to see that S
app
ces((an),(qn))(X, Y) ⊂ L(X, Y). Next,

we take μn � (1/ ��
an

qn
√

). So by using )eorem 5, one can find
T ∈ L(X, Y) with

1
16 ���

a3n
q3n
√ ≤ αn(T)≤

8
����
an+1

qn+1
√ , (47)

such that T does not belong to S
app
ces((an),(qn))(X, Y). )is

finishes the proof.

Corollary 18. For any infinite dimensional Banach spaces X
and Y and 1<p< q<∞, then

S
app
cesp

(X, Y)⫋ S
app
cesq

(X, Y)⫋L(X, Y). (48)

In this part, we give the conditions for which the pre-quasi
Banach Operator ideal S

app
ces((ai),qi)

is small.

Theorem 16. If conditions (b1), (b2), and (nan) ∉ ℓ(pn) are
satisfied, then the pre-quasi Banach operator ideal S

app
ces((ai),pi)

is small.

Proof. Since (pi) is an increasing sequence with p0 > 1 and
(ai) ∈ ℓ(pi), take λ � (􏽐

∞
i�0 a

pi

i )1/h. )en, (S
app
ces((ai),pi)

, g),
where g(T) � (1/λ)(􏽐

∞
i�0 (ai 􏽐

i
j�0 αj(T))pi )1/h is a pre-quasi

Banach operator ideal. Let X and Y be any two Banach
spaces. Suppose that S

app
ces((ai),pi)

(X, Y) � L(X, Y); then, there
exists a constant C> 0 such that g(T)≤C‖T‖ for all
T ∈ L(X, Y). Assume that X and Y be infinite dimensional
Banach spaces. Hence, by Dvoretzky’s )eorem [18] for
m ∈ N, we have quotient spaces X/Nm and subspaces Mm of

Y which can be mapped onto ℓm
2 by isomorphisms Hm and

Am such that Hm‖H−1
m ‖≤ 2 and Am‖A−1

m ‖≤ 2. Let Im be the
identity map on ℓm

2 , Qm be the quotient map from X onto
X/Nm, and Jm be the natural embedding map from Mm into
Y. Let un be the Bernstein numbers [19]; then,

1 � un Im( 􏼁 � un AmA
−1
m ImHmH

−1
m􏼐 􏼑

≤ Am

����
����un A

−1
m ImHm􏼐 􏼑 H

−1
m

����
����

� Am

����
����un JmA

−1
m ImHm􏼐 􏼑 H

−1
m

����
����

≤ Am

����
����dn JmA

−1
m ImHm􏼐 􏼑 H

−1
m

����
����

� Am

����
����dn JmA

−1
m ImHmQm􏼐 􏼑 H

−1
m

����
����

≤ Am

����
����αn JmA

−1
m ImHmQm􏼐 􏼑 H

−1
m

����
����,

(49)

for 1≤ i≤m. Now,

􏽘

i

j�0
ai( 􏼁≤ 􏽘

i

j�0
Am

����
���� aiαj JmA

−1
m ImHmQm􏼐 􏼑 H

−1
m

����
����⟹

(i + 1)ai ≤ Am

����
���� ai 􏽘

i

j�0
αj JmA

−1
m ImHmQm􏼐 􏼑⎛⎝ ⎞⎠ H

−1
m

����
����⟹

(i + 1)ai( 􏼁
pi ≤ Am

����
���� H

−1
m

����
����􏼐 􏼑

pi
ai 􏽘

i

j�0
αj JmA

−1
m ImHmQm􏼐 􏼑⎛⎝ ⎞⎠

pi

.

(50)

)erefore,

􏽘

m

i�0
(i + 1)ai( 􏼁

pi⎛⎝ ⎞⎠

1/h

≤ L Am

����
���� H

−1
m

����
���� 􏽘

m

i�0
ai 􏽘

i

j�0
αj JmA

−1
m ImHmQm􏼐 􏼑⎛⎝ ⎞⎠

pi

⎡⎢⎢⎣ ⎤⎥⎥⎦

1/h

⟹

1
λ

􏽘

m

i�0
(i + 1)ai( 􏼁

pi⎛⎝ ⎞⎠

1/h

≤ L Am

����
���� H

−1
m

����
����
1
λ

􏽘

m

i�0
ai 􏽘

i

j�0
αj JmA

−1
m ImHmQm􏼐 􏼑⎛⎝ ⎞⎠

pi

⎡⎢⎢⎣ ⎤⎥⎥⎦

1/h

⟹

1
λ

􏽘

m

i�0
(i + 1)ai( 􏼁

pi⎛⎝ ⎞⎠

1/h

≤ L Am

����
���� H

−1
m

����
����g JmA

−1
m ImHmQm􏼐 􏼑⟹

1
λ

􏽘

m

i�0
(i + 1)ai( 􏼁

pi⎛⎝ ⎞⎠

1/h

≤ LC Am

����
���� H

−1
m

����
���� JmA

−1
m ImHmQm

����
����⟹

1
λ

􏽘

m

i�0
(i + 1)ai( 􏼁

pi⎛⎝ ⎞⎠

1/h

≤ LC Am

����
���� H

−1
m

����
���� JmA

−1
m

����
���� Im

����
���� HmQm

����
���� � LC Am

����
���� H

−1
m

����
���� A

−1
m

����
���� Im

����
���� Hm

����
����⟹

1
λ

􏽘

m

i�0
(i + 1)ai( 􏼁

pi⎛⎝ ⎞⎠

1/h

≤ 4LC,

(51)
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for some L≥ 1. )us, we arrive at a contradiction since m is
an arbitrary and (nan) ∉ ℓ(pn). )us, X and Y both cannot be
infinite dimensional when S

app
ces((ai),(pi))

(X, Y) � L(X, Y) and
hence, the result. □

Theorem 17. If (pi) is an increasing and p0 > 1, then the pre-
quasi Banach operator ideal SKolces(pi)

is small.

Corollary 19. If 1<p<∞, then the quasi Banach operator
ideal S

app
cesp is small.

Corollary 20. If 1<p<∞, then the quasi Banach operator
ideal SKolcesp is small.

In this part, we give the conditions for which the pre-quasi
Banach operator ideal S

app
ℓ(pn )

β

is small.

Theorem 18. If conditions (a1), (a2), and (βn) ∉ ℓ1 are
satisfied, then the pre-quasi Banach operator ideal S

app
ℓ(pn )

β

is
small.

Proof. Since conditions (a1), (a2), and (βn) ∉ ℓ1 are satisfied,
then (S

app
ℓ(pn )

β

, g), where g(T) � 􏽐
∞
i�0 βi(αi(T))pi , is a pre-quasi

Banach operator ideal. Let X and Y be any two Banach
spaces. Suppose that S

app
ℓ(pn )

β

(X, Y) � L(X, Y). )en, there
exists a constant C> 0 such that g(T)≤C‖T‖ for all
T ∈ L(X, Y). Assume that X and Y are infinite dimensional
Banach spaces. By using inequality (49) and (βn) ∉ ℓ1, one
obtains

1≤ Am

����
���� H

−1
m

����
����􏼐 􏼑

pi αi JmA
−1
m ImHmQm􏼐 􏼑􏼐 􏼑

pi⟹

βi ≤ L Am

����
����βi αi JmA

−1
m ImHmQm􏼐 􏼑􏼐 􏼑

pi
H

−1
m

����
����⟹

􏽘

m

i�0
βi ≤ L Am

����
���� H

−1
m

����
���� 􏽘

m

i�0
βi αi JmA

−1
m ImHmQm􏼐 􏼑􏼐 􏼑

pi⟹

􏽘

m

i�0
βi ≤ L Am

����
���� H

−1
m

����
����g JmA

−1
m ImHmQm􏼐 􏼑⟹

􏽘

m

i�0
βi ≤ LC Am

����
���� H

−1
m

����
���� JmA

−1
m ImHmQm

����
����⟹

􏽘

m

i�0
βi ≤ LC Am

����
���� H

−1
m

����
���� JmA

−1
m

����
���� Im

����
���� HmQm

����
����

� LC Am

����
���� H

−1
m

����
���� A

−1
m

����
���� Im

����
���� Hm

����
����⟹

􏽘

m

i�0
βi ≤ 4LC,

(52)

for some L≥ 1. )us, we arrive at a contradiction since m is
an arbitrary. )us, X and Y both cannot be infinite di-
mensional when S

app
ℓ(pn )

β

(X, Y) � L(X, Y) and hence, the
result. □

Corollary 21 (see [2]). If 0<p<∞, then the quasi Banach
operator ideal S

app
ℓp is small.

Corollary 22. If 0<p<∞, then the quasi Banach operator
ideal SKolℓp is small.

7. Pre-Quasi Simple Banach Operator Ideal

)e following question arises naturally: for which weighted
Nakano sequence space or generalized Cesáro sequence
space defined by weighted mean is the pre-quasi Banach
ideal simple?

Theorem 19. If (pn) and (qn) are bounded sequences with
1≤pn < qn and 0< an < bn for all n ∈ N, then

L S
ℓ qn( )

an( )

, S
ℓ pn( )

bn( )

􏼠 􏼡 � Λ S
ℓ qn( )

an( )

, S
ℓ pn( )

bn( )

􏼠 􏼡. (53)

Proof. Suppose that there exists T ∈ L(Sℓ(qn )

(an )

, Sℓ(pn)

(bn)

) which is
not approximable. According to Lemma 1, we can find

X ∈ L(Sℓ(qn)

(an )

, Sℓ(qn )

(an)

) and B ∈ L(Sℓ(pn )

(bn )

, Sℓ(pn )

(bn )

) with BTXIk � Ik.

)en, it follows for all k ∈ N that

Ik

����
����S

ℓ
pn( )
bn( )

� 􏽘
∞

n�0
bn αn Ik( 􏼁( 􏼁

pn⎛⎝ ⎞⎠

1/sup pn

� 􏽘
k− 1

n�0
bn

⎛⎝ ⎞⎠

1/suppn

≤ ‖BTX‖ Ik

����
����S

ℓ
qn( )
an( )

≤ 􏽘
∞

n�0
an αn Ik( 􏼁( 􏼁

qn⎛⎝ ⎞⎠

1/supqn

� 􏽘
k− 1

n�0
an

⎛⎝ ⎞⎠

1/supqn

.

(54)

But this is impossible. □

Corollary 23. If (pn) and (qn) are bounded sequences with
1≤pn < qn and 0< an < bn for all n ∈ N, then

L S
ℓ qn( )

an( )

, S
ℓ pn( )

bn( )

􏼠 􏼡 � LC S
ℓ qn( )

an( )

, S
ℓ pn( )

bn( )

􏼠 􏼡. (55)

Proof. Every approximable operator is compact. □

Theorem 20. If (pn) and (qn) are bounded sequences with
1<pn < qn and 0< an < bn for all n ∈ N, then

L Sces an( ), qn( )( ), Sces bn( ), pn( )( )􏼒 􏼓

� Λ Sces an( ), qn( )( ), Sces bn( ), pn( )( )􏼒 􏼓.

(56)

Proof. Suppose that there exists T ∈ L(Sces((an),(qn)),

Sces((bn),(pn))) which is not approximable. According to
Lemma 1, we can find X ∈ L(Sces((an),(qn)), Sces((an),(qn))) and
B ∈ L(Sces((bn),(pn)), Sces((bn),(pn))) with BTXIk � Ik. )en, it
follows for all k ∈ N that
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Ik

����
����Sces bn( ), pn( )( )

� 􏽘
∞

n�0
bn 􏽘

n

i�0
αi Ik( 􏼁⎛⎝ ⎞⎠

pn

⎛⎝ ⎞⎠

1/sup pn

� 􏽘
∞

n�0
bn 􏽘

k− 1

i�0
αi Ik( 􏼁⎛⎝ ⎞⎠

pn

⎛⎝ ⎞⎠

1/sup pn

� 􏽘
∞

n�0
kbn􏼁( 􏼁

pn⎛⎝ ⎞⎠

1/sup pn

≤ ‖BTX‖ Ik

����
����Sces an( ), qn( )( )

≤ 􏽘
∞

n�0
an 􏽘

n

i�0
αi Ik( 􏼁⎛⎝ ⎞⎠

qn

⎛⎝ ⎞⎠

1/sup qn

� 􏽘
∞

n�0
an 􏽘

k− 1

i�0
αi Ik( 􏼁⎛⎝ ⎞⎠

qn

⎛⎝ ⎞⎠

1/sup qn

� 􏽘
∞

n�0
kan( 􏼁⎞⎠

qn

⎛⎝ ⎞⎠

1/sup qn

.

(57)

But this is impossible. □

Corollary 24. If (pn) and (qn) are bounded sequences with
1<pn < qn and 0< an < bn for all n ∈ N, then

L Sces an( ), qn( )( ), Sces bn( ), pn( )( )􏼒 􏼓

� LC Sces an( ), qn( )( ), Sces bn( ), pn( )( )􏼒 􏼓.

(58)

Theorem 21. For a bounded sequence (pn) with 1≤pn <∞
and bn > 0 for all n ∈ N, the pre-quasi Banach space Sℓ(pn )

(bn )

is simple.

Proof. Suppose that the closed ideal LC(Sℓ(pn)

(bn)

) contains an

operator Twhich is not approximable. According to Lemma

1, we can find X, B ∈ L(Sℓ(pn)

(bn)

) with BTXIk � Ik. )is means

that IS
ℓ(pn )

(bn )

∈ LC(Sℓ(pn )

(bn )

). Consequently, L(Sℓ(pn)

(bn)

) � LC(Sℓ(pn)

(bn)

).

)erefore, Λ(Sℓ(pn )

(bn )

) is the only nontrivial closed ideal in
L(Sℓ(pn )

(bn )

). □

Theorem 22. For a bounded sequence (pn) with 1<pn <∞
and bn > 0 for all n ∈ N, the pre-quasi Banach space
(Sces((bn),(pn))) is simple.

Proof. Suppose that the closed ideal LC(Sces((bn),(pn))) con-
tains an operator Twhich is not approximable. According to
Lemma 1, we can find X, B ∈ L(Sces((bn),(pn))) with
BTXIk � Ik. )is means that ISces((bn),(pn ))

∈ LC(Sces((bn),(pn))).
Consequently, L(Sces((bn),(pn))) � LC(Sces((bn),(pn))). )erefore,
Λ(Sces((bn),(pn))) is the only nontrivial closed ideal in
L(Sces((bn),(pn))). □
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