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A three-parameter logarithmic function is derived using the notion of q-analogue and ansatz technique. The derived three-
parameter logarithm is shown to be a generalization of the two-parameter logarithmic function of Schwämmle and Tsallis as the
latter is the limiting function of the former as the added parameter goes to 1. The inverse of the three-parameter logarithm and
other important properties are also proved. A three-parameter entropic function is then defined and is shown to be analytic and
hence Lesche-stable, concave, and convex in some ranges of the parameters.

1. Introduction

The concept of entropy provides deep insight into the direc-
tion of spontaneous change for many everyday phenomena.
For example, a block of ice placed on a hot stove surely melts,
while the stove grows cooler. Such a process is called irrevers-
ible because no slight change will cause the melted water to
turn back into ice while the stove grows hotter [1]. The con-
cept of entropy was first introduced by German physicist
Rudolf Clausius as a precise way of expressing the second
law of thermodynamics.

The Boltzmann equation for entropy is

S = kB ln ω, ð1Þ

where kB is the Boltzmann constant [2] and ω is the number
of different ways or microstates in which the energy of the
molecules in a system can be arranged on energy levels [3].
The Boltzmann entropy plays a crucial role in the foundation
of statistical mechanics and other branches of science [4].

The Boltzmann-Gibbs-Shannon entropy [5, 6] is given by

SBGS ≡ −k〠
ω

i=1
pi ln pi = k〠

ω

i=1
pi ln

1
pi
, ð2Þ

where

〠
ω

i=1
pi = 1: ð3Þ

SBGS is a generalization of the Boltzmann entropy because
if pi = 1/ω, for all i,

SBGS = k ln ω: ð4Þ

Systems presenting long-range interactions and/or long-
duration memory have been shown not well described by
the Boltzmann-Gibbs statistics. Some examples may be
found in gravitational systems, Levy flights, fractals, turbu-
lence physics, and economics. In an attempt to deal with such
systems, Tsallis [7] postulated a nonextensive entropy which
generalizes Boltzmann-Gibbs entropy through an entropic
index q [8]. Another generalization was also suggested by
Renyi [9]. Abe [10] proposed how to generate entropy
functionals.

Tsallis q-entropy [7] is given by

Sq ≡ k
1 −∑ω

i=1f gp
q
i

q − 1 = k〠
ω

i=1
pi lnq

1
pi
, ð5Þ

Hindawi
Journal of Function Spaces
Volume 2020, Article ID 9791789, 10 pages
https://doi.org/10.1155/2020/9791789

https://orcid.org/0000-0003-1681-1804
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9791789


where q ∈ℝ,∑ω
i=1pi = 1 and

lnqx ≡
x1−q − 1
1 − q

, ln1x = ln xð Þ, ð6Þ

which is referred to as q-logarithm. If pi = 1/ω, for all i, then

Sq = k lnqω: ð7Þ

The inverse of the q-logarithm is the q-exponential

exq ≡ 1 + 1 − qð Þx½ �1/1−q+ , ex1 = exð Þ, ð8Þ

where ½⋯�+ is zero if its argument is nonpositive.
A q-sum and q-product and their calculus studied in [11]

were, respectively, defined as follows (these were also men-
tioned in [5]):

x ⊕ qy ≡ x + y + 1 − qð Þxy, x ⊕ 1y = x + yð Þ,

x ⊗ qy ≡ x1−q + y1−q − 1
� � 1

1−q, x ⊗ 1y = xyð Þ:
ð9Þ

The q-logarithm satisfies the following properties:

lnq xyð Þ = lnqx ⊕ q lnqy,

lnq x ⊗ qy
� �

= lnqx + lnqy:
ð10Þ

Then, a two-parameter logarithm was defined and pre-
sented along with a two-parameter entropy in [5]. It was
defined as follows:

lnq,q′x =
1

1 − q′
exp 1 − q′

1 − q
x1−q − 1
� � !

− 1
" #

: ð11Þ

The above doubly deformed logarithm satisfies

lnq,q′ x ⊗ qy
� �

= lnq,q′x ⊕ q′ lnq,q′y: ð12Þ

Properties of the two-parameter logarithm and those of
the two-parameter entropy were proved in [5]. Probability
distribution in the canonical ensemble of the two-
parameter entropy was obtained in [12] while applications
were discussed in [13].

In Section 2 of the present paper, a three-parameter log-
arithm lnq,q′ ,rx, where q, q′, r ∈ℝ, is derived using q-ana-
logues and ansatz technique. In Section 3, the inverse of the
three-parameter logarithm is derived and some properties
are proved. A three-parameter entropy and its properties
are presented in Section 4, and conclusion is given in Section
5.

2. Three-Parameter Logarithm

As x = eln x, a q-analogue of x will be defined by

x½ �q = elnqx, ð13Þ

where lnqx is defined in (6). Similarly, the q′-analogue of ½x�q
is defined by

x½ �q,q′ = elnq,q′x, ð14Þ

where lnq,q′x is as defined in (11), which can be written as

lnq,q′x =
x½ �1−qq

′ − 1
1 − q′

=
elnqx
� �1−q′

− 1
1 − q′

: ð15Þ

The three-parameter logarithm is then defined as

lnq,q′,rx =
x½ �1−rq,q′ − 1
1 − r

=
elnq,q′x
� �1−r

− 1
1 − r

, ð16Þ

from which

lnq,q′,rx ≡
1

1 − r
e 1/1−q′ e 1−q ′ð Þ lnqx−1

� �� �1−r
− 1

� 	
: ð17Þ

To obtain similar property as that in (12), define x ⊗ q,q′y
as the q′-analogue of x ⊗ qy: That is,

x ⊗ q,q′y ≡ x ⊗ qy

 �

q
′ = x½ �1−q

q′ + y½ �1−q
q′ − 1

� � 1
1−q
: ð18Þ

Lemma 1. The following relations hold

lnq,q′ x ⊗ q′y
� �

= lnq,q′x + lnq,q′y, ð19Þ

lnq,q′,r x ⊗ q′y
� �

= lnq,q′,rx ⊕ r lnq,q′,ry: ð20Þ

Proof. From (16) and (18),

lnq,q′ x ⊗ q′y
� �

=
x ⊗ q′y
h i1−q

q
′ − 1

1 − q′
=

x½ �1−qq
′ + y½ �1−qq

′ − 1
� �1/1−q′� 	1−q′

− 1

1 − q′

=
x½ �1−qq

′ + y½ �1−qq
′ − 1 − 1

1 − q′
=

x½ �1−qq
′ − 1

1 − q′
+

y½ �1−qq
′ − 1

1 − q′
= lnq,q′x + lnq,q′y:

ð21Þ
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In similar manner and using (14),

lnq,q′ ,r x ⊗ q′y
� �

=
x ⊗ q′y
h i1−r

q,q′
− 1

1 − r
=

elnq,q ′ x⊗q ′ yð Þn o1−r
− 1

1 − r

=
elnq,q ′ x+lnq,q ′ y
� �1−r

− 1
1 − r

=
elnq,q ′ x
� �1−r

elnq,q ′ y
� �1−r

− 1
1 − r

=

elnq,q ′ x
� �1−r

− 1
� 	

+ elnq,q ′ y
� �1−r

− 1
� 	

+ elnq,q ′ x
� �1−r

− 1
� 	

elnq,q ′ y
� �1−r

− 1
� 	

1 − r
:

ð22Þ

Thus,

lnq,q′ ,r x ⊗ q′y
� �

=
elnq,q ′ x
� �1−r

− 1
1 − r

+
elnq,q ′ y
� �1−r

− 1
1 − r

+ 1 − rð Þ

� 1
1 − r

elnq,q ′ x
� �1−r

− 1
�  1

1 − r
elnq,q ′ y
� �1−r

− 1
� 

= lnq,q′ ,rx + lnq,q′ ,ry + 1 − rð Þ lnq,q′ ,rx
h i

lnq,q′ ,ry
h i

= lnq,q′ ,rx ⊕ r lnq,q′ ,ry,
ð23Þ

which is the desired relation analogous to (12). ?

One can also derive (17) using ansatz. To do this, let x = y
in (20). Then,

lnq,q′ ,r x ⊗ q′x
� �

= lnq,q′ ,rx ⊕ r lnq,q′ ,rx: ð24Þ

Lemma 2. If lnq,q′ ,rx =Gðlnq,q′xÞ =GðzÞ, then

G 2zð Þ = 2G zð Þ + 1 − rð Þ G zð Þ½ �2: ð25Þ

Moreover, when z = lnq,q′x, the ansatz

G zð Þ = 1
1 − r

bz − 1ð Þ, ð26Þ

satisfies equation (25).

Proof. Note that from (21)

lnq,q′ ,r x ⊗ q′x
� �

= G lnq,q′ x ⊗ q′x
� �� �

= G lnq,q′x + lnq,q′x
� �

= G 2 lnq,q′x
� �

=G 2zð Þ:

ð27Þ

Thus, from (23) and (20),

G 2 lnq,q′x
� �

= lnq,q′ ,rx ⊕ r lnq,q′ ,rx = lnq,q′ ,rx + lnq,q′ ,rx

+ 1 − rð Þ lnq,q′ ,rx
� �2

= 2G lnq,q′x
� �

+ 1 − rð Þ

� G lnq,q′x
� �h i2

G 2zð Þ = 2G zð Þ + 1 − rð Þ G zð Þ½ �2:
ð28Þ

Then, the ansatz in (26) will give

2G zð Þ + 1 − rð Þ G zð Þ½ �2

= 2 · 1
1 − r

bz − 1ð Þ + 1 − rð Þ 1
1 − r

bz − 1ð Þ
� 2

= 2
1 − r

bz − 1ð Þ + bz − 1ð Þ2
1 − r

= 2bz − 2 + b2z − 2bz + 1
1 − r

= 2bz − 2 + b2z − 2bz + 1
1 − r

= b2z − 1
1 − r

=G 2zð Þ,
ð29Þ

which means that (26) solves equation (25). ?

Lemma 2. implies that

G zð Þ =G lnq,q′x
� �

= lnq,q′ ,rx =
1

1 − r
blnq,q ′ x − 1
� �

: ð30Þ

Using the property that d/dxlnq,q′,rxjx=1 = 1,which is a

natural property of a logarithmic function, it is determined
that b = e1−r: Consequently,

lnq,q′ ,rx =
1

1 − r
e 1−rð Þ lnq,q ′ x − 1
� �

: ð31Þ

Explicitly,

lnq,q′ ,rx =
1

1 − r
e1−r/1−q

′ exp 1−q′ð Þ/ 1−qð Þ½ � x1−q−1ð Þð Þ − 1
� �

,

ð32Þ

which is the same as that in (17). The preceding equation can
be written as

lnq,q′ ,rx = lnrelnq,q ′ x: ð33Þ

It can be easily verified that

lim
r→1

lnq,q′ ,rx = lnq,q′x: ð34Þ

Graphs of lnq,q′ ,rx for q = q′ = r are shown in Figure 1
while graphs of lnq,q′ ,rx with one fixed parameter are shown
in Figure 2.
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3. Properties

In this section, the inverse of the three-parameter logarithmic
function will be derived. It is also verified that the derivative
of this logarithm at x = 1 is 1 and that the value of the func-
tion at x = 1 is zero. Moreover, it is shown that the following
equality holds

lnq,q′ ,r
1
x
= − ln2−q,2−q′ ,2−rx: ð35Þ

It follows from (16) that the three-parameter logarithmic
function is an increasing function of x. Thus, a unique
inverse function exists.

Theorem 3. The inverse of the three-logarithmic function is
given by

ey
q,q′ ,r = expq ln eln eyr

q′

n o
: ð36Þ

Proof. To find the inverse function, let y = lnq,q′ ,rðxÞ and solve
for x. That is,

y = 1
1 − r

exp 1 − r

1 − q′
exp 1 − q′

1 − q
x1−q − 1
� � !

− 1
 !

− 1
( )

,

ð37Þ

q = q' = r = 0.3
q = q' = r = 1.7
q = q' = r = 1

q = q' = r = 1.1
q = q' = r = 1.3
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' ,r
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q
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q = q' = r = 1.3

0.01 0.10 10 1001

(b)

Figure 1: Illustration of the three-parameter logarithm in equation (32), setting q = q′ = r in (a) linear scales and (b) semilogarithmic scales.
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Figure 2: Continued.
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from which

x = 1 + 1 − q

1 − q′
ln 1 + 1 − q′

1 − r
ln 1 + 1 − rð Þyf g

" #( )1/1−q

:

ð38Þ

Thus, the inverse function is given by

ey
q,q′ ,r = expq,q′ ,ry =

(
1 + 1 − q

1 − q′
ln
"
1

+ 1 − q′
1 − r

ln 1 + 1 − rð Þyf g
#)1/1−q

= 1 + 1 − q

1 − q′
ln 1 + 1 − q′

� �
ln 1 + 1 − rð Þyf g1/1−r

h i� 	1/1−q

= 1 + 1 − q

1 − q′
ln 1 + 1 − q′

� �
ln eyr

h i� 	1/1−q

= 1 + 1 − qð Þ ln 1 + 1 − q′
� �

ln eyr
h i1/1−q′� 	1/1−q

= 1 + 1 − qð Þ ln eln eyr
q′

n o1/1−q
= e

ln e
ln e

y
r

q′
q = expq ln eln eyr

q

n o
,

ð39Þ

where the q-exponential exq is defined in (8).

Theorem 4. The three-parameter logarithm satisfies the fol-
lowing properties:

(1) ðd/dxÞlnq,q′ ,rxjx=1 = 1,

(2) lnq,q′ ,r1 = 0,

(3) The slope of lnq,q′ ,rx is positive for all x > 0

(4) lnq,q′ ,rð1/xÞ = −ln2−q,2−q′,2−rx:

Proof. To find the derivative, use (17) to obtain

d
dx

lnq,q′ ,rx = x−q exp 1 − r

1 − q′
e 1−q′ð Þ lnq1 − 1
� �

− 1
� 	

= 0: ð40Þ

From (40), the slope of lnq,q′,rx is positive for all x > 0.
This is also observed in Figures 1 and 2.

To prove part (4) of the theorem, let q⟶ 2 − q, q′
⟶ 2 − q′, and r⟶ 2 − r. From [5],

lnq,q′
1
x
= − ln2−q,2−q′x, ð41Þ

then

lnq,q′ 1/xð Þ =
e
ln q,q ′f g 1/xð Þ� �1−r

− 1
1 − r

=
e−ln2−q,2−q ′ x
� �1−r

− 1
1 − r

=
eln2−q,2−q ′ x
� �r−1

− 1
− r − 1ð Þ =

− eln2−q,2−q ′ x
� �1− 2−rð Þ

− 1
� 	

1 − 2 − rð Þ
= − ln2−q,2−q′ ,2−rx:?

ð42Þ

q' = 0.4, r = 0.6
q' = 0.7, r = 0.9
q' = 1.1, r = 1.3

q' = 1.4, r = 1.7
q' = 1.6, r = 1.9

0.01 0.10 1 10 100

–5

0

5

In
0.

3,
q' 
,r

 (x
)

x

(c)

Figure 2: (a) Illustration of the three-parameter logarithm for fixed value of r. (b) Illustration of the three-parameter logarithm for fixed value
of q′. (c) Illustration of the three-parameter logarithm for fixed value of q.
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4. Three-Parameter Entropy

A three-parameter generalization of the Boltzmann-Gibbs-
Shannon entropy is constructed here, and its properties are
proved. Based on the three-parameter logarithm the entropic
function is defined as follows:

Sq,q′,r ≡ k〠
ω

i=1
pi lnq,q′,r

1
pi
: ð43Þ

If pi = 1/ω, ∀i,

Sq,q′ ,r = k lnq,q′ ,rω, ð44Þ

where ω is the number of states.

4.1. Lesche-Stability (or Experimental Robustness). The func-
tional form of lnq,q′,rx given in the previous section is analytic
in x as lnq,q′ ,rx is analytic in x. Consequently, Sq,q′,r is Lesche-
stable.

4.2. Expansibility. An entropic function S satisfies this condi-
tion if a zero probability ðpi = 0Þ state does not contribute to
the entropy. That is, Sðp1, p2,⋯,pw, 0Þ = Sðp1, p2,⋯,pwÞ for
any distribution fpig. Observe that in the limit pi = 0, lnq,q′ ,r
1/pi is finite if one of q, q′, r is greater than 1. Consequently,

Sq,q′ ,r p1, p2,⋯,pw, 0ð Þ = Sq,q′ ,r p1, p2,⋯,pwð Þ ð45Þ

provided that one of q, q′,r is greater than 1.

4.3. Concavity. Concavity of the entropic function Sq,q′,r is
assured if

d2

dp2i
pi lnq,q′ ,r

1
pi

� �
< 0: ð46Þ

Theorem 5. The three-parameter entropic function Sq,q′ ,r is

concave provided q + q′ + r > 2.

Proof. By manual calculation (which is a bit tedious),

d2

dp2i
pi lnq,q′,r

1
pi

� �
= exp 1 − r

1 − q′
e 1−q′ð Þ lnq1/pi − 1
� �� 	

� e 1−q′ð Þ lnq1/pi ×
n
−qpq−2i + 1 − q′

� �
p2q−3i

+ 1 − rð Þp2q−3i e 1−q′ð Þ lnq1/pi
o
:

ð47Þ

In the limit pi ⟶ 1, the second derivative given in (47) is
less than zero if q + q′ + r > 2. Thus, concavity of Sq,q′ ,r is

guaranteed if q + q′ + r > 2 . In the limit pi ⟶ 0, concavity
is guaranteed if r > 1. If r < 1, concavity holds if q > 1.

4.4. Convexity. A twice-differentiable function of a single var-
iable is convex if and only if its second derivative is nonneg-

ative on its entire domain. The analysis on the convexity of
Sq,q′,r is analogous to that of its concavity. In the limit pi
⟶ 1, convexity is guaranteed if q + q′ + r ≤ 2. In the lim-
it pi ⟶ 0, convexity is assured if q, r < 1. Thus, we have the
following theorem.

Theorem 6. The three-parameter entropic function Sq,q′,r is
convex provided q + q′ + r ≤ 2.

Concavity of Sq,q′ ,r is illustrated in Figure 3(a) while con-
vexity is illustrated in Figure 3(b).

4.5. Composability. An entropic function S is said to be com-
posable if for events A and B,

S A + Bð Þ =Φ S Að Þ, S Bð Þ, indicesð Þ, ð48Þ

where Φ is some single-valued function [5]. The Boltzmann-
Gibbs-Shannon entropy satisfies

SBGS A + Bð Þ = SBGS Að Þ + SBGS Bð Þ: ð49Þ

Hence, it is composable and additive. The one-parameter
entropy Sq,for q ≠ 1 is also composable as it satisfies

SA+Bq

k
=
SAq
k

⊕ q

SBq
k

=
Sq Að Þ
k

+
Sq Bð Þ
k

+ 1 − qð Þ Sq Að Þ
k

Sq Bð Þ
k

:

ð50Þ

The two-parameter entropy Sq,q′ [5] satisfies, in the
microcanonical ensemble (i.e., equal probabilities), that

Y SA+B
� �

= Y SA
� �

+ Y SB
� �

+ 1 − q′
1 − q

Y SA
� �

Y SB
� �

, ð51Þ

where

Y Sð Þ ≡ 1 + 1 − q

1 − q′
ln 1 + 1 − q′

� � S
k

� 
: ð52Þ

However, this does not hold true for arbitrary distribu-
tions fpig, which means Sq,q′ is not composable in general.
For the 3-parameter entropy Sq,q′ ,r , a similar property as that
of (51) is obtained as shown in the following theorem.

Theorem 7. The three-parameter entropy Sq,q′ ,r satisfies

U SA+B
� �

=U SA
� �

+U SB
� �

+ 1 − q′
1 − q

U SA
� �

U SB
� �

, ð53Þ

where

U Sð Þ = ln 1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ S
k

� " #
· ð54Þ
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Figure 3: Illustration of the three-parameter entropic function: (a) concavity and (b) convexity.
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Proof. Note that

lnq,q′ WAWBð Þ = 1
1 − q′

e 1−q′ð Þ lnq WAWBð Þ − 1
h i

=
SA+B
q,q′
k

,

ð55Þ

from which

SA
q,q′ ,r
k

= lnq,q′ ,rWA =
1

1 − r
e 1−rð Þ lnq,q′ WA − 1
h i

= 1
1 − r

e
1−rð ÞSA

q,q ′
/k − 1

� 
:

ð56Þ

Similarly,

SB
q,q′ ,r
k

= lnq,q′rWB =
1

1 − r
e
1−rð ÞSB

q,q ′
/k − 1

h i
,

SA+B
q,q′,r
k

= ln q,q′ ,rf gWAWB =
1

1 − r
e
1−rð ÞSA+B

q,q ′
/k − 1

� 

= 1
1 − r

e
1−rð ÞSA+b

q,q ′
/k −

1
1 − r

:

ð57Þ

From (57),

ln 1 − rð Þ
SA+B
q,q′ ,r
k

+ 1
" #

= 1 − rð Þ
SA+B
q,q′
k

: ð58Þ

Using the following result in [5],

Equation (58) becomes

Now, with

U Sð Þ = ln 1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ S
k

� " #
, ð61Þ

we have

1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ
SA+B
q,q′ ,r
k

" #

= e 1−q′ð Þ/ 1−qð Þ½ �U SAð Þ·U SBð Þ

× 1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ
SA
q,q′,r
k

" #" #

× 1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ
SB
q,q′,r
k

" #" #
:

ð62Þ

Consequently,

ln 1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ
SA+B
q,q′,r
k

" #" #

= 1 − q′
1 − q

U SA
� �

·U SB
� �

+ ln 1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ
SA
q,q′,r
k

" #" #

+ ln 1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ
SB
q,q′,r
k

" #" #
,

ð63Þ

which can be written as

U SA+B
� �

=U SA
� �

+U SB
� �

+ 1 − q′
1 − q

U SA
� �

U SB
� �

: ð64Þ

SA+B
q,q′
k

= 1
1 − q′

e
1−q′/1−q ln 1+ 1−q′ð ÞSA

q,q ′
/k

h i
·ln 1+ 1−q′ð ÞSB

q,q ′
/k

h i
1+ 1−q′ð ÞSA

q,q ′
/k

h i
1+ 1−q′ð ÞSB

q,q ′
/k

h i
− 1

8<
:

9=
;: ð59Þ

ln 1 + 1 − rð Þ
SA+B
q,q′ ,r
k

" #
= 1 − r

1 − q′

(
e

1−q′ð Þ/ 1−qð Þ½ � ln 1+ 1−q′ð Þ/ 1−rð Þ½ � ln 1+ 1−rð ÞSA
q,q ′ ,r

/k
h ih i

·ln 1+ 1−q′ð Þ/ 1−rð Þ½ � ln 1+ 1−rð ÞSB
q,q ′ ,r

/k
h ih i

× 1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ
SAq,q,′ ,r
k

" #" #
× 1 + 1 − q′

1 − r
ln 1 + 1 − rð Þ

SBq,q,′ ,r
k

" #" #
− 1
)
:

ð60Þ
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In view of the noncomposability of the 2-parameter
entropy, Sq,q′ ,r is also noncomposable.

5. Conclusion

It is shown that the two-parameter logarithm of Schwämmle
and Tsallis [5] can be generalized to three-parameter loga-
rithm using q-analogues. Consequently, a three-parameter
entropic function is defined, and its properties are proved.
It will be interesting to study the applicability of the three-
parameter entropy to adiabatic ensembles [13] and other
ensembles [14] and how these applications relate to general-
ized Lambert W function.
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