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Recently, the notions of right and left covering rough sets were constructed by right and left neighborhoods to propose four types of
multigranulation covering rough set (MGCRS) models. These models were constructed using the granulations as equivalence
relations. In this paper, we introduce four types of multigranulation covering rough set models under arbitrary relations using
the q-minimal and q-maximal descriptors of objects in a given universe. We also study the properties of these new models.
Thus, we explore the relationships between these models. Then, we put forward an algorithm to illustrate the method of
reduction based on the presented model. Finally, we give an illustrative example to show its efficiency and importance.

1. Introduction

The notion of rough set theory originated by Pawlak in 1982
[1, 2] to deal with uncertain information and knowledge. It is
a tool concerned with the approximation of sets described by
a single binary relation. In the view of granular computing
suggested by Zadeh [3], a general concept described by a set
is characterized via the upper and lower approximations
under a single granulation (always equivalence relation) on
the universe. This tool has been widely used in many subjects
including machine learning, data mining, decision support,
and analysis. In the past 20 years, many authors have pro-
posed several extensions of the rough set model [4–19]. In
some cases, it is important to use multiequivalence relations
on the universe to describe precisely a target concept.
Recently, more attention is given to multigranulation rough
set (MGRS) models and, also, to multigranulation covering
rough set (MGCRS) models in which a target concept is
approximated by employing the maximal or minimal
descriptors of objects in the given universe. In [20, 21], Qian
et al. developed a multigranulation rough set (MGRS) model
by using equivalence relations. Several scholars worked on
MGRS such as the MGRS model through multiple tolerance

relations in incomplete information systems, MGRS via the
fuzzy approximation space, the hierarchical structures of
MGRS, the topological and lattice-theoretic properties of
MGRS, and the efficient rough feature selection algorithm
with MGRS [22–30]. Moreover, Liu and Miao and Liu and
Wang [31, 32] introduced the multigranulation covering via
rough set (MGCRS) and fuzzy rough set (MGCFRS). Lin
et al. studied two types of the neighborhood via MGRS [33]
and three new types of MGCRS [34]. Also, three types of
MGRS via the tolerance, ordered, and generalized relations
are investigated and developed the multigranulation
decision-theoretic rough set [35–38]. In addition, Liu et al.
[39] proposed four new types of MGCRS using the minimal
and maximal descriptions and discussed relevant characteris-
tics. For more details about MGRS, see, for instance, [40–44].

The notions of left and right covering rough sets pro-
posed by Abd El-Monsef et al. [45] are important tool to
make an extension of Liu et al. [39]. The objective of this
paper is to develop new models of MGCRS using the notions
of left and right covering using the concepts of q-minimal
and q-maximal descriptions. Also, we discuss the properties
of these models. The relationships between these models
are studied. Then, we present the reduction method over
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our proposed work and establish a numerical example to
show its performance. The paper consists of six sections
and is organized as follows: Section 1 deals with a brief
history to the subject. Section 2 includes the preliminary con-
cepts. Section 3 is the main core of the paper and consists of
the new models. In Section 4, the properties and differences
between the proposed models are introduced. Section 5
explores new criteria to make a reduction with a test example.
We end up with conclusion in the last section.

2. Basic Terminologies and Results

This section provides a short survey of some notions used
throughout the article.

Definition 1 [26]. Let ℚ be an universal set and ∅≠ E = f~E1,
~E2,⋯,~Emg ⊆ℚ. We call E as a covering of ℚ, if

Sm
i=1

~EiðwÞ
=ℚ for anyw ∈ℚ. Also, ðℚ, EÞ is called a covering approx-
imation space (briefly, CAS).

Definition 2 [46]. Let R be a binary relation on an universe
setℚ, and for everyw ∈ℚ, we have the following two classes.
Define the after and fore sets as follows:

wR = v ∈ℚ : wRvf g,
Rw = v ∈ℚ : vRwf g:

ð1Þ

Definition 3 [45]. Let R be a binary relation on an universe
set ℚ. For each w ∈ℚ, define the right covering C r (resp.,
the left covering C l) as follows:

C r = wR : ℚ =
[
w∈ℚ

wR

( )
,

C l = Rw : ℚ =
[
w∈ℚ

Rw

( )
:

ð2Þ

Definition 4 [45]. Let R be a binary relation on an universe
set ℚ and Eq be a q-cover of ℚ, where q ∈ fr, lg. Then, ðℚ,
R, EqÞ is said to be Eq covering approximation space (briefly,
Eq -CAS).

Definition 5 [45]. Let ðℚ,R, EqÞ be Eq -CAS. For everyw ∈ℚ
, define the right neighborhoodℕr, the left neighborhoodℕl,
the intersection neighborhood ℕi, and the union neighbor-
hood ℕu, respectively, as follows:

ℕr wð Þ = C ∈C r : w ∈ Cf g,
ℕl wð Þ = C ∈C l : w ∈ Cf g,
ℕi wð Þ =ℕr wð Þ ∩ℕl wð Þ,
ℕu wð Þ =ℕr wð Þ ∪ℕl wð Þ:

ð3Þ

Definition 6 [45]. Let ðℚ,R, EqÞ be Eq -CAS and ∀p ∈ fr, l, i
, ug and Z ⊆ℚ. Define the p-lower approximation, p-upper

approximation, p-boundary, p-positive, p-negative, and p-
accuracy of Z, respectively, as follows:

Lp Zð Þ = w ∈Z : ℕp wð Þ ⊆Z
� �

,

Up Zð Þ = w ∈Z : ℕp wð Þ ∩Z ≠∅
� �

,

Bp Zð Þ =Up Zð Þ − Lp Zð Þ,

⊕ p Zð Þ = Lp Zð Þ,

⊖ p Zð Þ =ℚ −Up Zð Þ

Ap Zð Þ = Lp Zð Þ�� ��
Up Zð Þ�� �� , where Up Zð Þ�� �� ≠ 0:

ð4Þ

Pawlak’s [1, 2] rough set properties are given as follows:
(L1)LðZÞ ⊆Z , ðH1ÞZ ⊆UðZÞ:
(L2) LðℚÞ =ℚ, ðH2ÞUð∅Þ =∅:
(L3) Lð∅Þ =∅, ðH3ÞUðℚÞ =ℚ:
(L4) If Z1 ⊆Z2, then LðZ1Þ ⊆ LðZ2Þ, ðH4ÞUðZ1Þ ⊆UðZ2Þ:
(L5) LðZ1 ∩Z2Þ = LðZ1Þ ∩ LðZ2Þ:ðH5ÞUðZ1 ∪Z2Þ =

UðZ1Þ ∪UðZ2Þ:
(L6) LðZ1 ∪Z2Þ ⊇ LðZ1Þ ∪ LðZ2Þ:ðH6ÞUðZ1 ∩Z2Þ ⊆

UðZ1Þ ∩UðZ2Þ:
(L7) LðZcÞ = ðUðZÞÞc, ðH7ÞUðZcÞ = ðLðZÞÞc:
(L8) LðLðZÞÞ = LðZÞ, ðH8ÞUðUðZÞÞ =UðZÞ:
(L9) LðLðZÞÞc = ðLðZÞÞc, ðL9ÞUðUðZÞÞc = ðUðZÞÞc:

Definition 7 [47]. Let ðℚ, EÞ be a CAS and Z ⊆ℚ. For any
w ∈ℚ, define the minimal and maximal descriptions of w,
respectively, as follows:

HE = C ∈ E : w ∈ C ∧ ∀S ∈ E ∧w ∈ S ∧ S ⊆ C⇒ S = Cð Þf g,
DE = C ∈ E : w ∈C ∧ ∀S ∈ E ∧w ∈ S ∧ S ⊇C ⇒ S =Cð Þf g:

ð5Þ

Definition 8 [39]. Let ðℚ, EÞ be MGCAS andZ ⊆ℚ. For any
w ∈ℚ, define four types of the lower and upper approxima-
tions, respectively, as follows:

L1
〠
n

d=1
Ed

Zð Þ = w ∈ℚ : ∩HE1
wð Þ ⊆Z or ∩HE2

wð Þ ⊆Z�

or⋯ or ∩HEn
wð Þ ⊆Z�

,

U1

〠
n

d=1
Ed

Zð Þ = w ∈ℚ : ∩HE1
wð Þ� �

∩Z ≠∅
�

and ∩HE2
wð Þ� �

∩Z ≠∅

and⋯ and ∩HEn
wð Þ� �

∩Z ≠∅
�
,

L2Ed
Zð Þ = w ∈ℚ : ∪HE1

wð Þ ⊆Z or ∪HE2
wð Þ ⊆Z�

or⋯ or ∪HEn
wð Þ ⊆Z�

,
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U2
Ed

Zð Þ = w ∈ℚ : ∪HE1
wð Þ� �

∩Z ≠∅
�

and ∪HE2
wð Þ� �

∩Z ≠∅

and⋯ and ∪HEn
wð Þ� �

∩Z ≠∅
�
,

L3Ed
Zð Þ = w ∈ℚ : ∩DE1

wð Þ ⊆Z or ∩DE2
wð Þ ⊆Z

�

or⋯ or ∩DEn
wð Þ ⊆Z

�
,

U3
Ed

Zð Þ = w ∈ℚ : ∩DE1
wð Þ� �

∩Z ≠∅
�

and ∩DE2
wð Þ� �

∩Z ≠∅

and⋯ and ∩DEn
wð Þ� �

∩Z ≠∅
�
,

L4Ed
Zð Þ = w ∈ℚ : ∪DE1

wð Þ ⊆Z or ∪DE2
wð Þ ⊆Z

�

or⋯ or ∪DEn
wð Þ ⊆Z

�
,

U4
Ed

Zð Þ = w ∈ℚ : ∪DE1
wð Þ� �

∩Z ≠∅
�

and ∪DE2
wð Þ� �

∩Z ≠∅

and⋯ and ∪DEn
wð Þ� �

∩Z ≠∅
�
,

ð6Þ

If L1Ed
ðZÞ (resp., L2Ed

ðZÞ, L3Ed
ðZÞ, and L4Ed

ðZÞ) ≠
U1

Ed
ðZÞ (resp., U2

Ed
ðZÞ, U3

Ed
ðZÞ, and U4

Ed
ðZÞ), then Z is

called the first kind of a multigranulation covering rough
set (briefly, type 1-MGCRS) (resp., type 2-MGCRS, type 3-
MGCRS, and type 4-MGCRS), else it is definable.

Definition 9 [48]. Let ðℚ, EÞ be a covering information
system. For any Z ⊆ℚ and w ∈ℚ, define the first type of
optimistic multigranulation covering lower approximation
(briefly, 1-OMGCLA) 1LO∑n

d=1 dE
ðZÞ and the first type of

optimistic multigranulation covering upper approximation
(briefly, 1-OMGCUA) 1UO

∑n
d=1 dE

ðZÞ as follows:
1LO
〠
n

d=1
dE

Zð Þ = w ∈ℚ : wð Þ1E ⊆Z∨ wð Þ2E ⊆Z∨⋯∨ wð ÞnE ⊆Z
� �

,

1LO
〠
n

d=1
dE

Zð Þ = w ∈ℚ : wð Þ1E ∩Z ≠∅∧ wð Þ2E
�

∩Z ≠∅∧⋯∧ wð ÞnE ∩Z ≠∅
�
:

ð7Þ
Definition 10 [48]. Let ðℚ, EÞ be a covering information
system. For any Z ⊆ℚ and w ∈ℚ, define the first type of
pessimistic multigranulation covering lower approximation
(briefly, 1-PMGCLA) 1LP∑n

d=1 dEq
ðZÞ and the first type of

pessimistic multigranulation covering upper approximation
(briefly, 1-PMGCUA) 1‘UP

∑n
d=1 dEq

ðZÞ as follows:

1LP
〠
n

d=1
E

Zð Þ = w ∈ℚ : wð Þ1E ⊆Z ∧ wð Þ2E ⊆Z∧⋯∧ wð ÞnE ⊆Z
� �

,

1UP

〠
n

d=1
dE

Zð Þ = w ∈ℚ : wð Þ1E ∩Z ≠∅∨ wð Þ2E
�

∩Z ≠∅∨⋯∨ wð ÞnE ∩Z ≠∅
�
:

ð8Þ

Next, we have the following definitions using the notion
of Eq-CAS.

Definition 11. Let ðℚ,R, EqÞ be Eq-CAS andZ ⊆ℚ. For any
w ∈ℚ, define the q -minimal and q-maximal descriptions of
w, respectively, as follows:

HEq
= C ∈ Eq : w ∈ C ∧ ∀S ∈ Eq ∧w ∈ S ∧ S ⊆ C⇒ S = C� �� �

,

DEq
= C ∈ Eq : w ∈C ∧ ∀S ∈ Eq ∧w ∈ S ∧ S ⊇C ⇒ S =C

� �� �
:

ð9Þ

We give the following example to illustrate the above
definition.

Example 1. Let ðℚ,R, EqÞ be Eq-CAS, ℚ = fk1, k2, k3, k4g
and R = fðk1, k4Þ, ðk2, k2Þ, ðk2, k3Þ, ðk3, k2Þ, ðk4, k1Þ, ðk4, k3Þg.
Then, we have the following results:

HEr
k1ð Þ = k1, k3f g,HEr

k2ð Þ = k2f g,
HEr

k3ð Þ = k1, k3f g, k2, k3f gf g,HEr
k4ð Þ = k4f g,

HEl
k1ð Þ = k1f g,HEl

k2ð Þ = k2, k3f g, k2, k4f gf g,
HEl

k3ð Þ = k2, k3f gf g,HEl
k4ð Þ = k4f g,

DEr
k1ð Þ = k1, k3f g,DEr

k2ð Þ = k2, k3f g,
DEr

k3ð Þ = k1, k3f g k2, k3f gf g,DEr
k4ð Þ = k4f g,

DEl
k1ð Þ = k1f g,DEl

k2ð Þ = k2, k3f g, k2, k4f gf g,
DEl

k3ð Þ = k2, k3f g,DEl
k4ð Þ = k2, k4f g:

ð10Þ

Definition 12. Let ðℚ,R, EqÞ be Eq -CAS andZ ⊆ℚ. For any
w ∈ℚ, define the lower and upper approximations, respec-
tively, as follows:

LEq
Zð Þ = w ∈Z : ∩HEq

wð Þ
	 


⊆Z
n o

,

UEq
Zð Þ = w ∈ℚ : ∩DEq

wð Þ
	 


∩Z ≠∅
n o

:
ð11Þ

To explain the above definition, we give the following
example.

Example 2. Consider Example 1, if Z = fk1, k2, k4g, then we
have the following results.

LEr
Zð Þ = k2, k4f g,

UEr
Zð Þ = k1, k2, k4f g,

LEl
Zð Þ = k1, k2, k4f g,

UEl
Zð Þ =ℚ:

ð12Þ
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3. Multi-Eq-Covering Approximation Space

Presume that ℚ is an universal set, R is a family of binary
relations on ℚ, and Eq is q-cover of ℚ depending on R,
where q ∈ fl, rg. Thus, ðℚ,R, EqÞ is called a multi-Eq-cov-
ering approximation space (briefly, MEqCAS).

Definition 13.Assume that ðℚ,R, EqÞ is a MEqCAS andR =
fR1,R2,⋯,RSg, ∀S ∈ I, for any Z ⊆ℚ and w ∈ℚ. Then,
we have four novel kinds of lower and upper approximations
written as follows:

Style 1
The 1-MCLA 1L∑n

d=1 dEq
ðZÞ and the 1-MCUA 1L∑n

d=1 dEq

ðZÞ are shown as follows:

1L
〠
n

d=1
dEq

Zð Þ = w ∈ℚ : ∩HR1
Eq

wð Þ ⊆Z or ∩HR2
Eq

wð Þ ⊆Z
n

or⋯ or ∩HRn
Eq

wð Þ ⊆Z
o
,

1U
〠
n

d=1
dEq

Zð Þ = w ∈ℚ : ∩HR1
Eq

wð Þ
h i

∩Z ≠∅
n

and ∩HR2
Eq

wð Þ
h i

∩Z ≠∅

and⋯ and ∩HRn
Eq

wð Þ
h i

∩Z ≠∅
o
:

ð13Þ

If 1L∑n
d=1 dEq

ðZÞ ≠ 1U∑n
d=1 dEq

ðZÞ, thenZ is said to be the

first kind of q-covering multigranulation rough set (briefly,
1-qMGCRS), else it is definable.

Style 2
The 2-MCLA 2L∑n

d=1 dEq
ðZÞ and the 2-MCUA 2L∑n

d=1 dEq

ðZÞ are seen as follows:

2L
〠
n

d=1
dEq

Zð Þ = w ∈ℚ : ∪HR1
Eq

wð Þ ⊆Z or ∪HR2
Eq

wð Þ ⊆Z
n

or⋯ or ∪HRn
Eq

wð Þ ⊆Z
o
,

2U
〠
n

d=1
dEq

Zð Þ = w ∈ℚ : ∪HR1
Eq

wð Þ
h i

∩Z ≠∅
n

and ∪HR2
Eq

wð Þ
h i

∩Z ≠∅

and⋯ and ∪HRn
Eq

wð Þ
h i

∩Z ≠∅
o
:

ð14Þ

If 2L∑n
d=1 dEq

ðZÞ ≠ 2U∑n
d=1 dEq

ðZÞ, thenZ is said to be the

second kind of q-covering multigranulation rough set
(briefly, 2-qMGCRS), else it is definable.

Style 3
The 3-MCLA 3L∑n

d=1 dEq
ðZÞ and the 3-MCUA 3U∑n

d=1 dEq

ðZÞ are seen as follows:

3L
〠
n

d=1
dEq

Zð Þ = w ∈ℚ : ∩D
R1
Eq

wð Þ ⊆Z or ∩D
R2
Eq

wð Þ ⊆Z
n

or⋯ or ∩D
Rn
Eq

wð Þ ⊆Z
o
,

3U
〠
n

d=1
dEq

Zð Þ = w ∈ℚ : ∩D
R1
Eq

wð Þ
h i

∩Z ≠∅
n

and ∩D
R2
Eq

wð Þ
h i

∩Z ≠∅

and⋯ and ∩D
Rn
Eq

wð Þ
h i

∩Z ≠∅
o
:

ð15Þ

If 3L∑n
d=1 dEq

ðZÞ ≠ 3U∑n
d=1 dEq

ðZÞ, thenZ is said to be the

third kind of q-covering multigranulation rough set (briefly,
3-qMGCRS), else it is definable.

Style 4
The 4-MCLA 4L∑n

d=1 dEq
ðZÞ and the 4-MCUA 4U∑n

d=1 dEq

ðZÞ are seen as follows:

4L
〠
n

d=1
dEq

Zð Þ = w ∈ℚ : ∪DR1
Eq

wð Þ ⊆Z or ∪D
R2
Eq

wð Þ ⊆Z
n

or⋯ or ∪D
Rn
Eq

wð Þ ⊆Z
o
,

4U
〠
n

d=1
dEq

Zð Þ = w ∈ℚ : ∪DR1
Eq

wð Þ
h i

∩Z ≠∅
n

and ∪DR2
Eq

wð Þ
h i

∩Z ≠∅

and⋯ and ∪DRn
Eq

wð Þ
h i

∩Z ≠∅
o
:

ð16Þ

If 4L∑n
d=1 dEq

ðZÞ ≠ 4U∑n
d=1 dEq

ðZÞ, thenZ is said to be the

fourth kind of q-covering multigranulation rough set (briefly,
4-qMGCRS), else it is definable.

Example 3. Consider ðℚ,R, EqÞ is a MEqCAS, ℚ = fk1, k2,
k3, k4g and R = fR1,R2g, where R1 = fðk1, k4Þ, ðk2, k2Þ,
ðk2, k3Þ, ðk3, k2Þ, ðk4, k1Þ, ðk4, k3Þg and R2 = fðk1, k1Þ, ðk1,
k2Þ, ðk2, k3Þ, ðk2, k4Þ, ðk3, k1Þ, ðk4, k1Þg. Take Z = fk1, k3g;
then, we have the presented outcomes:

(1r) 1L∑2
d=1 dEr

ðZÞ = fk1, k3g, 1U∑2
d=1 dEr

ðZÞ = fk1, k3g
ð1lÞ1L∑2

d=1 dEl
ðZÞ = fk1g, 1U∑2

d=1 dEl
ðZÞ = fk1, k3g.

(2r) 2L∑2
d=1 dEr

ðZÞ = fk1g, 2U∑2
d=1 dEr

ðZÞ = fk1, k3g
ð2lÞ2L∑2

d=1 dEl
ðZÞ = fk1g, 2U∑2

d=1 dEl
ðZÞ = fk1, k3g.

(3r) 3L∑2
d=1 dEr

ðZÞ = fk1, k3g, 3U∑2
d=1 dEr

ðZÞ = fk1, k2, k3g
ð3lÞ3L∑2

d=1 dEl
ðZÞ = fk1g, 3U∑2

d=1 dEl
ðZÞ = fk1, k3g.
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(4r) 4L∑2
d=1 dEr

ðZÞ = fk1g, 4U∑2
d=1 dEr

ðZÞ = fk1, k2, k3g
ð4lÞ4L∑2

d=1 dEl
ðZÞ = fk1g, 4U∑2

d=1 dEl
ðZÞ = fk1, k3g.

Theorem 14. Suppose that ðℚ,R, EqÞ is a MEqCAS. For any
Z ⊆ℚ, we get the following properties:

(1) 1L∑n
d=1 dEq

ðZcÞ = ½ 1U∑n
d=1 dEq

ðZÞ�c, 1U∑n
d=1 dEq

ðZcÞ =
½ 1L∑n

d=1 dEq
ðZÞ�c

(2) 2L∑n
d=1 dEq

ðZcÞ = ½ 2U∑n
d=1 dEq

ðZÞ�c, 2U∑n
d=1 dEq

ðZcÞ =
½ 2L∑n

d=1 dEq
ðZÞ�c

(3) 3L∑n
d=1 dEq

ðZcÞ = ½ 3U∑n
d=1 dEq

ðZÞ�c, 3U∑n
d=1 dEq

ðZcÞ =
½ 3L∑n

d=1 dEq
ðZÞ�c

(4) 4L∑n
d=1 dEq

ðZcÞ = ½ 4U∑n
d=1 dEq

ðZÞ�c, 4U∑n
d=1 dEq

ðZcÞ =
½ 4L∑n

d=1 dEq
ðZÞ�c

Proof. Here, we want to set (1) only.

(1)
1L
〠
n

d=1
dEq

Zcð Þ

= w ∈ℚ : ∩HR1
Eq

wð Þ ⊆Zc or ∩HR2
Eq

wð Þ ⊆Zc
n

or⋯ or ∩HRn
Eq

wð Þ ⊆Zc
o

= w ∈ℚ : ∩HR1
Eq

wð Þ ∩Z =∅ or ∩HR2
Eq

wð Þ ∩Z =∅
n

or⋯ or ∩HRn
Eq

wð Þ ∩Z =∅
o

= w ∈ℚ : ∩HR1
Eq

wð Þ ∩Z ≠∅ and ∩HR2
Eq

wð Þ ∩Z ≠∅
n

and⋯ and ∩HRn
Eq

wð Þ ∩∅
oc

= 1U
〠
n

d=1
dEq

Zð Þ

2
664

3
775

c

:

ð17Þ

Also, it is easy to see 1U∑n
d=1 dEq

ðZcÞ = ½ 1L∑n
d=1 dEq

ðZÞ�c:

Proposition 15. Suppose that ðℚ,R, EqÞ is a MEqCAS. For
any Z ⊆ℚ, we get the following properties:

(1) 1L∑n
d=1 dEq

ð 1L∑n
d=1 dEq

ðZÞÞ = 1L∑n
d=1 dEq

ðZÞ, 1U∑n
d=1 dEq

ð 1U∑n
d=1 dEq

ðZÞÞ = 1U∑n
d=1 dEq

ðZÞ
(2) 2L∑n

d=1 dEq
ð 2L∑n

d=1 dEq
ðZÞÞ = 2L∑n

d=1 dEq
ðZÞ, 2U∑n

d=1 dEq

ð 2U∑n
d=1 dEq

ðZÞÞ = 2U∑n
d=1 dEq

ðZÞ
(3) 3L∑n

d=1 dEq
ð 3L∑n

d=1 dEq
ðZÞÞ = 3L∑n

d=1 dEq
ðZÞ, 3U∑n

d=1 dEq

ð 3U∑n
d=1 dEq

ðZÞÞ = 3U∑n
d=1 dEq

ðZÞ

Proof. Here, we want to set (1) only.

(1) It is obvious that 1L∑n
d=1 dEq

ð 1L∑n
d=1 dEq

ðZÞÞ ⊆
1L∑n

d=1 dEq
ðZÞ. On the other hand, we have

1L∑n
d=1 dEq

ðZÞ = 1L 1Eq
ðZÞ ∪ 1L 2Eq

ðZÞ ∪⋯∪ 1L nEq
ðZÞ.

Thus, we get that

1L
〠
n

d=1
dEq

1L
〠
n

d=1
dEq

Zð Þ

0
BB@

1
CCA

= 1L 1Eq 1L
〠
n

d=1
dEq

Zð Þ

0
BB@

1
CCA ∪ 1L 2Eq 1L

〠
n

d=1
dEq

Zð Þ

0
BB@

1
CCA

∪⋯∪ 1L nEq 1L
〠
n

d=1
dEq

Zð Þ

0
BB@

1
CCA

= 1L 1Eq 1L 1Eq
Zð Þ ∪ 1L 2Eq

Zð Þ∪⋯∪ 1L nEq
Zð Þ Zð Þ

	 


∪ 1L 2Eq 1L 1Eq
Zð Þ ∪ 1L 2Eq

Zð Þ∪⋯∪ 1L nEq
Zð Þ Zð Þ

	 


∪⋯∪ 1L nEq 1L 1Eq
Zð Þ ∪ 1L 2Eq

Zð Þ∪⋯∪ 1L nEq
Zð Þ Zð Þ

	 


⊇ 1L 1Eq 1L 1Eq
Zð Þ

	 

∪ 1L 2Eq 1L 2Eq

Zð Þ
	 


∪11L nEq 1L nEq
Zð Þ

	 


= 1L 1Eq
Zð Þ ∪ 1L 2Eq

Zð Þ∪⋯∪ 1L nEq
Zð Þ = 1L

〠
n

d=1
dEq

Zð Þ

ð18Þ

Also, it is clear that 1U∑n
d=1 dEq

ð 1U∑n
d=1 dEq

ðZÞÞ ⊆ 1
U∑n

d=1 dEq
ðZÞ. Consequently, we have 1U∑n

d=1 dEq
ðZÞ = 1U 1Eq

ðZÞ ∩ 1U 2Eq
ðZÞ ∩⋯∩ 1U nEq

ðZÞ. So, we have

1U
〠
n

d=1
dEq

1U
〠
n

d=1
dEq

Zð Þ

0
BB@

1
CCA

= 1U 1Eq 1U
〠
n

d=1
dEq

Zð Þ

0
BB@

1
CCA ∩ 1U 2Eq 1U

〠
n

d=1
dEq

Zð Þ

0
BB@

1
CCA

∩⋯ ∩ 1U nEq 1U
〠
n

d=1
dEq

Zð Þ

0
BB@

1
CCA

= 1U1Eq 1U 1Eq
Zð Þ ∩ 1U 2Eq

Zð Þ ∩⋯∩ 1U nEq
Zð Þ

	 


∩ 1U 2Eq 1U 1Eq
Zð Þ ∩ 1U 2Eq

Zð Þ ∩⋯ ∩ 1U nEq
Zð Þ
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∩⋯∩ 1U nEq 1U 1Eq
Zð Þ ∩ 1U 2Eq

Zð Þ ∩⋯ ∩ 1U nEq
Zð Þ

	 


⊇ 1U 1Eq 1U 1Eq
Zð Þ

	 

∩ 1U 2Eq 1U 2Eq

Zð Þ
	 


∩⋯

∩ 1U nEq 1U nEq
Zð Þ

	 


= 1U 1Eq
Zð Þ ∩ 1U 2Eq

Zð Þ ∩⋯ ∩ 1U nEq
Zð Þ

= 1U
〠
n

d=1
dEq

Zð Þ: ð19Þ

Hence, 1L∑n
d=1 dEq

ð 1L∑n
d=1 dEq

ðZÞÞ = 1L∑n
d=1 dEq

ðZÞ and

1U∑n
d=1 dEq

ð 1U∑n
d=1 dEq

ðZÞÞ = 1U∑n
d=1 dEq

ðZÞ.

The above Proposition 15 is not true for 4-qMGCRS as in
the following example.

Example 4. Consider that ðℚ,R, EqÞ is a MEqCAS, ℚ = fk1,
k2, k3, k4, k5g and R = fR1,R2g, where R1 = fðk1, k1Þ, ðk1,
k3Þ, ðk1, k5Þ, ðk2, k2Þ, ðk3, k3Þ, ðk4, k2Þ, ðk4, k4Þ, ðk4, k5Þ, ðk5, k5Þg
and R2 = fðk1, k1Þ, ðk1, k3Þ, ðk2, k2Þ, ðk2, k5Þ, ðk3, k3Þ, ðk4, k3Þ,
ðk4, k4Þ, ðk5, k2Þ, ðk5, k5Þg:

Take Z1 = fk1, k3g and Z2 = fk4, k5g; then, we have the
presented outcomes.

(1r) 4L∑2
d=1 dEr

ðZ1Þ = fk1g and 4L∑2
d=1 dEr

ð 4U∑2
d=1 dEr

ðZ1ÞÞ
=∅: Then, 4L∑2

d=1 dEr
ð 4L∑2

d=1 dEr
ðZ1ÞÞ ≠ 4L∑2

d=1 dEr
ðZ1Þ:

(2r) 4U∑2
d=1 dEr

ðZ2Þ = fk2, k3, k4, k5g and 4U∑2
d=1 dEr

ð 4U∑2
d=1 dEr

ðZ2ÞÞ =ℚ: Then, 4U∑2
d=1 dEr

ð 4U∑2
d=1 dEr

ðZ2ÞÞ ≠
4U∑2

d=1 dEr
ðZ2Þ:

(1l) 4L∑2
d=1 dEl

ðZ1Þ = fk3g and 4L∑2
d=1 dEl

ð 4L∑2
d=1 dEl

ðZ1ÞÞ
=∅: Then, 4L∑2

d=1 dEl
ð 4L∑2

d=1 dE1
ðZ1ÞÞ ≠ 4L∑2

d=1 dEl
ðZ1Þ:

(2l) 4U∑2
d=1 dEl

ðZ2Þ = fk1, k2, k4, k5g and 4U∑2
d=1 dEl

ð 4U∑2
d=1 dEl

ðZ2ÞÞ =ℚ: Then, 4U∑2
d=1 dEl

ð 4U∑2
d=1 dEl

ðZ2ÞÞ ≠
4U∑2

d=1 dEl
ðZ2Þ:

Next, we will establish new properties in Proposition 16.
These characteristics are done for 1-qMGCRS, 2-qMGCRS,
3-qMGCRS, and 4-qMGCRS, though we demonstrate it in
the case of 1-qMGCRS and others are similar.

Proposition 16. Suppose that ðℚ,R, EqÞ is a MEqCAS. For
any Z1,Z2 ⊆ℚ, we get the following properties:

(1) If Z1 ⊆Z2, then 1L∑n
d=1 dEq

ðZ1Þ ⊆ 1L∑n
d=1 dEq

ðZ2Þ
(2) If Z1 ⊆Z2, then 1U∑n

d=1 dEq
ðZ1Þ ⊆ 1U∑n

d=1 dEq
ðZ2Þ

(3) 1L∑n
d=1 dEq

ðZ1 ∩Z2Þ ⊆ 1L∑n
d=1 dEq

ðZ1Þ ∩ 1L∑n
d=1 dEq

ðZ2Þ
(4) 1L∑n

d=1 dEq
ðZ1 ∪Z2Þ ⊇ 1L∑n

d=1 dEq
ðZ1Þ ∪ 1L∑n

d=1 dEq
ðZ2Þ

(5) 1U∑n
d=1 dEq

ðZ1 ∪Z2Þ ⊇ 1U∑n
d=1 dEq

ðZ1Þ ∪ 1U∑n
d=1 dEq

ðZ2Þ
(6) 1U∑n

d=1 dEq
ðZ1 ∩Z2Þ ⊆ 1U∑n

d=1 dEq
ðZ1Þ ∩ 1U∑n

d=1 dEq
ðZ2Þ

Proof. Now, we just need to show (1) and (2).

(1) From Definition 13 and since Z1 ⊆Z2, then, we
obtain the following:

1L
〠
n

d=1
dEq

Z1ð Þ

= w ∈ℚ : ∩HR1
Eq

wð Þ ⊆Z1 or ∩HR2
Eq

wð Þ ⊆Z1
n

or⋯ or ∩HRn
Eq

wð Þ ⊆Z1
o

⊆
n
w ∈ℚ : ∩HR1

Eq
wð Þ ⊆Z2 or ∩HR2

Eq
wð Þ

⊆Z2 or⋯ or ∩HRn
Eq

wð Þ ⊆Z2g
= 1L

〠
n

d=1
dEq

Z2ð Þ

ð20Þ

(2) FromDefinition 13 and sinceZ1 ⊆Z2, then, we have
the following:

1U
〠
n

d=1
dEq

Z1ð Þ =
n
w ∈ℚ : ∩HR1

Eq
wð Þ

h i
∩Z1

≠∅ and ∩HR2
Eq

wð Þ
h i

∩Z1

≠∅ and⋯ and ∩HRn
Eq

wð Þ
h i

∩Z1 ≠∅
o

⊆
n
w ∈ℚ : ∩HR1

Eq
wð Þ

h i
∩Z2

≠∅ and ∩HR2
Eq

wð Þ
h i

∩Z2

≠∅ and⋯ and ∩HRn
Eq

wð Þ
h i

∩Z2 ≠∅
o

= 1U
〠
n

d=1
dEq

Z2ð Þ

ð21Þ

Example 5.Consider Example 4. Then, we have the following:
(1r) TakeZ1 = fk2, k3, k4g andZ2 = fk2, k4, k5g, then we

have 1L∑2
d=1 dEr

ðZ1Þ = fk2, k3, k4g, 1L∑2
d=1 dEr

ðZ2Þ = fk2, k4,
k5g and 1L∑2

d=1 dEr
ðZ1 ∩Z2Þ = fk2g. Thus, 1L∑2

d=1 dEr
ðZ1 ∩

Z2Þ ≠ 1L∑2
d=1 dEr

ðZ1Þ ∩ 1L∑2
d=1 dEr

ðZ2Þ
(1l) Take Z1 = fk2, k4g and Z2 = fk2, k5g, then we

have 1L∑2
d=1 dEl

ðZ1Þ = fk2, k4g, 1L∑2
d=1 dEl

ðZ2Þ = fk2, k5g
and 1L∑2

d=1 dEl
ðZ1 ∩Z2Þ =∅. Thus, 1L∑2

d=1 dEl
ðZ1 ∩Z2Þ ≠

1L∑2
d=1 dEl

ðZ1Þ ∩ 1L∑2
d=1 dEl

ðZ2Þ
(2r) Take Z1 = fk1g and Z2 = fk3g, then we have

1L∑2
d=1 dEr

ðZ1Þ =∅, 1L∑2
d=1 dEr

ðZ2Þ = fk3g and 1L∑2
d=1 dEr
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ðZ1 ∪Z2Þ = fk1, k3g. Thus, 1L∑2
d=1 dEr

ðZ1 ∪Z2Þ ≠ 1L∑2
d=1 dEr

ðZ1Þ ∪ 1L∑2
d=1 dEr

ðZ2Þ
(2l) Take Z1 = fk2g and Z2 = fk4g, then we have

1L∑2
d=1 dEl

ðZ1Þ =∅, 1L∑2
d=1 dEl

ðZ2Þ = fk4g and 1L∑2
d=1 dEl

ðZ1
∪Z2Þ = fk2, k4g. Thus, 1L∑2

d=1 dEl
ðZ1 ∪Z2Þ ≠ 1L∑2

d=1 dEl
ðZ1Þ

∪ 1L∑2
d=1 dEl

ðZ2Þ
ð3rÞ Take Z1 = fk2g and Z2 = fk3g, then we have

1U∑2
d=1 dEr

ðZ1Þ = fk2g, 1U∑2
d=1 dEr

ðZ2Þ = fk1, k3g and 1U∑2
d=1 dEr

ðZ1 ∪Z2Þ = fk1, k2, k3, k4g. Thus, 1U∑2
d=1 dEr

ðZ1 ∪Z2Þ ≠
1U∑2

d=1 dEr
ðZ1Þ ∪ 1U∑2

d=1 dEr
ðZ2Þ

ð3lÞ Take Z1 = fk1g andZ2 = fk2g, then we have
1U∑2

d=1 dEl
ðZ1Þ = fk1, k3g, 1U∑2

d=1 dEl
ðZ2Þ = fk2g and 1U∑2

d=1 dEl
ðZ1 ∪Z2Þ = fk1, k2, k3, k5g. Thus, 1U∑2

d=1 dEl
ðZ1 ∪Z2Þ ≠

1U∑2
d=1 dEl

ðZ1Þ ∪ 1U∑2
d=1 dEl

ðZ2Þ
ð4rÞ Take Z1 = fk2, k3g and Z2 = fk2, k4g, then we have

1U∑2
d=1 dEr

ðZ1Þ = fk1, k2, k3, k4g, 1U∑2
d=1 dEr

ðZ2Þ = fk2, k4g
and 1U∑2

d=1 dEr
ðZ1 ∩Z2Þ = fk2g. Thus, 1U∑2

d=1 dEr
ðZ1 ∩Z2Þ

≠ 1U∑2
d=1 dEr

ðZ1Þ ∩ 1U∑2
d=1 dEr

ðZ2Þ
ð4lÞ Take Z1 = fk2, k4g and Z2 = fk2, k5g, then we have

1U∑2
d=1 dEl

ðZ1Þ = fk2, k4, k5g, 1U∑2
d=1 dEl

ðZ2Þ = fk2, k5g and

1U∑2
d=1 dEl

ðZ1 ∩Z2Þ = fk2g. Thus, 1U∑2
d=1 dEl

ðZ1 ∩Z2Þ ≠
1U∑2

d=1 dEl
ðZ1Þ ∩ 1U∑2

d=1 dEl

4. Relationships among Different
Proposed Models

Next, we present the relationships between the proposed
MEqCAS models.

By using Definition 13, we obtain the following
properties.

Proposition 17. Let ðℚ,R, EqÞ be a MEqCAS and Z ⊆ℚ.
Then, we have the following results:

(1) 4L∑n
d=1 dEq

ðZÞ ⊆ 2L∑n
d=1 dEq

ðZÞ ⊆ 1L∑n
d=1 dEq

ðZÞ ⊆Z
(2) 4L∑n

d=1 dEq
ðZÞ ⊆ 3U∑n

d=1 dEq
ðZÞ ⊆ 1L∑n

d=1 dEq
ðZÞ ⊆Z

(3) Z ⊆ 1U∑n
d=1 dEq

ðZÞ ⊆ 2U∑n
d=1 dEq

ðZÞ ⊆ 4U∑n
d=1 dEq

ðZÞ
(4) Z ⊆ 1U∑n

d=1 dEq
ðZÞ ⊆ 3U∑n

d=1 dEq
ðZÞ ⊆ 4U∑n

d=1 dEq
ðZÞ

Remark 18. Let ðℚ,Re, EqÞ be a MEqCAS and Z ⊆ℚ. Then,
we have the following results:

(1) 2L∑n
d=1 dEq

ðZÞ ⊈ 3L∑n
d=1 dEq

ðZÞ and 3L∑n
d=1 dEq

ðZÞ ⊈
2L∑n

d=1 dEq
ðZÞ

(2) 2U∑n
d=1 dEq

ðZÞ ⊈ 3U∑n
d=1 dEq

ðZÞ and 3U∑n
d=1 dEq

ðZÞ ⊈
2U∑n

d=1 dEq
ðZÞ

This means that 2-qMGCRS and 3-qMGCRS are
independent.

Proposition 19. Let ðℚ,Re, EqÞ be a MEqCAS and Z ⊆ℚ.
Then, we have the following results:

(1) 1L∑n
d=1 dEq

ðZÞ = 2L∑n
d=1 dEq

ðZÞ ∪ 3L∑n
d=1 dEq

ðZÞ
(2) 1U∑n

d=1 dEq
ðZÞ = 2U∑n

d=1 dEq
ðZÞ ∩ 3U∑n

d=1 dEq
ðZÞ

To illustrate the above characteristic, we give the follow-
ing example.

Example 6. Consider Example 4 and let Z = fk1, k2g. Then,
we have the following outcomes:

(1) For q = r, we have

1L
〠
2

d=1
dEq

Zð Þ = 2L
〠
2

d=1
dEq

Zð Þ

= k2f g, 3L
〠
2

d=1
dEq

Zð Þ

= 4L
〠
2

d=1
dEq

Zð Þ =∅,

1U
〠
2

d=1
dEq

Zð Þ = 2U
〠
2

d=1
dEq

Zð Þ = 3U
〠
2

d=1
dEq

Zð Þ

= k1, k2f g, 4U
〠
2

d=1
dEq

Zð Þ = k1, k2, k3, k5f g

ð22Þ

(2) For q = l, we have

1L
〠
2

d=1
= dEq

Zð Þ = 2L
〠
2

d=1
dEq

Zð Þ = 3L
〠
2

d=1
dEq

Zð Þ

= k1f g, 4L
〠
2

d=1
dEq

Zð Þ =∅,

1U
〠
2

d=1
dEq

Zð Þ = 2U
〠
2

d=1
dEq

Zð Þ = 3U
〠
2

d=1
dEq

Zð Þ

= k1, k2, k3, k5f g, 4U
〠
2

d=1
dEq

Zð Þ =ℚ

ð23Þ

So, you can find the following:

(1) 4L∑n
d=1 dEr

ðZÞ ⊆ 2L∑n
d=1 dEr

ðZÞ ⊆ 1L∑n
d=1 dEr

ðZÞ ⊆Z
(2) 4L∑n

d=1 dEr
ðZÞ ⊆ 3L∑n

d=1 dEr
ðZÞ ⊆ 1L∑n

d=1 dEr
ðZÞ ⊆Z

(3) Z ⊆ 1U∑n
d=1 dEr

ðZÞ ⊆ 2U∑n
d=1 dEr

ðZÞ ⊆ 4U∑n
d=1 dEr

ðZÞ
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Table 1: Table for the lower approximations.

1L∑n
d=1 dEr

Zð Þ 2L∑n
d=1 dEr

Zð Þ 3L∑n
d=1 dEr

Zð Þ 4L∑n
d=1 dEr

Zð Þ 1L∑n
d=1 dEl

Zð Þ 2L∑n
d=1 dEl

Zð Þ 3L∑n
d=1 dEl

Zð Þ 4L∑n
d=1 dEl

Zð Þ
L1 √ √ √ √ √ √ √ √

L2 √ √ √ √ √ √ √ √

L3 √ √ √ √ √ √ √ √

L4 × × × × × × × ×
L5 √ √ √ √ √ √ √ √

L6 √ √ √ √ √ √ √ √

L7 √ √ √ √ √ √ √ √

L8 √ √ √ × √ √ √ ×
L9 × × × × × × × ×

Table 2: Table for the upper approximations.

1U∑n
d=1 dEr

Zð Þ 2U∑n
d=1 dEr

Zð Þ 3U∑n
d=1 dEr

Zð Þ 4U∑n
d=1 dEr

Zð Þ 1U∑n
d=1 dEl

Zð Þ 2U∑n
d=1 dEl

Zð Þ 3U∑n
d=1 dEl

Zð Þ 4U∑n
d=1 dEl

Zð Þ
H1 √ √ √ √ √ √ √ √

H2 √ √ √ √ √ √ √ √

H3 √ √ √ √ √ √ √ √

H4 × × × × × × × ×
H5 √ √ √ √ √ √ √ √

H6 √ √ √ √ √ √ √ √

H7 √ √ √ √ √ √ √ √

H8 √ √ √ × √ √ √ ×
H9 × × × × × × × ×

(4) Z ⊆ 1U∑n
d=1 dEr

ðZÞ ⊆ 3U∑n
d=1 dEr

ðZÞ ⊆ 4U∑n
d=1 dEr

ðZÞ
(5) 4L∑n

d=1 dEl
ðZÞ ⊆ 2L∑n

d=1 dEl
ðZÞ ⊆ 1L∑n

d=1 dEl
ðZÞ ⊆Z

(6) 4L∑n
d=1 dEl

ðZÞ ⊆ 3L∑n
d=1 dEl

ðZÞ ⊆ 1L∑n
d=1 dEl

ðZÞ ⊆Z
(7) Z ⊆ 1U∑n

d=1 dEl
ðZÞ ⊆ 2U∑n

d=1 dEl
ðZÞ ⊆ 4U∑n

d=1 dEl
ðZÞðZÞ

(8) Z ⊆ 1U∑n
d=1 dEl

ðZÞ ⊆ 3U∑n
d=1 dEl

ðZÞ ⊆ 4U∑n
d=1 dEl

ðZÞ

Tables 1 and 2 show the Pawlak characteristics for the
lower and upper approximations which are given in Defini-
tion 13.

5. Relative Reduction of a MEqCAS

This section is aimed at discussing a relative reduction
of a pessimistic multigranulation q-covering rough sets
(briefly, PMEqCRS). First, we give the following couple
of definitions.

Definition 20. Let ðℚ,R, EqÞ be a MEqCAS and R = fR1,
R2,⋯,RSg, ∀S ∈ I. For any Z ⊆ℚ and w ∈ℚ, define the
pessimistic multigranulation q-covering lower approxima-
tion (briefly, PMGEqCLA) LP∑n

d=1 dEq
ðZÞ and pessimistic

multigranulation q-covering lower approximation (briefly,
PMGEqCLA) U

P
∑n

d=1 dEq
ðZÞ as follows:

LP
〠
n

d=1
dEq

Zð Þ = w ∈ℚ : wð ÞR1
Eq

⊆Z and wð ÞR2
Eq

⊆Z
n

and⋯ and wð ÞRn
Eq

⊆Z
o
,

UP

〠
n

d=1
dEq

Zð Þ = w ∈ℚ : wð ÞR1
Eq

∩Z ≠∅or wð ÞR2
Eq

∩Z ≠∅
n

or⋯ or wð ÞRn
Eq

∩Z ≠∅
o
:

ð24Þ

Definition 21. Let ðℚ,R, EqÞ be a MEqCAS and R = fR1,
R2,⋯,RSg, ∀S ∈ I. Suppose that D = fD1,D2,⋯,Dtg is a
decision partition of ℚ. Then,

PLRk
Eq

Dð Þ = LP
〠
n

d=1
dEq

D1ð Þ, LP
〠
n

d=1
dEq

D2ð Þ,⋯, LP
〠
n

d=1
dEq

Dtð Þ

2
6664

3
7775,
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Table 3: Table for house assessment problem.

Equally shared area Color Price Surrounding Purchase options

k1 {Large} {Good} {High} {Very noisy} Oppose

k2 {Small, large} {Excellent} {Middle, low} {Quiet, noisy} Support

k3 {Small, large} {Excellent, good} {Middle, low} {Noisy} Support

k4 {Small, ordinary} {Bad} {High, middle} {Noisy, very noisy} Oppose

k5 {Small, ordinary} {Bad} {High, middle} {Very noisy} Oppose

k6 {Ordinary, large} {Excellent, good} {High, low} {Quiet, noisy} Support

Input: ðℚ,R, EqÞ with information system.
Output: Reduction of PMEqCLA.

1: Calculate PLRk
Eq

ðDÞ.
2: Remove ERk

q , BRk
q = ERi

q − ERk
q and PLRi−k

Bq
ðDÞ = PLRi

Bq
ðDÞ:

3: Remove a covering in BRk
q again and get B∧Ri−k

q . If PLRi−k
B∧q

ðDÞ ≠ PLRi
Bq

ðDÞ, return BRk
q ; else, go to Step 2.

4: : Repeat the Steps 2 and 3 for each covering in ERi
q to get all the relative reduce of the covering family.

Algorithm 1: Algorithm for reduction of PMEqCLA.

PURk
Eq

Dð Þ = UP

〠
n

d=1
dEq

D1ð Þ,UP

〠
n

d=1
dEq

D2ð Þ,⋯,UP

〠
n

d=1
dEq

Dtð Þ

2
6664

3
7775:

ð25Þ

(i) BRk
q ⊆ ERk

q and PLRk
Bq

ðDÞ = PLRk
Eq
ðDÞ, but PLRk

B∧q
ðDÞ

≠ PLRk
Eq
ðDÞ, for B∧Rk

q ⊆BRk
q ; then, BRk

q is a D

reduction of PMEqCLA

(ii) BRk
q ⊆ ERk

q and PURk
Bq

ðDÞ = PURk
Eq
ðDÞ, but PURk

B∧q

ðDÞ ≠ PURk
Eq
ðDÞ, for B∧Rk

q ⊆BRk
q , then, BRk

q is a

D reduction of PMEqCUA

We can illustrate the method of reduction as the follow-
ing Algorithm 1.

Example 7. Presume that ℚ = fk1, k2,⋯, k6g is a set of six
houses, Z = fequally shared area, color, price, surroundingsg
is a set of attributes, and D = fpurchase opinionsg is a set of
decisions. The values of equally shared area could be {large,
ordinary, small}. The values of color could be {excellent, good,
bad}. The values of price could be {high, middle, low}. The
values of surroundings could be {quiet, noisy, very noisy}.
The decision values of purchase opinions could be {support,
oppose}, which is randomly chosen from experts. The evalua-
tion results are shown in Table 3.

As for the attribute set Z , the binary relation is obtained
as follows ∀k ∈Z :

Rk = v,wð Þ: Fk vð Þ ⊆Fk wð Þf g: ð26Þ
It is easy to see that the Rk is reflexive and transitive but

not symmetric.
If D is the decision set, then the nonequivalence relation

is defined as follows:

RD = v,wð Þ: FD vð Þ ⊆FD wð Þf g: ð27Þ
Then, we can construct the following two covers:

(i) Right covering (r-cover for short)

C r = wRK : ∀K ∈ Z ,Df g, w ∈ℚ,ℚ =
[
w∈ℚ

wRK

( )

ð28Þ

(ii) Left covering (l-cover for short)

C l = RKw : ∀K ∈ Z ,Df g, w ∈ℚ,ℚ =
[
w∈ℚ

RKw

( )

ð29Þ

So, we have the following results:

CR1r = k1, k2, k3f g, k2, k3f g, k4, k5f g, k6f gf g,

CR2r = k1, k3, k6f g, k2, k3, k6f g, k3, k6f g, k4, k5f gf g,
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CR3r = k1, k4, k5, k6f g, k2, k3f g, k4, k5f g, k6f gf g,

CR4r = k1, k4, k5f g, k2, k6f g, k2, k3, k4, k6f g, k4f gf g,

CRDr = k1, k4, k5f g, k2, k3, k6f gf g,

C
R1
l = k1f g, k1, k2, k3f g, k4, k5f g, k6f gf g,

C
R2
l = k1f g, k2f g, k1, k2, k3, k6f g, k4, k5f gf g,

C
R3
l = k1f g, k2, k3f g, k1, k4, k5f g, k1, k6f gf g,

C
R4
l = k1, k5f g, k2, k3, k6f g, k3f g, k1, k3, k4, k5f gf g,

C
RD

l = k1, k4, k5f g, k2, k3, k6f gf g: ð30Þ

Thus, we can establish Tables 4 and 5 for the neighbor-
hood of k as follows.

Now, we can apply Algorithm 1 as follows.

Step 1. PLRk
Er
ðDÞ = ½LP∑4

d=1 dEr
ðD1Þ, LP∑4

d=1 dEr
ðD2Þ� = ½fk4, k5g,

fk2, k3, k6g�:

Step 2. PLR1
Br
ðDÞ = ðfk4, k5g, fk2, k3, k6gÞ, PLR2

Br
ðDÞ = ðfk4,

k5g, fk2, k3, k6gÞ: Therefore, BRkr = fCR3r ,CR4r g is a reduc-
tion of the PMErCRS.

Also, we can get the following outcomes of the left
covering:

PLRk
El

Dð Þ = LP
〠
4

d=1
dEl

D1ð Þ, LP
〠
4

d=1
dEl

D2ð Þ

2
6664

3
7775 = k1, k5f g,∅½ �,

PLR1
Bl

Dð Þ = k1, k5f g, k2f gð Þ,
PLR2

Bl
Dð Þ = k1, k5f g,ϕð Þ,

PLR3
Bl

Dð Þ = k1, k5f g, k6f gð Þ,
PLR4

Bl
Dð Þ = k1, k4, k5f g,∅ð Þ:

ð31Þ

Therefore,BRk
l = fCR1

l ,CR3
l ,CR4

l g is a reduction of the
PMElCRS.

6. Conclusion

In this article, we present a notion called multi-Eq-covering
approximation space (MEqCAS) by using the concept of q-
minimal and q-maximal descriptions. Based on these
notions, we establish four new types of multigranulation
covering rough sets, denoted MEqCAS. We also study the
properties of these new models. Further, we put forward a
new methodology to make a reduction by the presented
work. Then, we demonstrate the reduction method with the
help of an illustrative example which shows its effectiveness
and reliability. The main differences between our proposed
work and the previous one in [39] are that the authors in
[39] introduced four types of MGCRSs using the minimal
and maximal description based on equivalence relations

Table 4: Table for house assessment problem.

k1 k2 k3 k4 k5 k6

kCR1r k1, k2, k3f g k2, k3f g k2, k3f g k4, k5f g k4, k5f g k6f g
kCR2r k1, k3, k6f g k2, k3, k6f g k3, k6f g k4, k5f g k4, k5f g k3, k6f g
kCR3r k1, k4, k5, k6f g k2, k3f g k2, k3f g k4, k5f g k4, k5f g k6f g
kCR4r k1, k4, k5f g k2, k6f g k2, k3, k6f g k4f g k1, k4, k5f g k2, k6f g

Table 5: Table for house assessment problem.

k1 k2 k3 k4 k5 k6

kCR1
l k1f g k1, k2, k3f g k1, k2, k3f g k4, k5f g k4, k5f g k6f g

kCR2
l k1f g k2f g k1, k2, k3, k6f g k4, k5f g k4, k5f g k1, k2, k3, k6f g

kCR3
l k1f g k2, k3f g k2, k3f g k1, k4, k5f g k1, k4, k5f g k1, k6f g

kCR4
l k1, k5f g k2, k3, k6f g k3f g k1, k3, k4, k5f g k1, k5f g k2, k3, k6f g
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and here we used the notions of right (resp., left) covering
rough sets to investigate four kinds of multigranulation right
(resp., left) covering rough sets using the right (resp., left)
minimal and right (resp., left) maximal description induced
by binary relations. In further research, we hope to use this
approach in fuzzy rough covering-based fuzzy neighbor-
hoods [49], fuzzy soft covering-based rough sets [50], and
soft fuzzy covering-based rough sets [51].
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