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In this paper, we study the following autonomous nonlinear Schrodinger system (discussed in the paper), where A, i, and v are
positive parameters; 2* =2N/(N —2) is the critical Sobolev exponent; and f satisfies general subcritical growth conditions.

With the help of the PohoZaev manifold, a ground state solution is obtained.

1. Introduction and Main Result

In this paper, we consider the following autonomous nonlin-
ear Schrodinger system:

~Au+pu=uf(u)+Av, xeRY,
—Av+vv:|v\2*’2v+)tu, xeRY, (1)
u,ve H' (RV), N=3,

where p, v, and A are positive parameters satisfying 0 < A <
/Hv; 2* =2N/(N —2) is the critical Sobolev exponent; and
f satisfies the following conditions:

(f,) f € C(R,R) is an odd function.
() lim (f(s)is) =0.
(fy) lLim (f(s)/s* ") =0.

5—>+00

(f,) There exists >0 such that F({) > ({*/2), where
E(0) = [5f (t)dt.

Systems of above type arise in nonlinear optics (cf. [1]).
It is well known that a solution (u,v) € H'(RY) x H'(RY)
of system (1) is called a ground state solution if (u,v) # (0,
0) and its energy is minimal among the energy of all the
nontrivial solutions.

The following nonlinear Schrédinger system

—Au+ pu = |u|P_1u+)w, xeRY,

—Av+vv= |V|q_1V+)W, xeRY, (2)

u,veHl(]RN),

has been studied by many authors. When N<3, uy=v=1,
p=9q=3, and A >0 small enough, Ambrosetti et al. [2]
proved that (2) has multibump solitons. When N>2, y=v
=1,1<p,g<2*=1,0<A<1, and |uf’'u and |v|7"v are
replaced by (1 + a(x))|ul’'u and (1 + b(x))|v|?""v, Ambro-
setti et al. [3] proved that system (2) has a positive ground
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state solution. When u, v € D'?(R*), u=V,(x), and v="V,
(x) satisfy the integral conditions and |u[’'u, Av, [v|7"'v
and Au are replaced by p,u’, fuv?, u,v?, and Bu’v, respec-
tively, Liu and Liu [4] proved that (2) has a positive solution.
When u, v € H)(Q), Q is a smooth bounded domain in R?,
p=q=3, and Av, Au are replaced by —Buv?, —vu?, respec-
tively, Noris and Ramos [5] proved that (2) admits an
unbounded sequence of solutions (u,v) with u>0,v>0,
and u # v for sufficiently large f>0. When N>3, 1<p<
2*-1,9=2"-1, and p,v>0, 0</\<\/;W, Chen and Zou
[6] proved that (2) has a positive ground state solution under
A, p, v which satisfied certain conditions. When N >3, 1<
p<2*-1,g=2*-1, and p=a(x),v=>b(x),A=A(x), Li
and Tang [7] proved that (2) has a nontrivial solution.

Inspired by the above literatures, especially [6], we inves-
tigate the existence of ground state solution of system (1).
When uf(u)=|ulf'u with 1<p<2*-1, by using the
Nehari manifold, Chen and Zou [6] obtained the existence
of ground state solution of system (1). But in our paper,
without the assumption of the monotonicity of u — (f(u))
/u, we have to adopt a new method to replace the Nehari
manifold.

The following single Schrodinger equation

~Au+u=f(u), ueH'(RV),Nz3, (3)

has been widely studied by many researchers, and relevant
results can been referred to [8-10] and the references
therein. By [9], we know that if f satisfies (f;)-(f,); then,
equation (3) has a ground state solution. Define

1
a=inf [—J (|Vu|2+u2)dx—J
uel' |2 RY

where I'={u e H'(R"): uisanontrivial solution of
equation (3)} and define

F(u)dx} (4)

]RN

v|Vu|*d
S= inf LR|—”|’CM (5)
PN ( Juf dx)

where S is the optimal constant of the Sobolev embedding
D1,2 (]RN) — LZ* (]RN)
The main result of this paper is the following.

Theorem 1. Assume that y, v, and A are positive parameters
satisfying > SNN-2(aN)?N2 and 0 < A < /i, Suppose
that f satisfies (f,)-(f,). Then, system (1) has a ground state
solution.

Remark 2. There are some examples of functions that satisfy
the assumptions (f,)-(f,), for example, f(s) = |s| s with 2
<p<2*and f(s) = |s]*s/(1 + %) with 4 < p<2* +2.

Remark 3. It is obvious that system (1) has no semitrivial
solutions. Indeed, if (u,0) is a solution of system (1), then
u=0 and if (0,v) is a solution of system (1), then v=0.
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Remark 4. There are some recent studies on the ground state
solutions for other types of Schrodinger equations or sys-
tems, for example, [6, 11]. Moreover, in the bounded
domain, the existence and the regularity of solutions to dif-
ferential problems have been widely investigated by using
tools of harmonic and real analysis and variational methods,
for example, [12-14].

2. Preliminaries

In order to make a precise explanation of the results in this
paper, we will give some notations.

C, C; denote various positive constants.

LP(RYN) is the usual Lebesgue space endowed with the

norm
1p
], = (j u|f’dx) | ©)
IRN

DY(RN) = {ueL* (RY)| (0u/dx;) € L*(RN),i=1,2,
.-+, N} endowed with the norm

12
||u||D1,z=(J |Vu|2dx> . (7)
IRN

H'(RN) = {ueL?>(RY) | (Qu/ox;) € L*(RN),i=1,2, -,
N} endowed with the norm

= ([ (e )d) (®)

For any (u,v) € H:=H'(RY) x H'(RY), we set

12
s V|| = (J (|Vu|2+‘uu2+ |Vv|2+vv2)dx> .9
IRN

For any u € H'(R"), we denote u, = u(-/t) for all £ > 0.
The weak solutions of (1) correspond to critical points of
the functional

1 1 .
Luv) =S|y} —p| Fwdx- | " dx-21| uvdx.
2 IRN 2 IRN ]RIV
(10)

Obviously, I € C'(H, R) and for all (u,v) € H and (¢, y)
€ H, we have

<I' (u,v), (@, 1//)> = J (Vu- Vo + pup+Vv - Vy + voy)dx
]RN
| S| v vy
RN RN

- /\J (v + uy)dx.
RN
(11)

Similar to [15, 16], in order to obtain a ground state
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solution, we define the Pohozaev manifold
P={(u,v)€H\{(0,0)}: J(u,v)=0} (12)
and consider the constraint minimization problem

= inf I(u,v), 13
"= il 1)

where | : H— R is defined as

J(u,v) = ?JRN (\Vu|2 + |Vv|2)dx+ gJRN (Muz + vvz)dx

—//tNJ F(u)dx—ﬂ*J |v|2*dx—/\NJ uvdx.
]RN 2 ]RN IRN

(14)

We also require the following subcritical system of system

(1):

~Au+pu=puf(u)+Av, xeRY,
—Av+vv=[v|T?v+Au, xeRY, (15)
u,veH' (RY), N =3,

where 2 < g < 2%, i, v, and A are positive parameters satisfying
0 <A< ,/pv and f satisfies (f;)-(f,). The energy functional of
system (15) is

uvdx.

(16)

1 1
1w =3 vl -u] P |

RY qJry

|v\"dx—)tj

IRN

Define

P, = {(u,v) € H\ {(0,0)}: Jo(u,v) = 0} and m,

= inf I_(u,v), (17)
(u,v)e?/”q

where

N-2 N
J4(u,v) = TJ (|Vuf* +|Vv|]*)dx + EJ]RN (wi® +vv?)dx

RN
N
—yNJ F(u)dx——J |v|qu—)LNJ uvdx.
IRN IRN ]RN

q
(18)

3. Proof of Theorem 1

The following two lemmas will be used in proof.

Lemma 5 (compactness lemma of Strauss, see [9, 10]). Let
P,Q: R — R be two continuous functions satisfying

p
P — 0 as|s| — +o0. (19)

Q(s)

Let u,, be a sequence of measurable functions: RN — R
such that

supJ]RN |Q(u,(x))|dx < +c0 (20)

n

and P(u,(x)) — v(x) a.e. in RN, as n — co. Then, for any
bounded Borel set B, one has

JB\P(un(x)) - v(x)|dx — 0 asn— +o0o0. (21)

If one further assumes that

is)—w as|s|—0 (22)

Q(s)
and u,(x) — 0 as |x| — +00, uniformly with respect to n,
then P(u,) converges to v in L'(RN) as n — +oo.
Lemma 6 (Strauss inequality, see [17]). If N > 2, there exists

Cy > 0 such that, for every u(x) = u(|x|) € H'(RY),

()| < Cuyfua | Va2 ]2 (23)

a.e. on RN,
Before proving Theorem 1, we need to prove a series of
lemmas.

Lemma 7. Suppose that (f,)-(f,) hold. Then, the PohoZaev
manifold 9 is not empty.

Proof. From [17], we know that for any &> 0,

~ [N(N _ 2)](N_2)/48(N_2)/2

u, = ~ (24)
e+ |x|2)(N 2)/4
is a positive solution of the following equation:
~Au=|uf u, xeRN,N=x3. (25)

Define a cut-off function ¢ € C;°(RY, [0,1]) as

1, xeBp,
9= . (26)
0, xeR \sz,

where @>0 and B, ={xeR",|x|<@}. Let W, =¢u, and



define V, = WS/(IRN|WS|2*dx)1/2*. By [16], we have

1/72*
(J |V£|2*dx> =1,
RN

o(¢"?), N=3, (27)
| vipae= oeimep, N=a
RN

o(e), N=5.

Take &€ >0 small enough such that IRN((I/Z*)|VS|2* -

(vi2)V?)dx > 0. Let U € H'(RV) be a positive ground state
solution of equation (3). Then, we have the following
Pohozaev equality:

N-2 N
—J |VU|2dx+—J Uzdx=NJ F(U)dx.  (28)
2 IRN 2 ]RN ]RN

Then, [p~x(F(U) = (1/2)U?)dx > 0. Thus, we have

() =1(U, (V,),) = tTJ]R (VUP + |9V, [2)dx

- ytNJRN (F(U) - % U2> dx

1 N
—tNJ (_*|vs|2 —Yvﬁ)dx—mj UV, dx.
v \2 2 Ry

(29)
Define s=tN; we have
1N sN-2IN 2 2
nis)=t(s") = 5 JRN(|VU| +|VV,|*)dx
- st (F(U) L U2> dx (30)
RY 2

1 .
—sJ <*|V8|2 —vVﬁ)dx—AsJ UV, dx.
v \2 2 o

We can easily know that #(s) >0 for s small enough
and #(s) <0 for large s. Since (d’y(s))/ds* <0, 5(s) is a
concave function. Then, there exists a unique s, >0 such
that #'(s,) =0. Hence, there exists a unique t,=s)N >0
such that 7'(t,) =0. Then, we have t,7’(t,) = J(U(x/t,),
V(x/ty)) =0. Then, (U, ,(V,), ) € 2. O

ty

Lemma 8. Suppose that (f,)-(f,) hold. Then, m= inf I

(uv)eP

(u,v) > 0.

Proof. Since 0 < A < /uv, there exists 0 <6 <1 such that 0
<A< /p(l=0)v. For any (u,v) € P, we have J(u,v) =0.
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By using Young’s inequality, we have

E V142+V1/2dx+ﬁ u? +vi*)dx
Va4 vy o | (s

2 ]RN ]RN

N .
:plNJ F(u)dx + —*J v[* dx+ANJ uvdx
]RN 2 ]RN ]RN

0 . N .
gyN—J uzdx+NCJ |ul* dx + —*J lv[* dx
2 ]RN ]RN 2 IRN

0 [ .
+/\NJ uvdeyN—J uzdx+NCJ u|* dx
]RN 2 ]RN ]RN

N . 1-6 N
+ —J |v|2 dx+N‘u( ) [ wldx + —VJ V2dx.
]RN 2 B ]RN ]RN

2 2
(31)

Therefore, we have

N-2 . N .
—J (|Vu)? + |Vv\2)dx£NCJ |u|* dx + —*J [v[* dx.
2 ]RN ]RN 2 ]RN
(32)
By using Sobolev’s inequality, we have

EJ (|Vu|2 + |Vv|2)dx

2 )
212 2412
(J |Vu|2dx) +<J |Vv\2dx> } (33)
RN RN

2n
<G, U (|Vul* + |Vv|2)dx} ,
RN

<C,

which implies IRN(|Vu|2 +|Vv|})dx = (N - 2)/2C2)(N_2>’2
> 0. Therefore, we conclude that for any (u, v) € &, we have

I(u,v)=1(u,v) - %](u, V)= <% - 2%) JRN\Vu\de

11 1 /N-2\N272
- = \Vv|2dx2 — == .
2 2 ) gy N\ 2¢,

Therefore, we have m > 0. |

(34)

Lemma 9. Suppose that (f,)-(f,) hold. Then, m < (1/N)SN"2,

Proof. Let U € H'(RY) be a positive ground state solution of
equation (3). Then, (28) holds and

a:%J (WU|2+U2)dx—J F(U)dx

RN RN
1
_J (WU|2+U2)dx—J F(U)dx
2 RN RN

1 (N-2 N
__<_J |VU\2dx+_J Uzdx—NJ F(U)dx)
N 2 RY 2 RN RN
=J |VU|*dx.
]RN

(35)
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Moreover, we have also U(,/#x) which is a solution of
equation
~Au+pu=uf(u), ueH (RV),N=3. (36)

Then, (U(\/pix),0) € 2. Since p> S N/(N- 2)(aN)2/(N 2).

we have

1
<I(U(vpx), 0) =1(U(y/px), 0) = NI(U(\/ﬁx), 0)
_ 1 1 i
_NJ \VU(/pix) | dx = au® NS .
(37)
O
Lemma 10. Suppose that (f,)-(f,) hold. For any (u,,v,) C P,
if I(u,,v,) <C, then (u,,v,) is bounded in H.
Proof. Since I(u,,, v,) < C, we have
1
Cz I(un’ Vn) = I(un’ Vn) - _](un’ Vn)
N
1 (38)
=—| (|Vu,[* +|Vv,[*)dx.
N ]RN n n

Because 0 < A < ,/pv, there exists 0 <6< 1/2 and a>0

such that 0 < A < \/p(1 - 20)(v — a). Therefore, we have

N-2 2 2 N 2 2
TJRN(|Vu”| +|Vy,| )dx+ 5JRN ([mn +wn)dx

N .
=;4NJ F(u,)dx + —*J v,|? dx+/\NJ u,v,dx
]RN 2 IRN ]RN

S[ANQ |u |2dx+NC u ¥ dx+ — N |v > dx
n n 2* n

+)LNJ uvdx<‘uN0J |u,|*dx
IRN

RN

+NCJ
]RA\
(

+ N‘M - 20) J de + —N(vz— «) J V2 dx.
IRN

|u,|* dx+—J |v,|* dx
IRN

Then, we have

Nub N :
LJ Ju, [2ddx + _“J |vn|2dstNJ u, |* dx
2 ]RN 2 ]RN ]RN

N . 2*/2
+ —*J v, | dx < C; U (\Vu|2+|Vv|2)dx} <C,.
2 ]RN B ]RN

(40)
Hence, (u,,v,) is bounded in H. O

Lemma 11. Suppose that (f,)-(f,) hold. Then, lirrzl*f sup m,
q4>

<m.

Proof. For any ¢ € (0,1/2), there exists (u,v) € & such that
I(u,v) <m+¢. Since J(u,v) =0, for any t > 0, we have

N
I(upvy) =I(upv,) = ﬁ](”’ v)
tN—Z N-2 N 5 5 (41)
= (T - SN t )JRN(|Vu| +|Vv|*)dx

Define h(t) =t""2/2 - ((N —2)/2N)tN. Through simple
calculations, we have h'(t)=(N-2)/2(tN2 - N"1). We
can easily see that h is increasing for t€ (0,1) and h is
decreasing for t>1. Then, we have rrtl>%x1 (up, v,) =1(u,v)
and I(u,,v,) <I(u,v) for any t # 1. By calculation, we have
I(u,,v,) <0 for t > \/N/(N —2). Take large T such that

TN—Z 5 5
I(ug, vy) = 5 (IVul* + |Vv[*)dx
RY

TN
+— | (u®+v)dx—uTN| F(u)dx
2 ]RN ]RN
™ .
- — J v[? dx—ATNJ uvdx < —1.
2 IRN ]RN
(42)
Then, there exists o € (0,2*) such that
tN - N
I (u,vy) = I(u,v,)| = |== dx— — iq ,
Lo w) =T )| = 5= | o= | o] <
(43)

for all 2* —0<q<2" and 0<t<T. Then, we have I (ur,
vy) <—(1/2) for all 2* — o < g < 2*. Since

N2 2 2
I, (upvy) = TJ N(|Vu| +|Vv|*)dx
R
tN
+ —J (us? +vv2)dx—ytNJ F(u)dx
2 ]RN ]RN
N
- —J |v|qu—/\tNJ uvdx,
q JrY RY
(44)

1,(uy v,) > 0 for ¢ small enough. Then, there exists ¢, € (0, T))
such that (d/dt)I,(u;,v,)|,_, =0. So, (utq, th) € &, Hence,
T

we have

mqslq(utq,th sl(utq,th +e<I(u,v) +e<m+2e,

(45)

for all 2* —o < g <2".

From [18, 19], we know that system (15) has a positive
and radial ground state solution. Then, for any g, € (2,2*)
and g, — 27, there exists a positive and radial sequence
{(u,,v,)} C H such that



(46)

By Lemmas 10 and 11, we know that {(u,,v,)} is
bounded in H. O

Lemma 12. Suppose that (f,)-(f,) and (46) hold. Then,
lim inf m, > 0.

n—=o00

Proof. Similar to the proof of Lemma 8, we have

N-2 .
—J (|Vun|2+|an|2)deNCJ |u,|* dx
2 IRN ]RN

(47)

N
+ —J v, |t dx.
qn JRY

Using Young’s inequality implies

ﬁj |1+ dx = ﬁj fy, [CT9NIET2), (2@ 2 2) g
]RN n q N n n

9,
N2* — N -2 B
N2 q“j v, 2+ j v, 2 dx
qn2 —2 RN qnz —2 RN

N .
= _*J v, | dx+o(1).
2% gy

nJR

(48)
Then,
¥J (|Vu, > + an\z)deNCJ |u,|* dx
]RN ]RN
N . . 2
+ 2—*J [v,|* dx +0(1) < Cs U (IVu, > + Vv, [P)dx|  +o(1).
RY Jr¥
(49)

So there exists @ >0 such that up to a subsequence,
J”RN(|Vun|2 +|Vv,[*)dx + o(1) > @. On the other hand,

1
my =1, (u,,v,) =1, (4, v,) - ﬁ]qn(un’ v,)

1 (50)
- _J (IVu,* + | Vv, |*)dx.
N s
Then, lim inf my > 0. 0

n—=00

Proof of Theorem 1. Because (46) holds, there exists (u, v)
€ H such that u,u, v,v in H'(RY), u, — u, v, — v in L?
(RN),2<p<2*, and u,(x) — u(x), v,(x) — v(x) a.e. in
RN. For any (¢, v) € H, we have

0= (1, (). (9.9)) — (I'(wv). (), (51)
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i.e., (u,v) is a solution of system (1). Suppose that u = 0. Set
P(s) = f(s)s and Q(s) =|s|* +|s|*". Through Lemma 5 and
Lemma 6, we have [pvP(u,)dx — 0 as n — +oo0. Since (

I;n(un, v,), (4,,v,)) =0, by using Young’s inequality, we

have
I sl =] fCn e | e s 22] v,
]RN ]RN IRN
< ”J P(u,)dx + j v, |G a2, 12 (0,2)/2°2) gy
2 2 2" —q, 2
+[ (yun+vvn)dx§;,tj P(u,)dx + — [ [V, dx
Jwy RY 25 =2 gy
9,~2 2 2 2 2*
+ L [ V.| dx+[ (,uun+vvn)dx=l. [v,|* dx
2 _2. ]RJ\' B ]RN N IRN
+J ((4ui+vvi)dx+o(1).
RY
(52)
One has

J |an|2deJ (|Vun\2+|an\2)deJ [v,|* dx +0(1)
]RN ]RN ]RN

2%/2
V|V, |*d
s(;fﬂ“ il x) +o(1).

S
(53)

So we have (i) IRN|an|2dx—>0 or (i) lim sup [~

—>00

|Vv,[*dx > SN2, If (i) holds, then we have

1
mqn =an (un’ Vn) - N]q” (un’ Vn)

(54)
J (IVu,|* + |Vv,[*)dx — 0,
]RN

which contradicts with Lemma 12. If (ii) holds, then we have

1
m > lim sup m, =lim sup [an(un, V) — ﬁ]qn (thy vn)}

1
=lim sup [NJ (|V”n|2 + |an|2)dx}
n—o00 RN

1 1
>lim sup—J |Vv,|*dx > — SV,
n—>00 RN N

(55)

This is a contradiction. So u # 0 and through Remark 3,
we know that v # 0. Applying the weak lower-semicontinuity
of the norm, we have
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m<I(u,v)=1(u,v) - Ai]](u, V)= I\i]J (|Vu|2 + |Vv|2)dx
RY

1
<lim inf—J (|Vun‘2 + |an|2)dx
N

n—=ao00 RN

o 1 o
=1}1n:£10f {an(un,vn) - N]q"(u”’ vn)} =lim inf m, <m.
n—=aoo

(56)

This implies I(u, v) = m. We complete the proof. |
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