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In this paper, we apply the fixed-point theorems of c concave and (− c) convex operators to establish the existence of positive
solutions for fractional differential systems with multipoint boundary conditions. Two examples are given to support our results.

1. Introduction

Consider the following system of nonlinear fractional dif-
ferential equations

Dα
0+u(t) + μ1f(t, v(t)) + μ2g(t, v(t)) � 0, 0< t< 1,

Dα
0+v(t) + μ1f(t, u(t)) + μ2g(t, u(t)) � 0, 0< t< 1,



(1)

Dα
0+u(t) + μ1f(t, u(t)) + μ2g(t, v(t)) � 0, 0< t< 1,

Dα
0+v(t) + μ1f(t, v(t)) + μ2g(t, u(t)) � 0, 0< t< 1,



(2)

with the multipoint boundary conditions with the multi-
point boundary conditions

D
β
0+u(1) � 

m− 2

i�1
ξiD

β
0+u ηi( , u(0) � 0,

D
β
0+v(1) � 

m− 2

i�1
ξiD

β
0+v ηi( , v(0) � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where Dα
0+ is the standard Riemann–Liouville fractional de-

rivative, f: J × [0,∞)⟶ [0,∞) is continuous, 1< α≤ 2,
0≤ β≤ 1, 0≤ α − β − 1, 0< ξi, ηi < 1, i � 1, 2, . . . , m − 2,


m− 2
i�1 ξiη

α− β− 1
i < 1, J � [0, 1], and μ1, μ2 ∈ (0, +∞), μ1 ≥ μ2.

Differential equations with fractional order have been
applied in various areas of science and engineering. For their
applications, there has been a sharp increase in studying

fractional differential equations (see [1–18] and references
therein). Meanwhile, the theory of boundary value problems
with multipoint boundary conditions has various applica-
tions in applied fields, which have been studied by many
authors (cf., e.g., [19–26]). Many authors have studied these
problems by using different methods, such as monotone
iterative technique, the method of upper and lower solu-
tions, fixed-point theorems in cones, nonlinear alternatives
of Leray–Schauder, and coincidence degree theory. How-
ever, concave (convex) operators are a class of important
operators, which can be used in nonlinear differential and
integral equations (cf., e.g., [27–31]). Moreover, few papers
can be reported on the existence of solutions for coupled
systems of fractional differential equations with multipoint
boundary conditions by using fixed-point theorems of c

concave and (− c) convex operators.
In [25], we considered the following m-point boundary

value problem for fractional differential equation

D
α
0+u(t) + f(t, u(t)) � 0, 0< t< 1, (4)

with the multipoint boundary conditions u(0) � 0,

D
β
0+u(1) � 

m− 2
i�1 ξiD

β
0+u(ηi), where Dα

0+ is the standard
Riemann–Liouville fractional derivative, n � [α] + 1, f: [0,

1] × [0,∞)⟶ [0,∞) is continuous, 1< α≤ 2, 0≤ β≤ 1,
0≤ α − β − 1, 0< ξi, ηi < 1, i � 1, 2, . . . , m − 2, and


m− 2
i�1 ξiη

α− β− 1
i < 1.

In [26], Henderson and Luca studied the following
system of nonlinear second-order ordinary differential
equation
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u″(t) + c(t)f(v(t)) � 0, t ∈ (0, T),

v″(t) + d(t)g(u(t)) � 0, t ∈ (0, T),

⎧⎨

⎩ (5)

with the multipoint boundary conditions αu(0) − βu′(0) �

0, u(T) � 
m− 2
i�1 iu(ξi) + a0a, m ∈ N, m≥ 3 and cv(0) −

δv′(0) � 0, v(T) � 
m− 2
i�1 biv(ηi) + b0, n ∈ N, m≥ 3. By using

the Schauder fixed-point theorem, the existence of positive
solutions was investigated.

Motivated by above papers, in this paper, we investigate
the existence of positive solutions for systems (1)–(3).

In this paper, we need the following assumptions that we
shall use in the sequel:

(H1) f, g ∈ C[J × R+,R+], f(t, x) and g(t, x) are
increasing in x for x ∈ R+, g(t, 0)≠ 0
(H2) -ere exists a constant c ∈ (0, 1) such that
f(t, λx)≥ λcf(t, x) and g(t, λx)≥ λcg(t, x), ∀t ∈
J, λ ∈ (0, 1), x ∈ R+

(H3) -ere exists a constant δ0 > 0 such that
f(t, x)≥ δ0g(t, x), t ∈ J, x ∈ R+

(H4) f ∈ C[J × R+,R+], f(t, x) is increasing in x for
x ∈ R+, f(t, 0)≠ 0
(H5) -ere exists a constant c ∈ (0, 1) such that
f(t, λx)≥ λcf(t, x), ∀t ∈ J, λ ∈ (0, 1), x ∈ R+

(H6) f, g ∈ C[J × R+,R+], f(t, x) is nondecreasing in
x, and g(t, y) is nonincreasing in y
(H7) f(t, x) and g(t, y) are bounded in [J × R+]

(H8) -ere exists 0≤ c1 < 1 such that f(t, kx)≥
kc1f(t, x), and there exists 0≤ c2 < 1 such that
g(t, kx)≤ k− c2g(t, x), where k ∈ (0, 1), 0≤ c1 + c2 < 1

Here are our main results.

Theorem 1. Suppose that (H1) − (H3) hold. *en, equa-
tions (1)–(3) have a unique positive solution (u∗, v∗) in
Ph × Ph, where h(t) � tα− 1, t ∈ J. Moreover, for any initial
value u0 ∈ Ph and v0 ∈ Ph, constructing successively the
sequence

un(t) � 
1

0
G(t, s) μ1f s, vn− 1(s)(  + μ2g s, vn− 1(s)( ( ds,

n � 0, 1, 2, . . . ,

vn(t) � 
1

0
G(t, s) μ1f s, un− 1(s)(  + μ2g s, un− 1(s)( ( ds,

n � 0, 1, 2, . . . ,

(6)

we have (un(t), vn(t))⟶ (u∗(t), v∗(t)) as n⟶∞.

Corollary 1. Suppose that (H4) − (H5) holds. *en, system

Dα
0+u(t) + μ1f(t, v(t)) � 0, 0< t< 1,

Dα
0+v(t) + μ1f(t, u(t)) � 0, 0< t< 1,

 (7)

with the multipoint boundary conditions

D
β
0+u(1) � 

m− 2

i�1
ξiD

β
0+u ηi( , u(0) � 0,

D
β
0+v(1) � 

m− 2

i�1
ξiD

β
0+v ηi( , v(0) � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

has a unique positive solution (u∗, v∗) in Ph × Ph, where
h(t) � tα− 1, t ∈ J, Dα

0+ is the standard Riemann–Liouville
fractional derivative, f: J × [0,∞)⟶ [0,∞) is continu-
ous, 1< α≤ 2, 0≤ β≤ 1, 0≤ α − β − 1, 0< ξi, ηi < 1, i � 1,

2, . . . , m − 2, 
m− 2
i�1 ξiη

α− β− 1
i < 1, J � [0, 1], and μ1, μ2 ∈

(0, +∞), μ1 ≥ μ2. Moreover, for any initial value u0 ∈ Ph and
v0 ∈ Ph, constructing successively the sequence

un(t) � μ1 
1

0
G(t, s)f s, vn− 1(s)( ds, n � 0, 1, 2, . . . ,

vn(t) � μ1 
1

0
G(t, s)f s, un− 1(s)( ds, n � 0, 1, 2, . . . ,

(9)

we have (un(t), vn(t))⟶ (u∗(t), v∗(t)) as n⟶∞.

Theorem 2. Suppose that (H6) − (H8) hold. *en, equa-
tions (1)–(3) have exactly one positive solution (u∗, v∗) ∈
[u0, v0] × [u0, v0], where u0, v0 ∈ P with u0 ≤ v0, and con-
structing successively the sequence

un(t) � 
1

0
G(t, s) μ1f s, un− 1(s)(  + μ2g s, vn− 1(s)( ( ds,

n � 0, 1, 2, . . . ,

vn(t) � 
1

0
G(t, s) μ1f s, vn− 1(s)(  + μ2g s, un− 1(s)( ( ds,

n � 0, 1, 2, . . . ,

(10)

we have (un(t), vn(t))⟶ (u∗(t), v∗(t)) as n⟶∞.
The rest of this paper is organized as follows. In Section

2, we present some background materials and preliminaries.
Section 3 deals with the existence results. In Section 4, two
examples are given to illustrate the result.

2. Background Materials and Preliminaries

Definition 1 (see [6]). -e fractional integral of order α with
the lower limit t0 for a function f is defined as

I
α
f(t) �

1
Γ(α)


t

t0

(t − s)
α− 1

f(s)ds, t> t0, α> 0, (11)

where Γ is the gamma function.

Definition 2 (see [6]). For a function f: [0,∞)⟶ R, the
Riemann–Liouville derivative of fractional order is defined as

D
α
f(t) �

1
Γ(n − α)

d
dt

 

n


t

0
(t − s)

n− α− 1
f(s)ds,

α> 0, n � [α] + 1.

(12)
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Definition 3 (see [28]). Let E be a real Banach space and P be
a cone in E which defined a partial ordering in E by x≤y if
and only if y − x ∈ P. P is said to be normal if there exists a
positive constantN such that θ≤ x≤y implies ||x||≤N||y||. P
is called solid if its interior �P is nonempty.

Definition 4 (see [28]). An operator A: D × D⟶ E is said
to be mixed monotone if A(x, y) is nondecreasing in x and
nonincreasing in y, i.e., ∀xi, yi ∈ D(i � 1, 2), x1 ≤ x2, and
y2 ≤y1 imply A(x1, y1)≤A(x2, y2).

Definition 5 (see [28]). For all x, y ∈ E, the notation x ∼ y

means that there exists λ> 0 and μ> 0 such that λx≤y≤ μx.
Clearly, ∼ is an equivalence relation. Given h> θ (i.e., h≥ θ
and h≠ θ), we denote by Ph the set Ph � x ∈ E | x ∼ h{ }. It is
easy to see that Ph ⊂ P.

Definition 6 (see [30]). Let D � P or D � �P and c be a real
number with 0≤ c< 1. An operator A: P⟶ P is said to be
c concave((− c)convex) if it satisfies

A(λx)≥ λc
Ax,

A(λx) ≤ λ− c
Ax( ,

∀λ ∈ (0, 1),

x ∈ D.

(13)

Definition 7 (see [31]). An operator A: E⟶ E is said to be
homogeneous if it satisfies

A(λx) � λAx, ∀ λ> 0, x ∈ E. (14)

An operator A: P⟶ P is said to be subhomogeneous if
it satisfies

A(λx) ≥ λAx, ∀λ ∈ (0, 1), x ∈ P. (15)

Lemma 1 (see [25]). Let y ∈ C[0, 1]. *en, the fractional
differential equation

Dα
0+u(t) + y(t) � 0, 0< t< 1, 1< α≤ 2,

D
β
0+u(1) � 

m− 2

i�1
ξiD

β
0+u ηi( , u(0) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

has a unique solution which is given by

u(t) � 
1

0
G(t, s)y(s)ds, (17)

where

G(t, s) � G1(t, s) + G2(t, s), (18)

in which

G1(t, s) �

1
Γ(α)

t
α− 1

(1 − s)
α− β− 1

− (t − s)
α− 1

 , 0≤ s≤ t≤ 1,

1
Γ(α)

t
α− 1

(1 − s)
α− β− 1

, 0≤ t≤ s≤ 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G2(t, s) �

1
AΓ(α)


0≤s≤ηi

ξiη
α− β− 1
i t

α− 1
(1 − s)

α− β− 1
− ξit

α− 1 ηi − s( 
α− β− 1

 ⎡⎢⎢⎣ ⎤⎥⎥⎦, t ∈ [0, 1],

1
AΓ(α)


ηi ≤ s≤ 1

ξiη
α− β− 1
i t

α− 1
(1 − s)

α− β− 1⎛⎝ ⎞⎠, t ∈ [0, 1],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where

A � 1 − 
m− 2

i�1
ξiη

α− β− 1
i . (20)

Lemma 2. Let h(t) � tα− 1, then G(t, s) in Lemma 1 has the
following property:

(i) G(t, s) ≥ h(t)((1/Γ(α))((1 − s)α− β− 1 − (1 − s)α− 1) +

(1/AΓ(α))
m− 2
i�1 (ξiη

α− β− 1
i (1 − s)α− β− 1 − ξi(ηi − s)α− β− 1))

(ii) G(t, s) ≤ h(t)((1 / Γ(α))(1 − s)α− β− 1 + (1 /AΓ(α ))


m− 2
i�1 ξiη

α− β− 1
i (1 − s)α− β− 1)

Proof. For 0≤ s≤ t≤ 1, 1< α≤ 2, we have

t
α− 1

(1 − s)
α− β− 1

− (t − s)
α− 1

� t
α− 1

(1 − s)
α− β− 1

− 1 −
s

t
 

α− 1
 

≥ t
α− 1

(1 − s)
α− β− 1

− (1 − s)
α− 1

 

≥ 0.

(21)

-us,

G1(t, s)≥
tα− 1

Γ(α)
(1 − s)

α− β− 1
− (1 − s)

α− 1
 ≥ 0. (22)
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From [25], we have

G2(t, s)≥
tα− 1

AΓ(α)


m− 2

i�1
ξiη

α− β− 1
i (1 − s)

α− β− 1
− ξi ηi − s( 

α− β− 1
 

≥ 0.

(23)

-is means that (i) holds. From Lemma 1, we know that
(ii) is obvious. □

Theorem 3 (see [31]). Let P be a normal cone in a real
Banach space E and A: P⟶ P be an increasing c − concave
operator and B: P⟶ P be an increasing subhomogeneous
operator. Assume that

(i) *ere is h> θ such that Ah ∈ Ph and Bh ∈ Ph

(ii) *ere exists a constant δ0 > 0 such that Ax≥ δ0Bx,
∀x ∈ P

*en, operator equation Ax + Bx � x has a unique so-
lution x∗ in Ph. Moreover, constructing successively the se-
quence yn � Ayn− 1 + Byn− 1, n � 1, 2, . . . for any initial value
y0 ∈ Ph, we have yn⟶ x∗ as n⟶∞.

Theorem 4 (see [30]). Let P be a normal cone of the real
Banach space E and A: P × P⟶ P be a mixed monotone
operator. Suppose that

(i) For fixed y, A(·, y): P⟶ P is c1 concave; for fixed x,
A(x): P⟶ P is (− c2) convex, where 0≤ c1 + c2 < 1

(ii) *ere exist elements u0, v0 ∈ P with u0 ≤ v0 and a real
number r0 > 0 such that

u0 ≥ r0v0,

u0 ≤A u0, v0( ,

A v0, u0( ≤ v0.

(24)

Then, A has exactly one fixed point x∗ in [u0, v0], and
constructing successively the sequence

xn � A xn− 1, yn− 1( ,

yn � A yn− 1, xn− 1( ,

n � 1, 2, . . . ,

(25)

for any initial value (x0, y0) ∈ [u0, v0] × [u0, v0], we have
xn⟶ x∗, yn⟶ y∗(n⟶∞).

3. Main Results

In this section, we shall investigate the existence of positive
solutions for systems (1)–(3). We consider the space E �

C([0, 1],R) equipped with the norm ||u|| � sup0≤t≤1|u(t)|.
Let P � u ∈ E | u(t)≥ 0{ }, then P is a cone in E. Let
R+ � [0, +∞).

From Lemma 1, we know that (1)–(3) can be translated
into the following equation

u(t) � 
1

0
G(t, s) μ1f(s, v(s)) + μ2g(s, v(s))( ds,

v(t) � 
1

0
G(t, s) μ1f(s, u(s)) + μ2g(s, u(s))( ds,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(26)

and (2)-(3) can be translated into the following equation

u(t) � 
1

0
G(t, s) μ1f(s, u(s)) + μ2g(s, v(s))( ds,

v(t) � 
1

0
G(t, s) μ1f(s, v(s)) + μ2g(s, u(s))( ds.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(27)

-us, (u, v) is a solution of (1)–(3) if and only if (u, v) is a
solution of system (26), and (u, v) is a solution of (2)-(3) if
and only if (u, v) is a solution of system (27).

For convenience, we denote

p1(s) �
1
Γ(α)

(1 − s)
α− β− 1

− (1 − s)
α− 1

 

+
1

AΓ(α)


m− 2

i�1
ξiη

α− β− 1
i (1 − s)

α− β− 1
− ξi ηi − s( 

α− β− 1
 ,

p2(s) �
1
Γ(α)

(1 − s)
α− β− 1

+
1

AΓ(α)


m− 2

i�1
ξiη

α− β− 1
i (1 − s)

α− β− 1
.

(28)

Now, we prove -eorem 1, Corollary 1, and -eorem 2.

Proof of *eorem 1. Define two operators

Au(t) � μ1 
1

0
G(t, s)f(s, v(s))ds,

Bu(t) � μ2 
1

0
G(t, s)g(s, v(s))ds.

(29)

-us,

Au(t) � μ1 
1

0
G(t, s)f s, 

1

0
G(s, τ) μ1f(τ, u(τ)) + μ2g(τ, u(τ))( dτ ds,

Bu(t) � μ2 
1

0
G(t, s)g s, 

1

0
G(s, τ) μ1f(τ, u(τ)) + μ2g(τ, u(τ))( dτ ds.

(30)

Owing to [25], we know that G(t, s)> 0, t, s ∈ (0, 1). By
(H1), we have A: P⟶ P and B: P⟶ P. It is obvious that

(u, v) is the solution of problem (26) if and only if (u, v) is
the solution of (u � Au + Bu, v � Av + Bv).
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Step 1: A and B are two increasing operators.
Set u, u ∈ P, u≤ u. It follows from (26) that

v(t) � 
1

0
G(t, s) μ1f(s, u(s)) + μ2g(s, u(s))( ds,

v(t) � 
1

0
G(t, s) μ1f(s, u(s)) + μ2g(s, u(s))( ds.

(31)

From (H1), we have

v(t)≤ v(t), t ∈ J. (32)

According to (H1) and (29), we obtain

Au(t) � μ1 
1

0
G(t, s)f(s, v(s))ds≤Au(t)

� μ1 
1

0
G(t, s)f(s, v(s))ds.

(33)

-us, A is an increasing operator. Similarly, we can see
that B is an increasing operator.
Step 2: A is a c concave operator, and B is a sub-
homogeneous operator.
In fact, for λ ∈ (0, 1), c ∈ (0, 1), u ∈ P, t ∈ J, from (30)
and (H2), we have

A(λu(t)) � μ1 
1

0
G(t, s)f s, 

1

0
G(s, τ) μ1f(τ, λu(τ)) + μ2g(τ, λu(τ))( dτ ds

≥ μ1 
1

0
G(t, s)f s, 

1

0
G(s, τ) μ1λ

c
f(τ, u(τ)) + μ2λ

c
g(τ, u(τ))( dτ ds

� μ1 
1

0
G(t, s)f s, λc


1

0
G(s, τ) μ1f(τ, u(τ)) + μ2g(τ, u(τ))( dτ ds

≥ μ1 λc
( 

c

1

0
G(t, s)f s, 

1

0
G(s, τ) μ1f(τ, u(τ)) + μ2g(τ, u(τ))( dτ ds

≥ μ1λ
c


1

0
G(t, s)f s, 

1

0
G(s, τ) μ1f(τ, u(τ)) + μ2g(τ, u(τ))( dτ ds

� λc
A(u(t)).

(34)

Similarly, we can get

B(λu(t)) ≥ λc
B(u(t)). (35)

-us,

B(λu(t)) ≥ λB(u(t)). (36)

-erefore, we can see that A is a c concave operator,
and B is a subhomogeneous operator.
Step 3: Ah ∈ Ph and Bh ∈ Ph.
Combining (29), (30), (H1), and Lemma 2, one has, for
t ∈ J,

Ah(t) � μ1 
1

0
G(t, s)f s, 

1

0
G(s, τ) μ1f(τ, h(τ)) + μ2g(τ, h(τ))( dτ ds

≥ μ1 
1

0
h(t)p1(s)f s, 

1

0
h(s)p1(τ) μ1f(τ, 0) + μ2g(τ, 0)( dτ ds.

Ah(t) � μ1 
1

0
G(t, s)f s, 

1

0
G(s, τ) μ1f(τ, h(τ)) + μ2g(τ, h(τ))( dτ ds

≤ μ1 
1

0
h(t)p2(s)f s, 

1

0
h(s)p2(τ) μ1f(τ, 1) + μ2g(τ, 1)( dτ ds.

(37)
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Let

m � μ1 
1

0
p1(s)f s, 

1

0
h(s)p1(τ) μ1f(τ, 0) + μ2g(τ, 0)( dτ ds,

m � μ1 
1

0
p2(s)f s, 

1

0
h(s)p2(τ) μ1f(τ, 1) + μ2g(τ, 1)( dτ ds.

(38)

Noting that (H3) and g(t, 0)≠ 0, we obtain

m> 0,

m> 0.
(39)

-erefore,

mh(t)≤Ah(t)≤mh(t), (40)

which implies thatAh ∈ Ph. By a closely similar way, we
have Bh ∈ Ph.
Step 4: -ere exists a constant δ0 > 0 such that
Au≥ δ0Bu and Av≥ δ0Bv, ∀u ∈ P.

For u ∈ P, t ∈ J, by (H3), we have


1

0
G(t, s)f(s, v(s))ds≥ δ0 

1

0
G(t, s)g(s, v(s))ds. (41)

-is means that Au≥ δ0Bu, u ∈ P. Similarly, we have
Av≥ δ0Bv, v ∈ P.

-erefore, by simple computation, the conditions in
-eorem 3 are satisfied. -is implies that the operator
equation Au + Bu � u has a unique solution u∗ in Ph, and
the operator equation Av + Bv � v has a unique solution v∗

in Ph. -us, (u � Au + Bu, v � Av + Bv) has a unique so-
lution (u∗, v∗) in Ph × Ph. For any initial value u0 ∈ Ph and
v0 ∈ Ph, we can construct the following sequence:

un+1(t) � 
1

0
G(t, s) μ1f s, vn(s)(  + μ2g s, vn(s)( ( ds,

n � 0, 1, 2, . . . ,

vn+1(t) � 
1

0
G(t, s) μ1f s, un(s)(  + μ2g s, un(s)( ( ds,

n � 0, 1, 2, . . .

(42)

-is follows that (un(t), vn(t))⟶ (u∗(t), v∗(t)) as
n⟶∞. □

Proof of Corollary 1. In -eorem 3, we let B be a null op-
erator, -eorem 3 also holds. By -eorem 1, we conclude
that Corollary 1 holds. □

Proof of *eorem 2. Define the following operator:

un(t) � A un− 1(t), vn− 1(t)( 

� 
1

0
G(t, s) μ1f s, un− 1(s)(  + μ2g s, vn− 1(s)( ( ds,

n � 0, 1, 2, . . . ,

vn(t) � A vn− 1(t), un− 1(t)( 

� 
1

0
G(t, s) μ1f s, vn− 1(s)(  + μ2g s, un− 1(s)( ( ds,

n � 0, 1, 2, . . .

(43)

From (H6), we know that A: P × P⟶ P is a mixed
monotone operator.

Step 1: we will prove that the condition (i) of-eorem 4
holds
From (H8), we know that, for c1, c2 ∈ (0, 1), 0< c1 +

c2 < 1, k1, k2 ∈ (0, 1),

A(ku, v) � 
1

0
G(t, s) μ1f(s, ku(s)) + μ2g(s, v(s))( ds

≥ 
1

0
G(t, s) k

c1μ1f(s, u(s)) + μ2g(s, v(s))( ds

≥ k
c1 

1

0
G(t, s) μ1f(s, u(s)) + μ2g(s, v(s))( ds

� k
c1A(u, v),

A(u, kv) � 
1

0
G(t, s) μ1f(s, u(s)) + μ2g(s, kv(s))( ds

≤ 
1

0
G(t, s) μ1f(s, u(s)) + k

− c2μ2g(s, v(s))( ds

≤ k
− c2 

1

0
G(t, s) μ1f(s, u(s)) + μ2g(s, v(s))( ds

� k
− c2A(u, v).

(44)

Step 2: we will verify that the condition (ii) of -eorem
4 holds

It follows from (H7) that there exists M1 > 0 and M2 > 0
such that

|f(t, x)|≤M1,

|g(t, x)|≤M2,

(t, x) ∈ J × R
+
.

(45)

Let

v0(t) � 
1

0
G(t, s) μ1M1 + μ2M2( ds,

u0(t) � 
1

0
G(t, s)μ1f(s, 0)ds,

r0 �
μ1mins∈Jf(s, 0)

μ1M1 + μ2M2
.

(46)
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Obviously,

A v0, u0(  � 
1

0
G(t, s) μ1f s, v0(s)(  + μ2g s, u0(s)( ( ds

≤ 
1

0
G(t, s) μ1M1 + μ2M2( ds

� v0(t),

A u0, v0(  � 
1

0
G(t, s) μ1f s, u0(s)(  + μ2g s, v0(s)( ( ds

≥ 
1

0
G(t, s)μ1f(s, 0)ds

� u0(t),

u0(t) � 
1

0
G(t, s)μ1f(s, 0)ds

≥
μ1mins∈Jf(s, 0)

μ1M1 + μ2M2

1

0
G(t, s) μ1M1 + μ2M2( ds

� r0v0(t).

(47)

-erefore, the conditions of-eorem 4 are satisfied.-is
means that (2)-(3) has exactly one positive solution
(u∗, v∗) ∈ [u0, v0] × [u0, v0], where u0, v0 ∈ P with u0 ≤ v0.
By constructing successively the sequence

un(t) � 
1

0
G(t, s) μ1f s, un− 1(s)(  + μ2g s, vn− 1(s)( ( ds,

n � 0, 1, 2, . . . ,

vn(t) � 
1

0
G(t, s) μ1f s, vn− 1(s)(  + μ2g s, un− 1(s)( ( ds,

n � 0, 1, 2, . . . ,

(48)

we obtain (un(t), vn(t))⟶ (u∗(t), v∗(t)) as n⟶∞. □

4. Examples

Example 1. Let α � 3/2, β � 1/2, m � 4, ξ1 � η1 � 1/4, ξ2 �

η2 � 1/2, μ1, μ2 ∈ (0, +∞), μ1 ≥ μ2. Consider the following
boundary value problem

D3/2
0+ u(t) + μ1f(t, v(t)) + μ2g(t, v(t)) � 0, 0< t< 1,

D3/2
0+ v(t) + μ1f(t, u(t)) + μ2g(t, u(t)) � 0, 0< t< 1,

⎧⎨

⎩

(49)

with the multipoint boundary conditions

D
1/2
0+ u(1) � 

m− 2

i�1
ξiD

1/2
0+ u ηi( , u(0) � 0,

D
1/2
0+ v(1) � 

m− 2

i�1
ξiD

1/2
0+ v ηi( , v(0) � 0.

(50)

Here,

f(t, x) � x
1/3

+ t
2

+ 2,

g(t, x) �
x1/3

1 + t2( ) 1 + x1/3( )
+ t

2
+ 1.

(51)

-us,

α − β − 1 � 0,



m− 2

i�1
ξiη

α− β− 1
i � ξ1 + ξ2 �

1
4

+
1
2
< 1.

(52)

Set c � 1/3. Obviously, f, g ∈ C[J × R+,R+] and are
increasing with respect to the second argument,
g(t, 0)≥ 1> 0. For λ ∈ (0, 1), t ∈ J, x ∈ R+, we can notice
that

g(t, λx) �
λ1/3x1/3

1 + t2( ) 1 + λ1/3x1/3 
+ t

2
+ 1

≥
λ1/3x1/3

1 + t2( ) 1 + x1/3( )
+ λ1/3 t

2
+ 1 

� λc
g(t, x),

f(t, λx) � λ1/3x1/3
+ t

2
+ 2

≥ λ1/3 x
1/3

+ t
2

+ 2 

� λc
f(t, x).

(53)

For t ∈ J, x ∈ R+, we deduce that

f(t, x) � x
1/3

+ t
2

+ 2

≥
x1/3

1 + t2( ) 1 + x1/3( )
+ t

2
+ 1

� δ0g(t, x),

(54)

where

δ0 � 1. (55)

-us, the assumptions of (H1) − (H3) are satisfied. By
-eorem 1, system (49)-(50) has a unique positive solution
in Ph × Ph, where h(t) � tα− 1, t ∈ [0, 1].

Example 2. Letting α � 3/2, β � 1/2, m � 4, ξ1 � η1 � 1/4,

ξ2 � η2 � 1/2, μ1, μ2 ∈ (0, +∞), μ1 ≥ μ2, we consider the
following problem

D3/2
0+ u(t) + μ1f(t, u(t)) + μ2g(t, v(t)) � 0, 0< t< 1,

D3/2
0+ v(t) + μ1f(t, v(t)) + μ2g(t, u(t)) � 0, 0< t< 1,

⎧⎨

⎩

(56)

with the multipoint boundary conditions
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D1/2
0+ u(1) � 

m− 2

i�1
ξiD

1/2
0+ u ηi( , u(0) � 0,

D1/2
0+ v(1) � 

m− 2

i�1
ξiD

1/2
0+ v ηi( , v(0) � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(57)

Here,

f(t, x) �
1 + x1/3

2 + x1/3 + t + 1,

g(t, y) � (1 + y)
− 1/2

+ t
2

+ 1.

(58)

We deduce that

α − β − 1 � 0,



m− 2

i�1
ξiη

α− β− 1
i � ξ1 + ξ2 �

1
4

+
1
2
< 1.

(59)

Set c � 1/3, c1 � 1/3, c2 � 1/2. It is clear that
f, g ∈ C[J × R+,R+] and f(t, x) is nondecreasing in x, and
g(t, y) is nonincreasing in y, f(t, x)≤ 1 + 1 + 1 � 3,
g(t, y)≤ (1 + 0)− 1/2 + 1 + 1 � 3, and 0< c1 + c2 � 5/6.

Moreover, for k ∈ (0, 1), we can find that

f(t, kx) �
1 +(kx)1/3

2 +(kx)1/3
+ t + 1

≥
1 +(kx)1/3

2 + x1/3 + t + 1

≥ k
1/3 1 + x1/3

2 + x1/3 + t + 1 

� k
1/3

f(t, x),

g(t, ky) � (1 + ky)
− (1/2)

+ t
2

+ 1

� k
− (1/2) 1

k
+ y 

− (1/2)

+ t
2

+ 1

≤ k
− (1/2)

(1 + y)
− (1/2)

+ t
2

+ 1

≤ k
− (1/2)

(1 + y)
− (1/2)

+ t
2

+ 1 

� k
− (1/2)

g(t, y).

(60)

-en, all the conditions of -eorem 2 are fulfilled.
Consequently, there exist u0, v0 ∈ P, and system (56)-(57)
has exactly one positive solution in [u0, v0] × [u0, v0].
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