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Crimean-Congo hemorrhagic fever is a common disease between humans and animals that is transmitted to humans through
infected ticks, contact with infected animals, and infected humans. In this paper, we present a boxed model for the transmission
of Crimean-Congo fever virus. With the help of the fixed-point theory, our proposed system model is investigated in detail to
prove its unique solution. Given that the Caputo fractional-order derivative preserves the system’s historical memory, we use
this fractional derivative in our modeling. The equilibrium points of the proposed system and their stability conditions are
determined. Using the Euler method for the Caputo fractional-order derivative, we calculate the approximate solutions of the
fractional system, and then, we present a numerical simulation for the transmission of Crimean-Congo hemorrhagic fever.

1. Introduction

Crimean-Congo hemorrhagic fever is a common disease
between human and livestock. The virus that causes this dis-
ease is one of the most important Arthropod-Borne viruses
of the Bunyaviridae family, and it is a genus of Nairovirus
that can cause severe and deadly disease in humans, but it
is not associated with any specific clinical sign in livestock.
The most common vector is a tick called Hyalomma, but it
is also transmitted by other ticks [1]. The average mortality
rate among infected people is 30 percent [2].

The first known case of the disease was recorded in 1942
in the Crimean region of the former Soviet Union. The virus
that caused the disease was also isolated from the blood of a
feverish patient in 1956 in the Democratic Republic of the

Congo. The relationship between these two reported places
of disease and the attention to the main symptoms of the dis-
ease (fever and bleeding) has led to the choice of the current
name of the disease (Crimean-Congo hemorrhagic fever)
(see [3, 4]). The disease has been reported in more than 31
countries in Africa, Asia, and Eastern Europe [5].

Numerous serological studies have confirmed infections
in animals, especially domestic animals such as cattle, sheep,
and goats that may occur as feverish reactions. Infection in
animals occurs through the bite of ticks infected with the
Crimean-Congo hemorrhagic fever virus [6]. Crimean-
Congo hemorrhagic fever virus can also infect a wide range
of wild animals. Among wild mammals, rabbits have been
an important reservoir of the virus in the European part of
the former Soviet Union and Bulgaria. In Asia, hedgehogs,
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rats, and particular species of rabbits are the reservoir of this
virus [7].

The most important ways of getting infected with the
Crimean-Congo fever virus are as follows: the person is get-
ting bitten by infected ticks, the contact of scratched or
injured skin of a person’s body with the contents of infected
crushed ticks, the contact of damaged skin or human mucosa
with infected animal blood or secretions, and the contact
with blood and other secretions of the infected person, as well
as the contact with infected surgical instruments [8–10].
Because Crimean-Congo hemorrhagic fever is more likely
to come from the contact with an infected animal or human
or bite by infected ticks are transmitted to humans so
hunters, farmers, ranchers, health personnel, and those con-
tact with infected animals and humans due to occupations
more likely to be infected.

Clinical signs and the course of this disease include four
stages:

(i) Incubation Period: After a tick bite, the incubation
period usually lasts 1-3 days and reaches a maxi-
mum of 1 day. The incubation period following the
contact with infected tissues or blood is usually 5-6
days, and the maximum time is 13 days [11]

(ii) Prehaemorrhagy: In 80 percent of cases, Crimean-
Congo hemorrhagic fever infections are asymptom-
atic. People in whom the disease has clinical manifes-
tations, the onset of symptoms is sudden, and it lasts
about 1 up to 7 days (average 3 days). The initial
symptoms are severe headache, fever, chills, joint
pain, muscle cramps, dizziness, pain and stiffness of
the neck, eye pain, and fear of light. Nausea, vomiting,
diarrhea, abdominal pain, loss of appetite, swelling
and redness of the face, decreased heart rate, and
low blood pressure have also been reported [12]

(iii) Haemorrhagy: The bleeding phase is short and usu-
ally starts on days 3 to 5 and lasts 1 to 11 days (aver-
age 4 days). Bleeding in the mucosa, hematoma,
bleeding gums and nose, bleeding from the uterus,
bloody sputum, and bleeding from the conjunctiva
and ears are the symptoms of the disease at this
stage. Bleeding from various organs worsens the
patient’s condition so that the patient may die in
the second week of severe bleeding, intravascular
coagulation, liver failure, and dehydration [13]

(iv) Convalescence Period: Between days 7 and 20, the
fever stops, and then the bleeding stops. From the
tenth day, when the skin lesions fade, patients grad-
ually recover. Most patients are discharged from the
hospital in the third to sixth week after the onset of
illness when blood and urine tests return to be nor-
mal [11]

Biological and mathematical researchers have conducted
research studies to model the transmission of Crimean-
Congo fever. Kashkynbayev et al. have used an SI Model to
study tick-borne diseases, including Crimean-Congo fever

[14]. Ergena et al. have used an SIR Model to study the
dynamic of tuberculosis and Crimean-Congo fever as epi-
demic diseases [15]. Switkes et al. have used the deterministic
system of nonlinear differential equations to model the trans-
mission of Crimean-Congo haemorrhagic fever with host
immunity [16].

In recent years, extensive studies [17–19] have been con-
ducted on the mathematical analysis of fractional derivatives
and integrals. The fractional-order derivative is nonlocal and
includes the historical and long-term memory effect of the
system, and this is one of its most important advantages over
the integer-order derivative, which helps to model natural
phenomena better [20–23].

By the expansion of fractional differential calculus,
researchers in many branches of science have turned to use
the fractional differential equation system in their research.
Mathematical modeling of the spread of viruses and the
transmission of infectious diseases using systems of frac-
tional differential equations are considered as one of the
topics that has attracted the attention of researchers in recent
decades [24]. Almeida et al. [25] proposed an epidemiologial
MSEIR model formulated in the sense of Caputo fractional
derivative. Baleanu et al. [26, 27] formulated new models of
the HIV-1 infection of CD4+ T-cell and human liver via
Caputo-Fabrizio fractional derivative. In addition, Rezapour
et al. [28, 29] introduced new models for the spread of
AH1N1 influenza and the transmission of Zika virus between
humans and mosquitoes via Caputo-Fabrizio and Cuputo
fractional derivatives, respectively. Singh analyzed the frac-
tional blood alcohol model with a composite fractional deriv-
ative [30], and Singh et al. investigated the fractional fish
farm model and fractional model of guava for biological pest
control, [31, 32]. Also, Ghanbari et al. presented an efficient
numerical method for the fractional model of allelopathic
stimulatory phytoplankton species [33].

In this article, we model the complete Crimean-Congo
fever transmission cycle between humans, animals, and ticks,
which in previous articles, researchers have only modeled a
part of the cycle. Due to the effect of fractional derivative
memory and good results obtained in recent years from frac-
tional mathematical modeling, in this study, we use the
fractional-order differential equation system to model the
Crimean-Congo fever transmission.

The structure of this paper is organized as follows: In
Section 2, some basic definitions and concepts of fractional
calculus are recalled. A fractional-order mathematical model
for the Crimean-Congo fever transmission cycle is formu-
lated in Section 3. In Section 4, with the help of the fixed-
point theory, our proposed system (10) is proven to have a
unique solution. The approximate solution of the fractional
differential equation system (10) is obtained numerically,
and a numerical simulation for the transmission of the
Crimean-Congo fever virus is also provided in Section 5. In
Section 6, we conclude our research work.

2. Preliminary Results and Definitions

In the current section, we recall the two definitions of the
fractional-order derivative and corresponding integral of
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each one. A concept of the Laplace transform of fractional
derivative is also discussed.

Definition 1 [34]. For an integrable function w, the Caputo
derivative of fractional order ϑ ∈ ð0, 1Þ is given by

CD
ϑ
w tð Þ = 1

Γ m − ϑð Þ
ðt
0

w mð Þ υð Þ
t − υð Þϑ−m+1 dυ, m ϑ½ � + 1: ð1Þ

The Gamma function, denoted by Γð:Þ, is defined as:

Γ ϑð Þ = lim
m⟶∞

m!mϑ

ϑ ϑ + 1ð Þ ϑ + 2ð Þ⋯ ϑ +mð Þ : ð2Þ

Also, the corresponding fractional integral of order ϑ
with Re ðϑÞ > 0 is given by

CI
ϑ
w tð Þ = 1

Γ ϑð Þ
ðt
0
t − υð Þϑ−1w υð Þdυ: ð3Þ

Definition 2 ([35, 36]). For w ∈H1ðc, dÞ and d > c, the
Caputo-Fabrizio derivative of fractional order ϑ ∈ ð0, 1Þ for
w is given by

CFD
ϑ
w tð Þ = M ϑð Þ

1 − ϑð Þ
ðt
c
exp −ϑ

1 − ϑ
t − υð Þ

� �
w′ υð Þdυ, ð4Þ

where t ≥ 0, MðϑÞ is a normalization function that depends
on ϑ andMð0Þ =Mð1Þ = 1. If w ∉H1ðc, dÞ and 0 < ϑ < 1, this
derivative for w ∈ L1ð−∞,dÞ as given by

CFD
ϑ
w tð Þ = ϑM ϑð Þ

1−ϑð Þ
ðd
−∞

w tð Þ −w υð Þð Þ exp −ϑ
1 − ϑ

t − υð Þ
� �

dυ:

ð5Þ

Also, the corresponding CF fractional integral is pre-
sented by

CFI
ϑ
w tð Þ = 2 1 − ϑð Þ

2 − ϑð ÞM ϑð Þw tð Þ + 2ϑ
2 − ϑð ÞM ϑð Þ

ðt
0
w υð Þdυ:

ð6Þ

The Laplace transform is one of the most important tools
in solving differential equations, which has different defini-
tions in fractional calculus. The next definition presents the
Laplace transform of the Caputo fractional-order derivative.

Definition 3 [34]. The Laplace transform of Caputo Frac-
tional differential operator of order ϑ is given by

L CD
ϑ
w tð Þ

h i
sð Þ = sϑLw tð Þ − 〠

m−1

i=0
sϑ−i−1w ið Þ 0ð Þ, m − 1 < ϑ ≤m ∈N:

ð7Þ

This can also be obtained in the following form:

L CD
ϑ
w tð Þ

h i
= smL w tð Þ½ � − sm−1w 0ð Þ − sm−1w′ 0ð Þ−⋯−w m−1ð Þ

sm−ϑ :

ð8Þ

3. Model Formulation

Mathematical models are considered as one of the most
important tools in the study of disease transmission. In this
section, we present a fractional-order mathematical model
for the Crimean-Congo fever transmission cycle.

Crimean-Congo haemorrhagic fever (CCHF) is a feverish
hemorrhagic disease that is mostly transmitted by ticks.
Although the virus is specific to animals, single infection,
and epidemic cases of CCHF also occurred in humans. To
model the transmission of this viral disease, we consider the
population of transmitting ticks Nk, the population of live-
stock and wild animals Nl, and the human population Nh.
We divide the tick population into two groups and denote
susceptible ticks with Sk and infected ticks with Ik. In the pre-
vious section, we have mentioned that livestock and some
wild animals can also be infected with this disease and be a
virus reservoir, which we divide into two groups, susceptible
group Sl and infected group Il. Like the previous two popula-
tions, we divide the human population into two susceptible
Sh and infected Ih groups. Susceptible ticks are infected
through infected ticks at the effective contact rate β1 and
through infected animals at the effective contact rate β2.
Infected ticks transmit the virus to susceptible animals at
the effective contact rate β3 when they feed on animal body.
Crimean-Congo fever virus is transmitted to humans in three
ways. The virus is transmitted to humans through infected
ticks at the effective contact rate β4, through the blood and
blood products of an infected animal at the effective contact
rate β5, and through the blood and bloodymucosa of infected
human at the effective contact rate β6. We also consider the
recruitment rate of ticks, animals, and humans as Λk,Λl,
and Λh, respectively. The natural mortality rates of ticks, ani-
mals, and humans are dk, dl, and dh, respectively.

Based on the provided explanations, we present the
Crimean-Congo fever transfer model with the system of dif-
ferential equations as follows:

dSk
dt

=Λk − β1Sk tð ÞIk tð Þ − β2Sk tð ÞIl tð Þ − dkSk tð Þ,
dIk
dt

= β1Sk tð ÞIk tð Þ + β2Sk tð ÞIl tð Þ − dkIk tð Þ,
dSl
dt

=Λl − β3Sl tð ÞIl tð Þ − dlSl tð Þ,
dIl
dt

= β3Sl tð ÞIl tð Þ − dlIl tð Þ,
dSh
dt

=Λh − β4Sh tð ÞIk tð Þ − β5Sh tð ÞIl tð Þ − β6Sh tð ÞIh tð Þ − dhSh tð Þ,
dIh
dt

= β4Sh tð ÞIk tð Þ + β5Sh tð ÞIl tð Þ + β6Sh tð ÞIh tð Þ − dhIh tð Þ,

0
BBBBBBBBBBBBBBBBBBBBB@

ð9Þ

3Journal of Function Spaces



where all of the initial conditions Skð0Þ = S0k, Ikð0Þ = I0k, Slð
0Þ = S0l, Ilð0Þ = I0l, Shð0Þ = S0h, and Ihð0Þ = I0h are positive.

The fractional-order system (FDEs) is related to systems
with memory, history, or nonlocal effects which exist in the
many biological systems that show the realistic biphasic
decline behavior of infection or diseases but at a slower rate.
In the above integer-order system, since the internal memory
effects of the biological system of CCHF are not included, it is
better that we extend the proposed ordinary model to a frac-
tional model. In this alternative, the equality of the dimen-
sions of both sides of the equation is disturbed, and we use
an auxiliary parameter σ, with the dimension of sec., to solve
this problem ([37]). Thus, the fractional-order model for the
Crimean-Congo haemorrhagic fever (CCHF) is given as
follows:

σϑ−1CD
ϑ
t Sk tð Þ =Λk − β1Sk tð ÞIk tð Þ − β2Sk tð ÞIl tð Þ − dkSk tð Þ,

σϑ−1CD
ϑ
t Ik tð Þ = β1Sk tð ÞIk tð Þ + β2Sk tð ÞIl tð Þ − dkIk tð Þ,

σϑ−1CD
ϑ
t Sl tð Þ =Λl − β3Sl tð ÞIk tð Þ − dlSl tð Þ,

σϑ−1CD
ϑ

t Il tð Þ = β3Sl tð ÞIk tð Þ − dlIl tð Þ,
σϑ−1CD

ϑ
t Sh tð Þ =Λh − β4Sh tð ÞIk tð Þ − β5Sh tð ÞIl tð Þ − β6Sh tð ÞIh tð Þ − dhSh tð Þ,

σϑ−1CD
ϑ
t Ih tð Þ = β4Sh tð ÞIk tð Þ + β5Sh tð ÞIl tð Þ + β6Sh tð ÞIh tð Þ − dhIh tð Þ,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð10Þ

where t ≥ 0 and 0 < ϑ < 1.

3.1. Nonnegative Solution. To show the nonnegativity of solu-
tions, we claim that M = fðSk, Ik, Sl, Il, Sh, IhÞ ∈ R+

6 : NkðtÞ ≤
ðΛk/dkÞ,NlðtÞ ≤ ðΛl/dlÞ,NhðtÞ ≤ ðΛh/dhÞg is the feasibility
region of system (10). To prove this claim, we consider the
following Lemma.

Lemma 4. The closed set M with respect to the fractional sys-
tem (10) is positively invariant.

Proof.We first add two relations in the system (10) to obtain
the fractional derivative of the total population of ticks. So,

σϑ−1CD
v
t Nk tð Þ =Λk − dkNk tð Þ, ð11Þ

where NkðtÞ = SkðtÞ + IkðtÞ. We apply the Laplace transform
to the parties of the above relation, then

Nk tð Þ =Nk 0ð ÞEϑ −dkσ
1−ϑtϑ

� �
+
ðt
0
Λkσ

1−ϑηϑ−1Eϑ,ϑ −dkσ
1−ηηϑ

� �
dη:

ð12Þ

In the above equation, Nkð0Þ is the initial size of ticks
population, and the terms Eϑ, Eϑ,ϑ are theMittag-Leffler func-
tions which are defined by

Eϑ wð Þ = 〠
∞

n=0

wn

Γ 1 + nϑð Þ , Eϑ,ϑ wð Þ = 〠
∞

n=0

wn

Γ ϑ + nϑð Þ , ϑ > 0:

ð13Þ

By simplifying the relations, we conclude that

Nk tð Þ =Nk 0ð ÞEϑ −dkσ
1−ϑtϑ

� �
+
ðt
0
Λkσ

1−ϑηϑ−1

� 〠
∞

n=0

−1ð Þndnkσn 1−ϑð Þηnϑ

Γ nϑ + ϑð Þ dη = Λkσ
1−ϑ

dkσ1−ϑ

+ Eϑ −dkσ
1−ϑtϑ

� �
Nk 0ð Þ − Λkσ

1−ϑ

dkσ1−ϑ

� �
,

= Λk

dk
+ Eϑ −dkσ

1−ϑtϑ
� �

Nk 0ð Þ − Λk

dk

� �
:

ð14Þ

Now, if Nkð0Þ ≤ ðΛk/dkÞ, then for t > 0, NkðtÞ ≤ ðΛk/dkÞ.
At the same way for Nl and Nh, we can prove that if Nlð0Þ
≤ ðΛl/dlÞ and Nhð0Þ ≤ ðΛh/dhÞ, then NlðtÞ ≤ ðΛl/dlÞ and
NhðtÞ ≤ ðΛh/dhÞ. Thus, the closed set M with respect to
fractional model (2) is positively invariant. ☐

3.2. Equilibrium Points. In the current section, we determine
the equilibrium points of the system (10) and the basic
reproduction number. We present the necessary conditions
for the stability of the system at the equilibrium point. To
determine the equilibrium points, we set the equations to
zero in system (10),

CD
ϑ
Sk tð Þ = CD

ϑ
Ik tð Þ = CD

ϑ
Sl tð Þ = CD

ϑ
Il tð Þ = CD

ϑ
Sh tð Þ

= CD
ϑ
Ih tð Þ = 0,

ð15Þ

We solve the resulting algebraic equations and deter-
mine the equilibrium point of the system. The disease-free
equilibrium point, denoted by E0, is obtained as: E0 = ððΛk/
dkÞ, 0, ðΛl/dlÞ, 0, ðΛh/dhÞ, 0Þ. The second equilibrium point,
called the endemic equilibrium point, is obtained as E∗ =
ðS∗k , I∗k , S∗l , I∗l , S∗h , I∗hÞ,

S∗k =
Λk

β1I
∗
k + β2I

∗
l + dk

, S∗l =
Λl

β3I
∗
k + dl

, S∗h

= Λh

β4I
∗
k + β5I

∗
l + β6I

∗
h + dh

:

ð16Þ

When the basic reproduction number is greater than
one, and the spread of the disease continues, the endemic
equilibrium point is defined. To obtain the basic reproduc-
tion number, we use the next generation method [38]. We
consider the matrix form of the system (10) as follows:

CD
ϑ
v tð Þ = F v tð Þð Þ −V v tð Þð Þ, ð17Þ
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where

F ν tð Þð Þ = σ1−ϑ

β1Sk tð ÞIk tð Þ + β2Sk tð ÞIl tð Þ
β3Sl tð ÞIk tð Þ

β4Sh tð ÞIk tð Þ + β5Sh tð ÞIl tð Þ + β6Sh tð ÞIh tð Þ

2
664

3
775,

V ν tð Þð Þ = σ1−ϑ

dkIk tð Þ
dlIl tð Þ
dhIh tð Þ

2
664

3
775:

ð18Þ

By calculating the Jacobian matrix for F and V at the
disease-free equilibrium point, we obtain:

J F E0ð Þ = σ1−ϑ

β1Λk

dk

β2Λk

dk
0

β3Λl

dl
0 0

β4Λh

dh

β5Λh

dh

β6Λh

dh

2
6666666664

3
7777777775
,

Jv E0ð Þ = σ1−ϑ

dk 0 0

0 dl 0

0 0 dh

2
6664

3
7775:

ð19Þ

The basic reproduction number R0 is defined as the
eigenvalue of next generation matrix of system (10), R0 =
ρðFV−1Þ. We obtain: R0 = max ðRh, RklÞ,

Rh =
β6Λh

d2h
, Rkl =

β1Λkdl +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2
1Λ

2
kd

2
l + 4β2β3ΛkΛld

2
k

q
2dld2k

:

ð20Þ

In commonly used infection models, when R0 > 1, the
infection will be able to start spreading in a population, but
not if R0 < 1.

3.3. Stability of Equilibrium Points. To determine the neces-
sary conditions for the stability of the disease-free equilib-
rium point, we investigate the roots of the characteristic
equation of system (10). The Jacobian matrix of the system
(10) is

J = σ1−ϑ ×

−β1Ik − β2Il − dk −β1Sk 0 −β2Sk 0 0
β1Ik + β2Il β1Sk − dk 0 β2Sk 0 0

0 −β3Sl −β3Ik − dl 0 0 0
0 β3Sl β3Ik −dl 0 0
0 −β4Sh 0 −β5Sh −β4Ik − β5Il − β6Ih − dh −βhSh

0 β4Sh 0 β5Sh β4Ik + β5Il + β6Ih β6Sh − dh

2
666666666664

3
777777777775
:

ð21Þ

Then, the Jacobian matrix at E0 is obtained as:

J E0ð Þ = σ1−ϑ

−dk −β1
Λk

dk
0 −β2

Λk

dk
0 0

0 β1
Λk

dk
− dk 0 β2

Λk

dk
0 0

0 −β3
Λl

dl
−dl 0 0 0

0 β3
Λl

dl
0 −dl 0 0

0 −β4
Λh

dh
0 −β5

Λh

dh
−dh −βh

Λh

dh

0 β4
Λh

dh
0 β5

Λh

dh
0 β6

Λh

dh
− dh

2
666666666666666666666664

3
777777777777777777777775

:

ð22Þ

In the following theorem, we determine the necessary
conditions for the stability of the disease-free equilibrium
point.

Theorem 5. The disease-free equilibrium point E0 is locally
asymptotically stable if R0 < 1.

Proof. The characteristic equation of matrix JðE0Þ is obtained
as follows:

dl + λð Þ dk + λð Þ dh + λð Þ β6
Λh

dh
− dh − λ

� �

� dl + λð Þ β1
Λk

dk
− dk − λ

� �
− β2β3

ΛkΛl

dkdl

� �
= 0:

ð23Þ

Therefore, the eigenvalues of the Jacobin matrix are λ1 =
−dl, λ2 = −dk, λ3 = −dh, λ4 = ðβ6Λh/dhÞ − dh, and the roots
of the following equation are:

λ2 − λ
β1Λk

dk
− dk − dl

� �
−
β1Λkdl
dk

+ dldk + β2β3
ΛkΛl

dkdl
= 0:

ð24Þ

The three roots λ1, λ2, and λ3 are negative. If R0 < 1, then
Rh = ðβ6Λh/d2hÞ < 1, we obtain λ4 < 0. It also follows from R0
< 1 that Rkl < 1, then we conclude by simplifying β1Λk < d2k.
In Equation (24), which is a quadratic equation, we have:

P = −β1Λkdl
dk

+ dldk + β2β3
ΛkΛl

dkdl
, S = β1Λk

dk
− dk − dl,

ð25Þ

since β1Λk < d2k then P > 0, S < 0 so Equation (24) has 2
negative roots. Therefore, all of the eigenvalues are negative,
and the disease-free equilibrium point is locally asymptotically
stable. ☐
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4. Existence of Unique Solution

In the current section, using the fixed-point theory, we prove
that system (10) has a unique solution. Fixed-point theory is
essential in proving the existence of a solution to the pro-
posed system where adequate conditions are provided by
fixed-point theorems such that a unique fixed point exists
for a given function. To achieve this goal, we prove that ker-
nels are satisfied under the Lipschitz condition, and they are
contraction. Then, the existence of solution to the proposed
system is constructed via fixed-point theorem. From the
Lipschitz condition, the uniqueness of our obtained solution
is proven when the obtained condition is satisfied.

First, we consider system (10) in the following compact
form:

σϑ−1CD
ϑ
t Sk tð Þ = R1 t, Sk tð Þð Þ,

σϑ−1CD
ϑ
t Ik tð Þ = R2 t, Ik tð Þð Þ,

σϑ−1CD
ϑ
t Sl tð Þ = R3 t, Sl tð Þð Þ,

σϑ−1CD
ϑ
t Il tð Þ = R4 t, Il tð Þð Þ,

σϑ−1CD
ϑ
t Sh tð Þ = R5 t, Sh tð Þð Þ,

σϑ−1CD
ϑ
t Ih tð Þ = R6 t, Ih tð Þð Þ:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð26Þ

We apply the fractional-order integral to the parties of
the above equations, so

Sk tð Þ − Sk 0ð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R1 μ, Skð Þ t − μð Þϑ−1dμ,

Ik tð Þ − Ik 0ð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R2 μ, Ikð Þ t − μð Þϑ−1dμ,

Sl tð Þ − Sl 0ð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R3 μ, Slð Þ t − μð Þϑ−1dμ,

Il tð Þ − Il 0ð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R4 μ, Ilð Þ t − μð Þϑ−1dμ,

Sh tð Þ − Sh 0ð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R5 μ, Shð Þ t − μð Þϑ−1dμ,

Ih tð Þ − Ih 0ð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R6 μ, Ihð Þ t − μð Þϑ−1dμ:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð27Þ

In the following, we prove that the kernels Rj, j = 1, 2, 3,
4, 5, 6 are satisfied in the Lipschitz condition, and they are
contraction.

Theorem 6. Kernel R1 is satisfied in Lipschitz condition and
contraction if we have:

0 ≤ β1z1 + β2z2 + dk < 1: ð28Þ

Proof. We can write for Sk and S1k,

R1 t, Skð Þ − R1 t, S1kð Þk k
= −β1Ik Sk − S1kð Þ − β2Il Sk − S1kð Þ − dk Sk − S1kð Þk k,
≤ β1 Ikk k Sk − Skk k + β2 Ilk k Sk − S1kk k + dk Sk − S1kk k,
≤ β1 Ikk k + β2 Ilk k + dkð Þ Sk − S1kk k,
≤ β1z1 + β2z2 + dkð Þ Sk − S1kk k:

ð29Þ

Consider e1 = β1z1 + β2z2 + dk, where kIkðtÞk ≤ z1 and k
Ilk ≤ z2, are bounded functions. We get:

R1 t, Skð Þ − R1 t, S1kð Þk k ≤ e1 Sk tð Þ − S1k tð Þk k, ð30Þ

if 0 ≤ β1z1 + β2z2 + dk < 1, then the kernel R1 is satisfied in
Lipschitz condition, and it is contraction. ☐

In a similar way, we can show that the kernels Rj, j = 2,
3, 4, 5, 6 are satisfied in the Lipschitz condition as follows:

R2 t, Ikð Þ − R2 t, I1kð Þk k ≤ e2 Ik tð Þ − I1k tð Þk k,
R3 t, Slð Þ − R3 t, S1lð Þk k ≤ e3 Sl tð Þ − S1l tð Þk k,
R4 t, Ilð Þ − R4 t, I1lð Þk k ≤ e4 Il tð Þ − I1l tð Þk k,
R5 t, Shð Þ − R3 t, S1hð Þk k ≤ e5 Sh tð Þ − S1h tð Þk k,
R6 t, Ihð Þ − R4 t, I1hð Þk k ≤ e6 Ih tð Þ − I1h tð Þk k,

8>>>>>>>><
>>>>>>>>:

ð31Þ

so that e2 = β1z4 + dk, e3 = β3z1 + dl, e4 = dl, e5 = β4z1 + β5z2
+ β6z3 + dh, e6 = β6z6 + dh are bounded functions where k
IhðtÞk ≤ z3, kSkðtÞk ≤ z4, kSlðtÞk ≤ z5, and kShðtÞk ≤ z6. Also,
if 0 ≤ ej < 1, j = 2, 3, 4, 5, 6, then Rj are contraction for j = 2,
3, 4, 5, 6.

Based on system (27), we define:

A1n tð Þ = Snk tð Þ − S n−1ð Þk tð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R1 μ, S n−1ð Þk
� ��

− R1 μ, S n−2ð Þk
� ��

t − μð Þϑ−1dμ,

A2n tð Þ = Ink tð Þ − I n−1ð Þk tð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R2 μ, I n−1ð Þk
� ��

− R2 μ, I n−2ð Þk
� ��

t − μð Þϑ−1dμ,

A3n tð Þ = Snl tð Þ − S n−1ð Þl tð Þ =
σ1−ϑ

Γ ϑð Þ
ðt
0
R3 μ, S n−1ð Þl
� ��

− R3 μ, S n−2ð Þl
� ��

t − μð Þϑ−1dμ,

A4n tð Þ = Inl tð Þ − I n−1ð Þl tð Þ =
σ1−ϑ

Γ ϑð Þ
ðt
0
R4 μ, I n−1ð Þl
� ��

− R4 μ, I n−2ð Þl
� ��

t − μð Þϑ−1dμ,
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A5n tð Þ = Snh tð Þ − S n−1ð Þh tð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R5 μ, S n−1ð Þh
� ��

− R5 μ, S n−2ð Þh
� ��

t − μð Þϑ−1dμ,

A6n tð Þ = Inh tð Þ − I n−1ð Þh tð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R6 μ, I n−1ð Þh
� ��

− R6 μ, I n−2ð Þh
� ��

t − μð Þϑ−1dμ,
ð32Þ

where Skð0Þ = S0k, Ikð0Þ = I0k, Slð0Þ = S0l, Ilð0Þ = I0l, Shð0Þ =
S0h, and Ihð0Þ = I0h are initial conditions. The norm of A1n
in the above system is expressed as follows:

A1n tð Þk k = Snk tð Þ − S n−1ð Þk tð Þ
			 			 ≤

σ1−ϑ

Γ ϑð Þ
ðt
0
R1 μ, S n−1ð Þk
� �			

− R1 μ, S n−2ð Þk
� ��

t − μð Þϑ−1
			dμ:

ð33Þ

According to the Lipschitz condition (30), we conclude

A1n tð Þk k ≤ σ1−ϑ

Γ ϑð Þ e1
ðt
0
A1 n−1ð Þ μð Þ

			 			dμ: ð34Þ

Similarly, we can prove that

A2n tð Þk k ≤ σ1−ϑ

Γ ϑð Þ e2
ðt
0
A2 n−1ð Þ μð Þ

			 			dμ,
A3n tð Þk k ≤ σ1−ϑ

Γ ϑð Þ e3
ðt
0
A3 n−1ð Þ μð Þ

			 			dμ,
A4n tð Þk k ≤ σ1−ϑ

Γ ϑð Þ e4
ðt
0
A4 n−1ð Þ μð Þ

			 			dμ,
A5n tð Þk k ≤ σ1−ϑ

Γ ϑð Þ e5
ðt
0
A5 n−1ð Þ μð Þ

			 			dμ,
A6n tð Þk k ≤ σ1−ϑ

Γ ϑð Þ e6
ðt
0
A6 n−1ð Þ μð Þ

			 			dμ:

ð35Þ

Therefore, we get

Snk tð Þ = 〠
n

i=1
A1i tð Þ, Ink tð Þ = 〠

n

i=1
A2i tð Þ, Snl tð Þ = 〠

n

i=1
A3i tð Þ,

Inl tð Þ = 〠
n

i=1
A4i tð Þ, Snh tð Þ = 〠

n

i=1
A5i tð Þ, Inh tð Þ = 〠

n

i=1
A6i tð Þ:

ð36Þ

In the next theorem, we prove the existence of solution by
the fixed-point theorem.

Theorem 7. The Crimean-Congo fever transmission
fractional-order model (10) has a solution, if there exists tε
such that

σ1−ϑ

Γ ϑð Þ tεei < 1: ð37Þ

Proof. By Equation (34) and Equation (46), we obtain

A1n tð Þk k ≤ Snk 0ð Þk k σ1−ϑ

Γ ϑð Þ e1t
� �n

, A2n tð Þk k ≤ Ink 0ð Þk k σ1−ϑ

Γ ϑð Þ e2t
� �n

,

A3n tð Þk k ≤ Snl 0ð Þk k σ1−ϑ

Γ ϑð Þ e3t
� �n

, A4n tð Þk k ≤ Inl 0ð Þk k σ1−ϑ

Γ ϑð Þ e4t
� �n

,

A5n tð Þk k ≤ Snh 0ð Þk k σ1−ϑ

Γ ϑð Þ e5t
� �n

, A6n tð Þk k ≤ Inh 0ð Þk k σ1−ϑ

Γ ϑð Þ e6t
� �n

:

ð38Þ

The above relations show that the system has a continu-
ous solution. Now, it is sufficient to show that the above func-
tions construct the solution for the fractional-order model
(10). We consider the following relations:

Sk tð Þ − Sk 0ð Þ = Snk tð Þ −U1n tð Þ, Ik tð Þ − Ik 0ð Þ = Ink tð Þ −U2n tð Þ,

Sl tð Þ − Sl 0ð Þ = Snl tð Þ −U3n tð Þ, Il tð Þ − Il 0ð Þ = Inl tð Þ −U4n tð Þ,

Sh tð Þ − Sh 0ð Þ = Snh tð Þ −U5n tð Þ, Ih tð Þ − Ih 0ð Þ = Inh tð Þ −U6n tð Þ:
ð39Þ

The norm of U1nðtÞ is obtained as follows:

U1n tð Þk k = σ1−ϑ

Γ ϑð Þ
ðt
0
R1 μ, Skð Þ − R1 μ, S n−1ð Þk

� �� �
dμ

				
				

≤
σ1−ϑ

Γ ϑð Þ
ðt
0
R1 μ, Skð Þ − R1 μ, S n−1ð Þk

� �			 			dμ
≤

σ1−ϑ

Γ ϑð Þ e1 Sk − S n−1ð Þk
			 			t:

ð40Þ

By continuing this repetitive method, we conclude:

U1n tð Þk k ≤ σ1−ϑ

Γ ϑð Þ t
� �n+1

en+11 k: ð41Þ

At tε, we have

U1n tð Þk k ≤ σ1−ϑ

Γ ϑð Þ tε
� �n+1

en+11 k: ð42Þ

If we take limit on the recent relation as n approaches to
∞, it results kU1nðtÞk⟶ 0. Similarly, we conclude that k
BjnðtÞk⟶ 0, j = 2, 3, 4, 5, 6, and the proof is complete. ☐

To show the uniqueness of the solution of CCHF model,
we consider that the fractional-order system (10) has another
solution such as ðS1kðtÞ, I1kðtÞ, S1lðtÞ, I1lðtÞ, S1hðtÞ, I1hðtÞ,
then for Sk, S1k can be written as:
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Sk tð Þ − S1k tð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R1 μ, Skð Þ − R1 μ, S1kð Þð Þdμ: ð43Þ

We take the norm on the above equation, so

Sk tð Þ − S1k tð Þk k = σ1−ϑ

Γ ϑð Þ
ðt
0
∥R1 μ, Skð Þ − R1 μ, S1kð Þ∥dμ: ð44Þ

By Lipschitz condition (30), we obtain:

Sk tð Þ − S1k tð Þk k ≤ σ1−ϑ

Γ ϑð Þ e1t Sk tð Þ − S1k tð Þk k: ð45Þ

Thus,

Sk tð Þ − S1k tð Þk k 1 − σ1−ϑ

Γ ϑð Þ e1t
� �

≤ 0: ð46Þ

Theorem 8. The solution of fractional-order system (10) is
unique when the following condition is met:

1 −
σ1−ϑ

Γ ϑð Þ e1t > 0: ð47Þ

Proof.Assume that the condition (46) holds, in which case we
conclude from (46) and (47) that kSkðtÞ − S1kðtÞk = 0, and
this shows that ShðtÞ = S1hðtÞ. In the same way, similar rela-
tionships can be reached for Ik, Sl, Il, Sh, Ih. This completes
the proof. ☐

5. Numerical Simulation and Discussion

In this section, we first obtain the approximate solution of the
fractional differential equation system (10) by a numerical
method, and then, we present a numerical simulation for
the transmission of the Crimean-Congo fever virus.

5.1. Numerical Method. We use the fractional Euler method
for Caputo derivative [39] to obtain the approximate solu-
tions of the Crimean-Congo hemorrhagic fever virus trans-
mission model. First, we consider the compact form of the
system (10) as follows:

σϑ−1CD
ϑ
t φ tð Þ =Q t, φ tð Þð Þ, φ 0ð Þ = φ0, 0 ≤ t ≤ T <∞, ð48Þ

where φ = ðSk, Ik, Sl, Il, Sh, IhÞ ∈ R6
+, φ0 = ðS0k, I0k, S0l, I0l, S0h,

I0hÞ, and QðtÞ is a continuous real vector function that is sat-
isfied in the Lipschitz condition as follows:

Q φ1 tð Þð Þ −Q φ2 tð Þð Þk k ≤m φ1 tð Þ − φ2 tð Þk k,m > 0: ð49Þ

We apply the fractional-order integral operator corre-
sponding to the Caputo fractional-order derivative on both
sides of Equation (48), so

φ tð Þ = σ1−ϑ φ0 + IϑQ φ tð Þð Þ
h i

, 0 ≤ t ≤ T <∞: ð50Þ

Set r = ðT − 0Þ/N and tn = nr, where t ∈ ½0, T� and N is a
natural number and n = 0, 1, 2,⋯,N . Let φn be the approxi-
mation of φðtÞ at t = tn. By the fractional Euler method
([39]), we get:

φn+1 = σ1−ϑ φ0 +
rϑ

Γ ϑ + 1ð Þ〠
n

p=0
ωn+1,pQ tp, φp

� �" #
, p

= 0, 1, 2,⋯,N − 1,
ð51Þ

where

ωn+1,p = n + 1 − pð Þϑ − n − pð Þϑ, p = 0, 1, 2,⋯, n: ð52Þ

The obtained scheme is stable. Details of the stability
analysis are given in Theorem (3.1) of [39]. According to
the explanations provided, the answer of the system is
obtained as follows:

S n+1ð Þk = σ1−ϑ S0k +
rϑ

Γ ϑ + 1ð Þ〠
n

p=0
ωn+1,py1 tp, φp

� �" #
,

I n+1ð Þk = σ1−ϑ I0k +
rϑ

Γ ϑ + 1ð Þ〠
n

p=0
ωn+1,py2 tp, φp

� �" #
,

S n+1ð Þl = σ1−ϑ S0l +
rϑ

Γ ϑ + 1ð Þ〠
n

p=0
ωn+1,py3 tp, φp

� �" #
,

I n+1ð Þl = σ1−ϑ I0l +
rϑ

Γ ϑ + 1ð Þ〠
n

p=0
ωn+1,py4 tp, φp

� �" #
,

S n+1ð Þh = σ1−ϑ S0h +
rϑ

Γ ϑ + 1ð Þ〠
n

p=0
ωn+1,py5 tp, φp

� �" #
,

I n+1ð Þh = σ1−ϑ I0h +
rϑ

Γ ϑ + 1ð Þ〠
n

p=0
ωn+1,py6 tp, φp

� �" #
,

ð53Þ

so that ωn+1,p = ðn + 1 − pÞϑ − ðn − pÞϑ and the functions yj
for j = 0, 1,⋯, 6 are expressed as:

y1 t, φ tð Þð Þ =Λk − β1Sk tð ÞIk tð Þ − β2Sk tð ÞIl tð Þ − dkSk tð Þ,
y2 t, φ tð Þð Þ = β1Sk tð ÞIk tð Þ + β2Sk tð ÞIl tð Þ − dkIk tð Þ,
y3 t, φ tð Þð Þ =Λl − β3Sl tð ÞIk tð Þ − dlSl tð Þ,
y4 t, φ tð Þð Þ = β3Sl tð ÞIk tð Þ − dlIl tð Þ,
y5 t, φ tð Þð Þ =Λh − β4Sh tð ÞIk tð Þ − β5Sh tð ÞIh tð Þ

− β6Sh tð ÞIh tð Þ − dhSh tð Þ,
y6 t, φ tð Þð Þ = β4Sh tð ÞIk tð Þ + β5Sh tð ÞIl tð Þ

+ β6Sh tð ÞIh tð Þ − dhIh tð Þ: ð54Þ

5.2. Simulation. In the present subsection, we present a
numerical simulation to investigate the transmission of
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Crimean-Congo fever virus based on the amount of repro-
duction number. Also, we compare the results of the
integer-order and fractional-order models.

To perform the desired simulation, in two cases, we
consider different values for the parameters. In the first
case, we assume: β1 = 0:5 × 10−4, β2 = 0:3 × 10−4, β3 = 0:1
× 10−3, β4 = 0:03 × 10−4, β5 = 0:4 × 10−4, β6 = 0:7 × 10−4,Λk
= 0:6,Λl = 0:3,Λh = 0:6, dk = 0:09, dl = 0:07, dh = 0:007, σ =
0:99: We also consider the initial values as Sk = 800, Ik
= 20, Sl = 600, Il = 30, Sh = 1000, Ih = 10:

Using the above parameters, we obtain Rh = 0:0233, Rkl
= 0:00597; thus, R0 = 0:0233 < 1. Figure 1 shows the results
of model (10) for all six groups for ϑ = 0:98. In this case,
R0 < 1, and Figure 1 shows that over time, the number of sus-
ceptible people is decreased, and the number of infected peo-
ple is increased, but in less than 20 days, the number of
infected people is decreased and eventually reaches zero,
and the spread of the disease stops. In this case, SðtÞ and
IðtÞ converge to the disease-free equilibrium point E0.

In the second case, we assume that the disease transmis-
sion rate increases from the susceptible group to the infected
group, and the transmission rates are equal to β1 = 0:5 × 1
0−3, β2 = 0:3 × 10−3, β3 = 0:1 × 10−2, β4 = 0:7 × 10−3, β5 = 0:4
× 10−3, β6 = 0:7 × 10−3:With these transfer rates, the value of
the reproduction number is equal to R0 = 1:435 > 1. Figure 2
shows the results of model (10) for the six groups studied in
this case. Over time, the population of susceptible groups
decreases and the population of infected groups increases,
and finally, after 100 days, the population of infected groups
decreases and converges to the endemic equilibrium point.
As the rate of disease transmission increases, the value of
R0 increases, and we observe that the disease does not go
away and its spread continues.

In this work, we have used the fractional-order derivative
for modeling. In order to investigate the effect of derivation
order, we have drawn the model results for infected groups
with derivatives with integer-order ϑ = 1 and fractional-
order ϑ = 0:98 in Figure 3. Figure 3 shows that the results of
model (10) are similar for the integer-order and the Caputo
fractional order, and a small change in the order of derivation
has no effect on the overall trend of the results in terms of
ascending and descending, but the resulting numerical values
are different.

5.3. The Reproduction Number Sensitivity Analysis.We inves-
tigate the effect of parameters in Crimean-Congo hemor-
rhagic fever fractional model (10) on reproduction number
using the method introduced by [40]. For this simulation,
we use the parameters in the first case of the previous subsec-
tion. Since R0 is defined as R0 = max ðRh, RklÞ, therefore, we
analyze the sensitivity of R0 in two cases.

First, if R0 = Rh, by the mentioned method, we have Sβ6

= ð∂R0/∂β6Þðβ6/R0Þ = 1 > 0, SΛh
= ð∂R0/∂ΛhÞðΛh/R0Þ = 1 >

0, Sdh = ð∂R0/∂dhÞðdh/R0Þ = −2β6Λh/d3h = −1:55 < 0: Figure 4
shows the sensitivity of R0 with respect to each of the param-
eters. As you can see, changing each of the parameters of
model (10) that is involved in Rh changes the reproduction
number. The reproduction number is directly related to
parameters β6,Λh and inversely related to parameter dh.
From an epidemiological point of view, whenever the repro-
duction number decreases, then the spread of the disease is
controlled. Given that β6 has the most positive effect on the
R0, so to control the spread of the disease, β6 should be
reduced through the reduced communication of infected
and susceptible humans.
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Figure 1: Plots of the results of model (10) with R0 < 1 for ϑ = 0:98.
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Figure 2: Plots of the results of model (10) with R0 > 1 for ϑ = 0:98.
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Figure 3: Plots of the results of model (10) for infected groups with integer-order ϑ = 1 and fractional-order ϑ = 0:98 in the case R0 > 1.
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Figure 4: The graphs show the effect of model parameters on the reproduction number for the case R0 = Rh.
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In the latter case if R0 = Rkl , we obtain the same equations
as above

SΛk
= ∂R0
∂Λk

Λk

R0
= 0:724 > 0, Sβ1

= ∂R0
∂β1

β1
R0

= 0:4486 > 0,

Sdl =
∂R0
∂dl

dl
R0

= −0:5513 < 0,

Sβ2
= ∂R0
∂β2

β2
R0

= 0:275 > 0, Sβ3
= ∂R0
∂β3

β3
R0

= 0:276 > 0,

Sdk =
∂R0
∂dk

dk
R0

= −1:448 < 0:
ð55Þ

Figure 5 shows the sensitivity of R0 with respect to each of
the parameters. The reproduction number is directly related
to parameters β1, β2, β3, andΛk and inversely related to
parameter dl, dk. Among the mentioned parameters, param-
eters β1, β2, and β3 can be controlled, and all of which have a
positive effect on causality, so to reduce the amount of repro-
duction number, it is enough to reduce the rate of disease
transmission between ticks, animals, and humans.

6. Conclusion

In this work, we have presented a box model using the
Caputo fractional-order derivative by taking into account
the transmission of the Crimean-Congo hemorrhagic fever
virus between ticks, animals (domestic and wild), and
humans. We have calculated the feasible region and the equi-
librium points of the system (10), and we have determined
the necessary conditions for the stability of the equilibrium
point. In the last section, using the Euler method for the
Caputo fractional derivative, we have obtained the approxi-
mate solution of system (10), and then, we have provided a
numerical simulation for the transmission of Crimean-
Congo hemorrhagic fever virus. In two cases: R0 < 1 and R0
> 1, the results of the model have been plotted for the six
groups in the model, which clearly show that in the case R0
< 1, the transmission of the disease stops after a while, and
the results of the system converge to the disease-free equilib-
rium point. We have increased the rate of disease transmis-
sion among the groups, and in this case, the results for
R0 > 1 show that the disease continues endemically, and also,
the results converge to the endemic equilibrium point. The
results of the model are compared with two types of deriva-

tives of integer-order and fractional-order, and the result of
comparison shows that changing the type of derivative with
close order has no effect on the overall trend of the results
but the obtained numerical values are different.

Later, we have investigated the effect of each of the model
parameters on R0, and the results show that the disease trans-
mission rates among the groups have a positive effect on the
value of R0; therefore, to control the spread of Crimean-
Congo hemorrhagic fever, the disease transmission rate
should be reduced by reducing contact between different
groups.
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