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A rational Chebyshev (RC) spectral collocation technique is considered in this paper to solve high-order linear ordinary
differential equations (ODEs) defined on a semi-infinite domain. Two definitions of the derivative of the RC functions are
introduced as operational matrices. Also, a theoretical study carried on the RC functions shows that the RC approximation has
an exponential convergence. Due to the two definitions, two schemes are presented for solving the proposed linear ODEs on
the semi-infinite interval with the collocation approach. According to the convergence of the RC functions at the infinity, the
proposed technique deals with the boundary value problem which is defined on semi-infinite domains easily. The main goal of
this paper is to present a comparison study for differential equations defined on semi-infinite intervals using the proposed two
schemes. To demonstrate the validity of the comparisons, three numerical examples are provided. The obtained numerical
results are compared with the exact solutions of the proposed problems.

1. Introduction

In the spectral methods, the most common basis functions
are Chebyshev polynomials (CPs), which play an important
role in the interpolation problems. Many researchers consid-
ered CPs to solve differential equations in the finite domain
½−1, 1� (see [1–8] and [9]), but they often fail in the larger
domain, also if the exact solution of the problem was in a
rational form. For this reason, the rational Chebyshev (RC)
functions are applied in the large domain ½0, l� where l
⟶∞, which provide a major success in dealing with dif-
ferential equations (DEs) defined in the open domain ½0, l�.
Many researchers studied RC functions for treating man dif-
ferent problems of differential, integrodifferential equations
(IDEs), partial, and some other physical-engineering prob-

lems as in [10, 11] and [12]. Abbasbandy et al. [13] applied
the RC collocation method to get numerical solution of the
magnetohydrodynamic flow (MHF) of an incompressible
viscous fluid (VF) over a stretching sheet problem. Ramadan
et al. in [14, 15] and [16], Yalçınbas et al. in [17], and Parand
and Razzaghi in [18] are scrupulous in the use of RC func-
tions to express the approximate solution of high-order ordi-
nary differential equations (ODEs) by different spectral
approaches. In [19], Parand and Razzaghi introduced RC
functions for solving a population growth of a species within
a closed system, named as a Volterra model, where the
authors converted the Volterra population model first to
an equivalent nonlinear ODE; the solution is approximated
by the RC functions with the unknown coefficients. The
authors of [20, 21] introduced the RC function
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approximation with the collocation technique for solving the
natural convection of the Darcian fluid (DF) about a vertical
full cone embedded in porous media (PM) with a prescribed
wall temperature. Ramadan et al. [22, 23] obtained an
approximate solution of the applied collocation method
based on RC functions to treat high-order linear IDEs with
variable coefficients. In [24], the authors applied the RC col-
location approach for approximating nonlinear biomathe-
matical problems, namely, the systematic logistic growth,
the Lotka-Volterra system (prey-predator model), the simple
two-species Lotka-Volterra model, and the prey-predator
model with limit cycle (periodic behavior).

All the aforementioned work either relied on the RC
functions as a basis defined of an open interval or used it
to treat a specific application or used truncated matrices.
The truncation in matrices was handled for the first time
by us in [15], and it was also an application on open period
equations. In this work, a comparison study for solving lin-
ear ODEs defined on semi-infinite domains using a spectral
collocation method is presented. The equation under inves-
tigation is a high-order nonhomogeneous linear variable
coefficient ordinary differential equation defined on semi-
infinite domain ½0,∞Þ. Two algorithms are considered by
the collocation method with the RC functions as basis func-
tions. The matrices of derivative for RC functions intro-
duced with regular definition with truncation and
improved one, which lead us to two different schemes. The
collocation points that are used here are suggested by us,
and they are defined on the interval ½0,∞Þ, which deal with
the boundary value problems defend on ½0,∞Þ or if one of
the mixed conditions tends to infinity. So, we suggested
new collocation points that are valid for dealing with a prob-
lem of this type.

2. Preliminaries

In this section, the definition and some properties of the RC
functions are listed; also, the convergence for RC functions
will be discussed.

The Chebyshev polynomials TnðxÞ are an orthonormal
system in the closed interval [-1, 1], where the weight func-
tion for TnðxÞ is wTðxÞ = 1/

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
, and they may be gener-

ated using the recurrence formulae:

Tn+1 xð Þ = 2xTn xð Þ − Tn−1 xð Þ, n ≥ 1, ð1Þ

with the initials

T0 xð Þ = 1, T1 xð Þ = x: ð2Þ

For more details about TnðxÞ, see Ref. [8].
2.1. The RC Functions. The RC functions are orthonormal
on the open interval ½0,∞Þ, defined as

Rn χð Þ = Tn
x − 1
x + 1

� �
, x = cos φ, φ ∈ 0, π½ �, ð3Þ

and they form an orthonormal set of functions with respect

to the weight function wRðxÞ = x−1/2ðx + 1Þ−1, and they can
be generated with the aid of the following recurrence formu-
lae:

Rn+1 xð Þ = 2 x − 1
x + 1

� �
Rn xð Þ − Rn−1 xð Þ, n ≥ 1, ð4Þ

with the initials

R0 xð Þ = 1, R1 xð Þ = x − 1
x + 1 , ð5Þ

and the property of the orthogonality is

ð∞
0
Rr xð ÞRs xð ÞwR xð Þdx = csπ

2 δrs, ð6Þ

where c0 = 2, cs = 1 for all s ≥ 1 and δrs is the Kronecker delta
function.

Let Ω = fx : 0 ≤ x<∞g, and we note that RnðxÞ is the
eigen function of the singular Sturm-Liouville problem of
the following form:

w−1
R xð Þ d

dx
w−1

R xð Þ d
dx

Rn xð Þ
� �

+ n2Rn xð Þ = 0, x ∈Ω: ð7Þ

2.2. Function Spaces. In this subsection, the order of conver-
gence for RC functions will be discussed; let us begin with
assuming that

L2w Ωð Þ = ξ : ξk kw =
ð∞
0

ξ xð Þj j2wR xð Þdx
� �1/2

<∞
( )

, ð8Þ

represent the space functions, and the inner product is
denoted here as

α, βh iwR
, ð9Þ

such that

φ, φh iw = φk kwR

� �2
: ð10Þ

Subsequently, from the property of orthogonality (rela-
tion (6)), we get the fact that RC functions form a set of
orthonormal basis of L2wðΩÞ. Also, let us define the normed
spaces Hr

wðΩÞ and Hr
w,AðΩÞ as

Hr
wR

Ωð Þ = ξ : ξk kr,wR
= 〠

r

k=0

dk

dxk
ξ

					

					
wR

0
@

1
A

1/2

<∞

8<
:

9=
;,

Hr
wR ,θ Ωð Þ = ξ : ξk kr,wR ,θ = 〠

r

k=0
x + 1ð Þr/2+k dk

dxk
ξ

					

					
wR

0
@

1
A

1/2

<∞

8<
:

9=
;,

ð11Þ
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where r ≥ 0 and k is a positive integer constant, and we let θ
be the Sturm-Liouville operator in (7), namely, it may be
written as

θξ = −w−1
R w−1

R ξ′
� �

′: ð12Þ

Let N be a positive integer such that N <∞, and RN =
spanfR0, R1,⋯, RNg.

Theorem 1. For any r ≥ 0, and c is a generic positive constant
independent of any variable, and ϕ ∈RN , then

ξk kr,wR
≤ cN2r ξk kwR

: ð13Þ

The proof of Theorem 1 is given in [25].

Since the set of RC functions is orthonormal and a com-
plete set, we assume that f ðxÞ is defined over the space Ω;
then, it be may expanded in terms of RC functions as

f xð Þ = 〠
∞

i=0
aiRi xð Þ, ð14Þ

where

ai =
f , Rih iwR

Rik kwR

� �2 = 2
csπ

ð∞
0
f xð ÞRi xð ÞwR xð Þdx: ð15Þ

Infinite series expression (14) represents as a spectral
truncated approximation as follows

f N xð Þ = 〠
N

i=0
aiRi xð Þ: ð16Þ

The order of convergence for the RC function approxi-
mation will be obtained using several orthonormal projec-
tions. From (16), it is clear that f N is the orthogonal
projection of f onto RN with respect to the inner product
(10). For all of the above, especially Theorem 1, the follow-
ing theorem is presented and contains the order of conver-
gence of RC functions.

Theorem 2. For any function f such that f ∈Hr
wR ,θðΩÞ,

where r ≥ 0, there exists a positive constant c independent of
N such that

f N − fk kr,wR
≤ cN−r fk kr,wR ,θ: ð17Þ

The complete proof of Theorem 2 is found in [13] (or see
Ref. [25] for more details); this theorem shows that the RC
approximation has exponential convergence.

2.3. Operational Matrix. This subsection introduces the form
of operational matrix for the RC functions; the derivative of
the vector RðxÞ = ½R0ðxÞR1ðxÞR2ðxÞ⋯ RNðxÞ� can be
expressed by

R′ xð Þ = dR xð Þ
dx

≈ R xð ÞDT , ð18Þ

where D is ðN + 1Þ × ðN + 1Þ operational differentiation
matrix. The elements of D are found by differentiating (4)
and using R1ðxÞ = ðx − 1Þ/ðx + 1Þ, then

Rn+1′ xð Þ = 2 R1 xð Þ ⋅ Rn xð Þð Þ′ − Rn−1′ xð Þ, ð19Þ

also using the multiplication relation:

Rm xð Þ ⋅ Rn xð Þ = 1
2 Rm+n + R m−nj j
h i

: ð20Þ

The approximation sign in (18) made by a truncation to
the last column of D (by consideration that Ri′ðxÞ = 0, for i
>N) to get an invertible square operational matrix D (see
Ref. [14]). The structure of the matrix D is obtained as a
lower-Heisenberg matrix. The matrix D can be expressed
as D =D1 +D2, where D1 is a tridiagonal matrix which is
obtained from

D1 = diag: 7
4 i − 1ð Þ,− i − 1ð Þ, 14 i − 1ð Þ

� �
, i = 1, 2,⋯,N + 1,

ð21Þ

and the entire elements of matrix D2 are dij, obtained from

d21 = −1, dij =
0, j ≥ i − 1,
k i − 1ð Þcj, j < i − 1:

(
ð22Þ

In addition to k = ð−1Þi+j+1, c1 = 1 and cj = 2 for j ≥ 2.
Consequently, the kth-order derivative of the row matrix

RðxÞ, which is given in (18), is obtained as

dkR xð Þ
dxk

= R xð Þ½ � kð Þ ≈ R xð Þ DT
 �k, ð23Þ

And we note here that Rð0ÞðxÞ = RðxÞ, Ri′ðxÞ = 0, for i >N
. Definitions (18) and (23) were introduced for the first time
in [18, 19], and many works have used them; see, for exam-
ple, Refs. [20–22], [23, 24], and [17].

3. The Improved Differentiation of the
RC Functions

In the present section, an improved definition of differentia-
tion for the RC functions is introduced. There was a need to
find an improvement to definition (23), because in the
higher derivatives, when using this definition, a week
approximation is obtained. The truncated definition (18)
and the kth-order derivative (23) give us a regular truncated
differentiation of the RC functions (RRC). Generally, the
derivative of the rational or fractional functions increases
the order of the denominator (in contrast to polynomials
that reduce the order at differentiation), so the truncation
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increases as the order of the derivative increases (more than
one column in Equation (18)). For example, the fourth-
order derivative of the vector RðxÞ at N = 3, the truncated
terms in the row vector RðxÞ are (the last four terms) R4,
R5, R6, R7. This will lead to unsatisfied approximating in
high-order DEs using the presented RRC definition (18).
Therefore, an improved definition of the derivative of RC
functions will be proposed next.

First, a vector will be inserted into (18) to treat the trun-
cated terms, which will improve the regular definition. This
manner will be called an improved derivative of the RC
functions and will be indicated by IRC.

Additionally, the first-order derivative of the row matrix
RðxÞ is

R′ xð Þ = dR xð Þ
dx

= R xð ÞDT + Z xð Þ, ð24Þ

where

Z xð Þ = 0 0 0 ⋯ 0 dN+1,N+1RN+1 xð Þ½ �1× N+1ð Þ: ð25Þ

Theorem 3. The kth derivative of the matrix vector RðxÞ, in
terms of itself, is defined as

R xð Þ½ � kð Þ = R xð Þ DT
 �k + 〠
k−1

i=0
Z ið Þ xð Þ DT
 �k−i−1, k ≥ 1, ð26Þ

where

Z kð Þ xð Þ = 0 0 0 ⋯ 0 dN+1,N+2R
kð Þ
N+1 xð Þ

h i
: ð27Þ

Proof. Using the assumption (24) as the first derivative, and
differentiating (24), then we get

R″ xð Þ = R′ xð ÞDT + Z′ xð Þ, ð28Þ

or

R″ xð Þ = R xð ÞDT + Z xð Þ� 
DT + Z′ xð Þ

= R xð Þ DT
 �2 + Z xð ÞDT + Z′ xð Þ,
ð29Þ

and by induction, we get the kth derivative as relation (26).☐

As a special case, if ZðxÞ = 0, it leads us to the regular RC
definition in relations (18) and (23). The introduced defini-
tion (24) and the kth-order derivative (26) give us an
improved differentiation of the RC functions.

4. Problem Statement

In this study, the form of high-order ODEs which represents
a linear nonhomogeneous with variable coefficients defined
on a semi-infinite domain is

〠
m

k=0
Qk xð Þf kð Þ xð Þ = g xð Þ, 0 ≤ x <∞, ð30Þ

which forms mth-order ODEs; the previous forms of DEs are
subjected to the following conditions:

f kð Þ γið Þ = λi, 0 ≤ γi <∞,i = 0, 1,⋯,m − 1, ð31Þ

where the QkðxÞ and gðxÞ are well-defined functions on Ω,
and γj and λi are constants (initial value problem), where
γ j may tend to ∞ (boundary value problems).

Now, we consider that the approximate solution f NðxÞ
according to (16) for the exact solution f ðxÞ of equation
(30) in the vector form as

f N xð Þ = 〠
N

n=0
anRn xð Þ = R xð ÞA, ð32Þ

f kð Þ
N xð Þ = 〠

N

n=0
an Rn xð Þð Þ kð Þ = R kð Þ xð ÞA, ð33Þ

where

A = a0 a1 ⋯ aN½ �: ð34Þ

5. Fundamental Relation-Based Matrix Forms

In the beginning, we provide the fundamental matrix rela-
tion of the solution of (30) by two schemes using the RC col-
location approach.

Assuming that the solutionf ðxÞof (30) can be expressed
as relation (32), which is a truncated RC series, thenf ðxÞ
and itskthderivativef ðkÞðxÞare written in the matrix forms
(32) and (33) such thatk = 0, 1,⋯,m,andm ≤N ,
wheref ð0ÞðxÞ ≡ f ðxÞ,a0, a1,⋯, aNare the RC coefficients to
be determined later.

Now, let the collocation points xs as

xs =
1 + cos sπ/Nð Þ
1 − cos sπ/Nð Þ , s = 0, 1,⋯,N , ð35Þ

and at the end points ðs = 0, s =NÞx0 ⟶∞,xN = 0, namely,

Rn xð Þ = 1when x⟶∞,for all n,
Rn xð Þ = cos nπð Þ = −1ð Þn when x⟶ 0, for all n:

ð36Þ

Permanently, the RC functions are convergent at both
end points 0 and ∞; in addition, the presence of infinity in
the collocation points ðx0 ⟶∞Þ does not cause a failure
in the substitution.

Hence, upon substituting these points (35) into (30), one
obtains

〠
m

k=0
Qk xsð Þf kð Þ xsð Þ = g xsð Þ, s = 0, 1, 2,⋯,N: ð37Þ
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The matrix form of the obtained system (37) is written
farther as

〠
m

k=0
QkF kð Þ =G, ð38Þ

where

Qk =

Qk x0ð Þ 0 ⋯ 0
0 Qk x1ð Þ ⋯ 0
0 0 ⋱ ⋮

0 0 ⋯ Qk xNð Þ

2
666664

3
777775
,

 F kð Þ =

f kð Þ x0ð Þ
f kð Þ x1ð Þ
⋮

f kð Þ xNð Þ

2
666664

3
777775
, G =

g x0ð Þ
g x1ð Þ
⋮

g xNð Þ

2
666664

3
777775
: ð39Þ

5.1. The RRC Scheme. From (23), we know that the first
scheme RRC gives us a derivative of RC functions from the
kth order; thus, equation (38) takes the form

F kð Þ = R DT
 �kA, ð40Þ

where

R =

R x0ð Þ
R x1ð Þ
R x2ð Þ
⋮

R xNð Þ

2
66666664

3
77777775
=

R0 x0ð Þ R1 x0ð Þ ⋯ RN x0ð Þ
R0 x1ð Þ
R0 x2ð Þ

R1 x1ð Þ
R0 x2ð Þ

⋯

⋯

RN x1ð Þ
R0 x2ð Þ

⋮ ⋮ ⋱ ⋮

R0 xNð Þ R1 xNð Þ ⋯ RN xNð Þ

2
66666664

3
77777775
: ð41Þ

Hence, from (38) and (40), one obtains the fundamental
matrix equation for (30) as

〠
m

k=0
QkR DT
 �kA =G: ð42Þ

Also, we obtain the matrix forms corresponding to con-
dition (31) as follows: setting x = γj in (33), we get the fun-
damental matrix form corresponding to the condition (31):

R γið Þ DT
 �kA = λi, 0 ≤ γi <∞,i = 0, 1,⋯,m − 1: ð43Þ

5.2. The IRC Scheme. We studied the improved and regular
differentiating RC functions in the preceding section. Now,
we deduce the fundamental matrix relation by the IRC
scheme.

Substituting relation (26) into (40), we get

F kð Þ = R DT
 �k + 〠
k−1

i=0
Z ið Þ DT
 �k−i−1

( )
A, ð44Þ

where

Z =

Z x0ð Þ
Z x1ð Þ
⋮

Z xNð Þ

2
666664

3
777775
=

Z0 x0ð Þ Z1 x0ð Þ ⋯ ZN x0ð Þ
Z0 x1ð Þ Z1 x1ð Þ ⋯ ZN x1ð Þ
⋮ ⋮ ⋱ ⋮

Z0 xNð Þ Z1 xNð Þ ⋯ ZN xNð Þ

2
666664

3
777775
:

ð45Þ

Hence, from (38) and (44), the fundamental matrix
equation for (30) is obtained as

〠
m

k=0
Qk R DT
 �k + 〠

k−1

i=0
Z ið Þ DT
 �k−i−1

( )
A =G: ð46Þ

Similarly, the matrix form corresponding to the condi-
tion (31) using (26) is obtained as

R γið Þ DT
 �k + 〠
k−1

i=0
Z ið Þ γið Þ DT
 �k−i−1

( )
A = λi, ð47Þ

for i = 0, 1,⋯,m − 1, so that 0 ≤ γj <∞.

6. Method of Solution

Due to the collocation method, the regular (42) and the
improved (46) fundamental matrix equations for the pro-
posed problem (30) correspond to a system of algebraic
equations with ðN + 1Þ equations for the ðN + 1Þ unknown
RC coefficients a0, a1,⋯, aN :.

One writes matrix equations (42) and (46) compactly as

SA =G, ð48Þ

or in the augmented form as

S ;G½ �: ð49Þ

Equations (43) and (47) obtain the matrix form for the
condition (31); also, they are written compactly as

HiA = λi½ �, ð50Þ

so that S and Hi for RRC are defined by

S = spq
� �

= 〠
m

k=0
QkR DT
 �k, p, q = 0, 1,⋯,N ,

Hi = hi0 hi1 ⋯ hiN½ � = R γj

� �
DT
 �k,

ð51Þ
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while S and Hi for IRC are defined by

S = spq
� �

= 〠
m

k=0
Qk R DT
 �k + 〠

k−1

i=0
Z ið Þ DT
 �k−i−1

( )
,

Hi = hi0 hi1 ⋯ hiN½ �

= R γj

� �
DT
 �k + 〠

k−1

i=0
Z ið Þ γj

� �
DT
 �k−i−1

( )
:

ð52Þ

Hence, the approximate solution of (30) under the con-
dition (31) may be obtained by exchanging the rows of
matrices (50) by the last (or first) m rows of the matrix
(49), then getting the required augmented matrix as

~S ; ~G
h i

=

s00 s01 ⋯ s0N ; g x0ð Þ
s10 s11 ⋯ s1N ; g x1ð Þ
⋯ ⋯ ⋯ ⋯ ; ⋯

sN−m,0 sN−m,1 ⋯ sN−m,N ; g xN−mð Þ
h00 h01 ⋯ h0N ; λ0

h10 h11 ⋯ h1N ; λ1

⋯ ⋯ ⋯ ⋯ ; ⋯

hm−1,0 hm−1,1 ⋯ hm−1,N ; λm−1

2
666666666666666664

3
777777777777777775

:

ð53Þ

If rank ~S is equal to rank ½~S ; ~G�, then the algebraic sys-
tem has a solution, and if the two ranks are equal to N + 1,
then the solution is unique, the inverse matrix method is
used here to solve the system, and one may write the matrix
equation (49) as

A = ~S
� �−1

~G: ð54Þ

Therefore, the RC coefficients an, n = 0, 1,⋯,N are
uniquely determined.

7. Test Examples

In the present section, three numerical test examples are
given to explain the applicability of the proposed two tech-
niques. Using own codes written in MATHEMATICA
10.0. package, the numerical results and figures are pre-
sented, as shown in the illustrative comparison tables.

The absolute error is given to compare the efficiency of the
proposed schemes, given by eN = j f iExact − f iApproximatej, and
evaluated at selected points for some N. The error norms L2
and L∞ calculated in an interval x ∈ ½0, b� are given by

L2b =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h〠

l

i

f iExact − f iApproximate

� �2

vuut ,

L∞b =Max f iExact − f iApproximate

���
���, ð55Þ

for the h step size along the interval x ∈ ½0, b�. All numeric
calculations are carried out on a regular machine Intel(R) Cor-
e(TM) i7 CPU, 3.2GHz.

Example 1. Let us assume the following fourth-order bound-
ary value problem

f 4ð Þ xð Þ − 1
4 1 + xð Þ−2 f ″ xð Þ + 1

2 1 + xð Þ−4 f xð Þ = x2 − 238x + 713
x + 1ð Þ6 ,

 x ∈ 0,∞½ Þ, ð56Þ

with f ð0Þ = 0, f ′ð1Þ = 1/2, f ″ð1Þ = 1/2, f ðxÞ⟶ 2 when x
⟶∞.

We have

m = 4,Q0 xð Þ = 1
2 1 + xð Þ4 ,Q1 xð Þ = 0,Q2 xð Þ = −

1
4 1 + xð Þ2 ,

Q3 xð Þ = 0,Q4 xð Þ = 1, g xð Þ = x2 − 238x + 713
x + 1ð Þ6

:

ð57Þ

Thus, for N = 5, the numeric collocation points accord-
ing to (35) are

x1 =
1 + 1/4 1 +

ffiffiffi
5

p� �

1 − 1/4 1 +
ffiffiffi
5

p� � ,

x2 =
1 − 1/4 1 −

ffiffiffi
5

p� �

1 + 1/4 1 −
ffiffiffi
5

p� � ,

x3 =
1 + 1/4 1 −

ffiffiffi
5

p� �

1 − 1/4 1 −
ffiffiffi
5

p� � ,

x4 =
1 − 1/4 1 +

ffiffiffi
5

p� �

1 + 1/4 1 +
ffiffiffi
5

p� � ,

x0 ⟶∞,x5 = 0: ð58Þ

The fundamental matrix equation of problem using RRC
is

Q0R +Q1RDT +Q2R DT
 �2 +Q3R DT
 �3 +Q4R DT
 �4n o
A =G,

ð59Þ
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while the fundamental matrix equation of problem using
IRC is

Q0R +Q1 RDT + Z

 �

+Q2 R DT
 �2 + ZDT
� �n

+ Z′ +Q3 R DT
 �3 + Z DT
 �2 + Z′DT + Z″
� �

+Q4 R DT
 �4 + Z DT
 �3 + Z′ DT
 �2 + Z″DT + Z‴
� �o

A =G,

ð60Þ

where Q0,Q2,Q4,R,DT , Z, Z′, Z″, and Z‴ are matrices with
a given size of 6 × 6, for this example at N = 5,

Q0 =

0 0 0 0 0 0
0 0:0000415747 0 0 0 0
0 0 0:00712393 0 0 0
0 0 0 0:0917553 0 0
0 0 0 0 0:334673 0
0 0 0 0 0 0:5

2
666666666664

3
777777777775

,

Q4 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2
666666666664

3
777777777775

,

Q2 =

0 0 0 0 0 0
0 −0:00227966 0 0 0 0
0 0 −0:0298411 0 0 0
0 0 0 −0:107095 0 0
0 0 0 0 −0:204534 0
0 0 0 0 0 −0:25

2
666666666664

3
777777777775

,

DT =

0 3/4 −2 3 −4 5
0 −1 7/2 −6 8 10
0 1/4 −2 21/4 −8 10
0 0 1/2 −3 7 −10
0 0 0 3/4 −4 35/4
0 0 0 0 1 −5

2
666666666664

3
777777777775

,

R =

1 1 1 1 1 1

1 1
4 1 +

ffiffiffi
5

p� � 1
4 −1 +

ffiffiffi
5

p� � 1
4 1 −

ffiffiffi
5

p� � 1
4 −1 −

ffiffiffi
5

p� �
−1

1 1
4 −1 +

ffiffiffi
5

p� � 1
4 −1 −

ffiffiffi
5

p� � 1
4 −1 −

ffiffiffi
5

p� � 1
4 −1 +

ffiffiffi
5

p� �
1

1 1
4 1 −

ffiffiffi
5

p� � 1
4 −1 −

ffiffiffi
5

p� � 1
4 1 +

ffiffiffi
5

p� � 1
4 −1 +

ffiffiffi
5

p� �
−1

1 1
4 −1 −

ffiffiffi
5

p� � 1
4 −1 +

ffiffiffi
5

p� � 1
4 −1 +

ffiffiffi
5

p� � 1
4 −1 −

ffiffiffi
5

p� �
1

1 −1 1 −1 1 −1

2
66666666666666664

3
77777777777777775

,

Z =

0 0 0 0 0 5
4

0 0 0 0 0 5
16 −1 −

ffiffiffi
5

p� �

0 0 0 0 0 5
16 −1 +

ffiffiffi
5

p� �

0 0 0 0 0 5
16 −1 +

ffiffiffi
5

p� �

0 0 0 0 0 5
16 −1 −

ffiffiffi
5

p� �

0 0 0 0 0 5
4

2
666666666666666666664

3
777777777777777777775

,

Z′ =

0 0 0 0 0 0

0 0 0 0 0 15
32 −7 + 3

ffiffiffi
5

p� �

0 0 0 0 0 −75
32 −3 +

ffiffiffi
5

p� �

0 0 0 0 0 −15
32 7 + 3

ffiffiffi
5

p� �

0 0 0 0 0 75
32 3 +

ffiffiffi
5

p� �

0 0 0 0 0 −90

0

2
66666666666666664

3
77777777777777775

,

Z″ =

0 0 0 0 0 0

0 0 0 0 0 15
64 −2 +

ffiffiffi
5

p� �

0 0 0 0 0 75
64 90 − 41

ffiffiffi
5

p� �

0 0 0 0 0 15
64 −2 −

ffiffiffi
5

p� �

0 0 0 0 0 75
64 90 + 41

ffiffiffi
5

p� �

0 0 0 0 0 2280

0

2
66666666666666664

3
77777777777777775

,

Z‴ =

0 0 0 0 0 0

0 0 0 0 0 15
128 901 − 403

ffiffiffi
5

p� �

0 0 0 0 0 375
128 −1237 − 553

ffiffiffi
5

p� �

0 0 0 0 0 15
128 901 + 403

ffiffiffi
5

p� �

0 0 0 0 0 375
128 −1237 − 553

ffiffiffi
5

p� �

0 0 0 0 0 −40020

2
66666666666666664

3
77777777777777775

: ð61Þ

Table 1: Comparing the CPU time used by seconds for RRC and
IRC schemes.

N
CPU time used by RRC

scheme
CPU time used by IRC

scheme

4 0.094 0.155

5 0.11 0.19

6 0.156 0.241
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Then, we obtain the augmented matrix (49) with respect
to RRC as

Then, we solve the equation (49) to find the RC coeffi-
cients in the matrix form:

Table 2: Comparison between absolute errors with λ = 1 given by two proposed schemes.

x
RRC scheme IRC scheme

e20 e30 e20 e30
0 1 1 1 1

0.5 2:23497 × 10−7 1:59521 × 10−9 4:61847 × 10−8 3:66704 × 10−9

1 4:90784 × 10−7 5:74586 × 10−10 5:93028 × 10−7 6:13636 × 10−9

1.5 4:68739 × 10−9 2:52918 × 10−9 2:2526 × 10−8 1:4928 × 10−9

2 1:78495 × 10−7 1:33078 × 10−8 1:8386 × 10−6 9:67304 × 10−9

2.5 1:43122 × 10−6 1:99709 × 10−8 1:11684 × 10−7 9:44468 × 10−9

3 1:35397 × 10−6 7:57517 × 10−9 2:11749 × 10−6 2:75718 × 10−9

3.5 2:16835 × 10−6 3:82668 × 10−8 1:29148 × 10−6 1:00546 × 10−8

5 3:534 × 10−6 2:72901 × 10−8 1:27908 × 10−6 2:26605 × 10−8

7.5 5:73755 × 10−6 1:88112 × 10−7 2:23981 × 10−7 6:70631 × 10−8

10 7:31028 × 10−6 2:76595 × 10−7 4:59453 × 10−6 3:03553 × 10−9

Table 3: Comparison between absolute errors with λ = 2 given by two proposed schemes.

x
RRC scheme IRC scheme

e20 e30 e20 e30
0 1 1 1 1

0.5 3:31737 × 10−6 3:91279 × 10−8 4:85215 × 10−6 2:86433 × 10−7

1 1:21648 × 10−5 2:30618 × 10−7 6:13597 × 10−6 9:11931 × 10−8

1.5 1:68999 × 10−5 3:20837 × 10−7 2:99644 × 10−5 6:97906 × 10−8

2 2:57922 × 10−5 3:48555 × 10−7 2:71531 × 10−5 8:9908 × 10−7

2.5 2:07512 × 10−5 4:35107 × 10−7 8:88987 × 10−6 1:01733 × 10−7

3 3:12895 × 10−5 6:64248 × 10−7 4:44485 × 10−5 3:8419 × 10−7

3.5 1:99079 × 10−5 2:69503 × 10−7 1:5211 × 10−5 1:08309 × 10−6

5 1:14161 × 10−6 1:06864 × 10−6 2:31729 × 10−5 6:46631 × 10−7

7.5 5:4514 × 10−5 1:43524 × 10−6 2:57514 × 10−5 1:97968 × 10−7

10 2:13571 × 10−4 2:89479 × 10−6 4:48328 × 10−5 2:05962 × 10−6

~S ; ~G
h i

=

1 −1 1 −1 1 −1 ; 0
0 0:5 0 −1:5 0 2:5 ; 0:5
1 0:83333 0:38888 −0:18518 −0:69753 −0:97736 ; 1:22222
1 1 1 1 1 1 ; 2

0:33467 −28:72592 405:80168 −2818:03109 12516:65380 −33329:69198 ; 376:69653
0:5 −47:5 760:03125 −6080:75 30513:0625 −86383:3125 ; 713

2
666666666664

3
777777777775

: ð62Þ

A = −0:0124202 1:00234 1:01636 −0:00117103 −0:00393679 −0:00117103½ �, ð63Þ
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while the augmented matrix (49) with respect to IRC as

Table 4: Comparing the L210 and L∞10 on interval x ∈ ½0, 10� for λ = 1.

N
RRC scheme IRC scheme

L210 L∞10 L210 L∞10

20 1:70683 × 10−9 7:31028 × 10−6 6:74223 × 10−10 4:59453 × 10−6

30 2:44349 × 10−12 2:76595 × 10−7 1:06979 × 10−15 9:79285 × 10−8

Table 5: Comparing the L210 and L∞10 on interval x ∈ ½0, 10� for λ = 2.

N
RRC scheme IRC scheme

L210 L∞10 L210 L∞10

20 1:45682 × 10−6 2:13571 × 10−4 6:41968 × 10−8 5:10902 × 10−5

30 2:67643 × 10−10 2:89479 × 10−6 1:35486 × 10−11 2:05962 × 10−6

Table 6: Comparing the CPU time used for RRC and IRC schemes.

N
RRC scheme IRC scheme

λ = 1 λ = 2 λ = 1 λ = 2
20 1.173 1.172 1.938 1.985

30 3.89 3.858 4.591 4.61

2
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–7.5

–7.0

Lo
g 10

 er
ro

r

–6.5

–6.0

–5.5

4 6

RRC N = 20
IRC N = 20

x
i

8 10

Figure 1: The absolute errors for the proposed two schemes when N = 20 with λ = 1.

~S ; ~G
h i

=

1 ‐1 1 ‐1 1 ‐1 ; 0
0 0:5 0 ‐1:5 0 2:5 ; 0:5
1 0:83333 0:38888 ‐0:18518 ‐0:69753 ‐0:97736 ; 1:22222
1 1 1 1 1 1 ; 2

0:33467 ‐28:72592 405:42246 ‐2799:72562 12543:47181 ‐40972:42064 ; 376:69653
0:5 ‐47:5 760:5 ‐6159:5 33696:5 ‐141135:5 ; 713

2
666666666664

3
777777777775

: ð64Þ
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Similarly, we compute the RC coefficients in the matrix
form:

A = 0 1 1 0 0 0½ �: ð65Þ

Substituting by the RC coefficients of the RRC scheme in
Equation (32), we get an approximate solution of this prob-
lem, while, if we use the RC coefficients of the IRC scheme in
Equation (32), we get the exact solution 2xðx − 3Þ/ðx + 1Þ2.
We note that the RRC scheme gives the exact solution at
N = 6 while the IRC scheme gives the exact solution at N
= 4, which shows that the IRC scheme obtains better accu-
racy than the RRC due to the truncation found in RRC
(18). In addition, the CPU time used for the RRC and IRC
schemes at different Nis listed in Table 1. Table 1 shows that
the time used for calculating the solution by RRC is less than
the time for IRC, because of the added truncated terms in
coding. Therefore, the time for getting the exact solution
by IRC (better accuracy at N = 4) is close to that given by
RRC (at N = 6). The following examples show the compari-
son of the two schemes strongly with numeric table’s results.

Example 2. Consider Laguerre-eigen problem [26]

xf ″ xð Þ + x + 1ð Þf ′ xð Þ + λf xð Þ = 0, x ∈ 0,∞½ Þ, ð66Þ

has the exact eigen solutions

f xð Þ = 1, λ = 0,
f xð Þ = e−xLn xð Þ, λ = n + 1, n ≥ 0,

ð67Þ

where LnðxÞ are the well-known Laguerre polynomials of
degree n; Equation (66) is a boundary value problem, so
the conditions are “natural” at both endpoints where f ð0Þ
= 1 and f ðxÞ = 1 when x⟶∞. By applying the proposed
two schemes as in the previous example, we obtain the solu-
tion f ðxÞ = 1, which is the exact eigen solution when λ = 0.
For N = 3, the RRC scheme gives the exact eigen solution,
while the IRC is satisfied with N = 2 to find this solution.
In Tables 2 and 3, the resulting values for N = 20 and 30
using the present two schemes together with the exact values
of the solution f ðxÞ = e−xLnðxÞ, λ = n + 1, n ≥ 0, are tabulated
with different values of λ. The error reduces when the series
increased. The numeric values of the error norms L2 and L∞
in interval x ∈ ½0, 10� is given in Tables 4 and 5 with different
values of λ. Additionally, the absolute errors eN for the two

Table 7: Comparison between absolute errors given by two proposed schemes.

X
RRC scheme IRC scheme

e20 e30 e20 e30
0 1 1 1

0.1 2:20484 × 10−8 4:0709 × 10−9 5:80324 × 10−9 7:13895 × 10−10

0.7 8:86658 × 10−9 6:84228 × 10−8 1:84652 × 10−8 6:01463 × 10−8

2.4 5:81316 × 10−7 2:90517 × 10−7 2:83721 × 10−6 1:27556 × 10−7

3.8 3:56672 × 10−6 5:43355 × 10−7 2:68921 × 10−6 2:70375 × 10−8

5 4:19425 × 10−6 6:64317 × 10−7 1:59222 × 10−6 2:63469 × 10−8

6.7 4:01577 × 10−5 8:70798 × 10−7 4:96175 × 10−6 5:53538 × 10−8

13.8 1:06869 × 10−4 9:22562 × 10−7 1:33586 × 10−5 7:21039 × 10−7

14.4 8:5269 × 10−4 8:87894 × 10−7 2:31729 × 10−5 5:63274 × 10−8

18.6 1:26741 × 10−4 1:59984 × 10−6 1:20205 × 10−5 1:12601 × 10−6

20 1:87513 × 10−4 1:10906 × 10−6 1:20881 × 10−4 9:73054 × 10−7

Table 8: Comparing the L210 and L∞10 on interval x ∈ ½0, 10� for λ = −1.

N
RRC scheme IRC scheme

L210 L∞10 L210 L∞10

20 1:12301 × 10−6 8:5269 × 10−4 4:667 × 10−7 1:20881 × 10−4

30 3:28475 × 10−11 8:16818 × 10−6 8:92851 × 10−12 2:83766 × 10−6

Table 9: Comparing the CPU time used by seconds for RRC and
IRC schemes λ = −1.

N
CPU time used by RRC

scheme
CPU time used by IRC

scheme

20 0.844 0.971

30 2.345 2.657

10 Journal of Function Spaces



schemes when N = 20 are plotted in Figure 1. In Table 6, the
CPU time used for RRC and IRC schemes at different N
shows that IRC needs time more than RRC because of the
calculation of the added terms of B.

Example 3. Consider Whittaker’s equation eigen problem
[26] of the form

f ″ xð Þ + −1
4 + 1

f xð Þ + λ

f xð Þ
� �

f xð Þ = 0, x ∈ 0,∞½ Þ, ð68Þ

where λ is the eigen value; it represents a special case of
Whittaker’s equation. The exact given solution of (68) is f ð
xÞ = e−0:5xL1nðxÞ, where λ = n, n ≥ 0, is an integer and LknðxÞ
is the well-known associated Laguerre polynomials of kth

order and degree n. If λ = −1, (68) gives a special case or lin-
ear Whittaker’s equation as

4f ″ xð Þ − f xð Þ = 0, x ∈ 0,∞½ Þ: ð69Þ

The exact solution is f ðxÞ = e−0:5x with the boundary condi-
tions f ð0Þ = 1 and f ðxÞ = 1 when x⟶∞.

By the same procedure, the RC collocation method using
the proposed two schemes is applied to solve (69) with the
subjected boundary conditions. In Table 7, the numerical
result for N = 20 and 30 using the proposed schemes is com-
pared with the exact values of f ðxÞ = e−0:5x. The computation
of L2 and L∞ on interval x ∈ ½0, 10� is given in Table 8. In
Table 9, the CPU time used for RRC and IRC schemes at dif-
ferent N shows that IRC needs time more than RRC.

8. Conclusion

A rational Chebyshev (RC) spectral collocation technique is
considered in this paper to solve high-order ordinary differ-
ential equations (ODEs) defined on a semi-infinite domain
using the proposed two schemes. Two definitions of the
derivative of the RC functions are introduced, namely, the
regular and improved definitions. Due to the two definitions,
two schemes are presented for solving the proposed ODEs
with variable coefficients in the semi-infinite interval.
According to the convergence of the RC functions at the
infinity, the proposed technique deals with the boundary
value problem which is defined on semi-infinite domains
easily. Furthermore, an intriguing advantage of this
approach is the ability to find the analytical exact solutions
if the equation has a solution in a rational function form.
To demonstrate the applicability of the proposed approach,
three illustrative examples are given. The calculated numer-
ical values and comparisons proved that the improved
scheme is better with more calculation than the regular
scheme which is based on the truncation in the definition.
The method may extend to the case of nonlinear DEs with
variable coefficients, which the authors are investigating.
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