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In this paper, we compute the reproducing kernel B, ,(z, w) for the generalized Fock space F?,,(C). The usual Fock space is the
case when m = 2. We express the reproducing kernel in terms of a suitable hypergeometric series , F,. In particular, we show that

there is a close connection between B, ,(z, w) and the error function. We also obtain the closed forms of B, ,(z, w) when m =

1,2/3,1/2. Finally, we also prove that B,, (2, z) ~ e*" |z|"™ as |z | —00.

1. Introduction

For any fixed parameter « > 0, we consider
M, (2) = dA,, 4 (2) = ¢, e dA(2), (1)

where dA(z) is the Euclidean area measure on the complex
plane C. Here, ¢, , is a normalizing constant so that dA,, ,
is a probability measure on C.

We call the generalized Fock space F,, (C) = F,, ,(C) the
set of all entire functions f in L*(C, dA,,(z)). It is easy to see
that FZ (C) is a Hilbert space with the inner product:

(f, 9) = ch(Z)g(_Z)d/\m(Z)- 2)

Let {¢;(-): j € N} be the countable orthonormal basis for
FZ (C). Then, the generalized Fock kernel B, (z,w) = B,, ,(
z,w) for F%(C) is defined by

B, (2 w)= ) ¢;(2)¢;(w)- 3)

jeN

If m =2, then F5(C) is the usual Fock space. In fact, it is
well known that B, (z, w) = e®¥ for z, w € C. See the detailed

properties on the usual Fock space in the book [1] written by
Zhu. In fact, the explicit form of B,(z, w) is very useful for
studying the properties of the Fock space in [2].

In this paper, we focus on the following natural question.

Question: compute the Fock kernel B,,(z,w) for any
positive rational number m.

In the theory of the Bergman kernel, it is difficult to find
the closed form of the Bergman kernel for a general domain.
Instead, in the case of a complex ellipsoid or similar
domains, one can see the expression of the Bergman kernel
in terms of the hypergeometric series in [3, 4].

The generalized hypergeometric series ,F(ay, -+, a,;b,
,---,bq;x) is defined by
(%) (al)k (ap) xk
F(a,-a b, b ;x)= Sk PR (4)
’ q( 1 P ! ) go(bl)k"' (b‘I)kk!

where (a), is the Pochhammer symbol defined by

M:a(a+l)--~(d+k—l), k>1,

(@=| T@ (5)
L k=0.

If p=q+1, then the series converges for |x|<1 and
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diverges for |x | >1. If p < g + 1, then the series converges for
all x. If p > g + 1, then the series converges only at x =0.

It is well known that the Bergman kernel for the complex
ellipsoid

5 z,) €C" x|z, [P 4|z, [P < 1
n 1 n

(6)

is closely connected with ,F,; and its higher dimensional
hypergeometric series (Appell hypergeometric series or
Lauricella hypergeometric series). Using the theory of the
hypergeometric series, new formulas of the Bergman kernel
have been computed in [3, 5-7].

Recently, new interesting generalized Fock spaces have
been studied. In [8], Gonessa investigated the duality on
the generalized Fock space with respect to the minimal
norm. In [9], one can see the boundedness of the Bergman
projection on the generalized Fock-Sobolev space with
respect to dA,,(z). But they did not obtain the explicit forms
of the integral kernel. In [10], Cho et al. computed the Fock

kernel for the space with respect to du(z) = c,|z|*e - gy
(z). For a > 0, the kernel K, (z, w) is represented by K (z,
w)=,F,(n,n+a;(z,w)) for z,we C".

The main theorem of this paper is the following. At first,
we consider the case when m is a positive integer.

{(Zp"

Dpy -+ p,) =

2/m

Theorem 1. Let m be any positive integer and let { = a*"zw.

(i) If m is even, then

B, (z,w) =

ma?lm (WZZH 'd (1 2r+2 NGCAY
n & T(2r+2)m) "I\ m
(7)

(ii) If m is odd, then

maZ/m m-1 CV 1 (m
B, (z,w)= Fll; —, —+ -5 — .
m(® W) 2 Z I'((2r +2)/m) ! 2( m m * 2 4)

r=0

Now, we generalize to the case when m is a positive
rational number.

Theorem 2. Let m be any positive rational number and let
(= a?"zw.

(i) If m = 2p/q, where 2p and q are relatively prime, then

2/m p-1 r ;G
Bm(z,w)=m“ Z ¢ F 1;i+l;c— ,
2m S I(q(r+1)lp) 1 P q ¢

©)
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where
r+1+7_<r+1 rel 1 or+l 2 rel q—l)
P a4 \p ' p 4 p qa P 4
(10)
(ii) If m=(2p+ 1)/q, where 2p+ 1 and q are relatively
prime, then
mo2m 22 d
B, (z,w)= F
m&w) == ;)F(2q(r+1)/(2p+1))1 2 "
- 11
.. r+1 . jooor
"2p+1 29 (29)%1)
where

r+1 N j _(r+l r+l N 1 r+1 +2q—1
2p+1 2q \2p+1'2p+1 29 '2p+1 29 )
(12)

In particular, if m =4, then there is a close connection
between B,(z, w) and the error function.

Theorem 3. Let a > 0. Then,
2a )
By(zw) = — ziwe*(*®) (exf (vazw) + 1
(2 w) —zie (erf (Vazw) +1) +
where erf (x) is the error function denoted by

erf (x) = \jﬁf;e—tzdt (14)

In general, it is difficult to find the closed form of the
generalized hypergeometric series ,F,. Using the hypergeo-

metric series in Theorems 1 and 2, we obtain the following
closed forms for m=1,2/3,1/2.

Theorem 4. Let o > 0. Then,

(i) B,(z,w) = (a/27)(sinh (a(zw)"?)/(zw)"?),

1/3
)

a2z w)"? /97 (zw)2/3 {63/2a(zw )

zw)'"” + (n/6))},

= a/87‘t(zﬁ))3/4{sinh (a(zw)"*) = sin («

Finally, we discuss the asymptotic behavior of the Fock
kernel. Now, we write A(x) ~ B(x) if A(x)/B(x) converges
to nonzero constant as x goes to some number or infinity.
Denote Kp(z, w) by the Bergman kernel for the bounded
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domain DcC". It is a well-known fact that Kj(z, 2)
diverges to infinity under some condition. More precisely,
if d(z) is the distance to the boundary bD, then

Kp(22) ~d(2)", (15)

as z approaches the strongly pseudoconvex boundary point
pebD.

Using the properties of the incomplete gamma function,
we can obtain the similar result also for the generalized Fock
space.

Theorem 5. Let m be any positive even integer. Then,
B, (2 2) ~ e"!" |22 as|z| — oo. (16)

Remark 6. The usual Fock kernel B, (z, w) = e®% is very sim-
ple but plays an important role in the research of the func-
tion theoretic properties of the Fock space Fj,(C).
Theorems 1 and 2 in this paper are the first result on the
generalized Fock space F;, ,(C) for any m # 2. Also, we hope
that the explicit formulas in Theorems 3 and 4 can give a
clue on studying optimal pointwise estimates for B,,(z, w)
for some m.

2. Computation of B,,(z, w)
Consider dA,,(z) = c,, e " dA(z), where c,, , is a normal-
izing constant so that d\,(z) is a probability measure on

C. In fact, we can obtain c,, , from the following lemma.

Lemma 7. For any nonnegative integers k, we have

2n 2k +2
k2 _
s ()07

where I'(-) is the usual gamma function. In particular, we
have

maZ/m

= 18
“me = 2nT (2Im) (18)

Proof. Recall that the usual gamma function I is defined by

I'(z)= Jo e dx, R(z) > 0. (19)

Using the polar coordinate change, we have

2 m 0 m
||Zk||2=J ‘zk‘ e dA(z) =2nJ e dr.(20)
c 0

If we can substitute s = ar™, then by (19)

00 o\ (2k+1)/m 1
IR = 2n () e
0\«

- s(l/m)—lds
motm

_ 27 ms(2k+z)/m—le_3ds _ 2 I 2k +2 .
ma(2k+2)/m o m“(2k+2)/m m

(21)

It completes the proof. O

It follows that the reproducing kernel B,,(z, w) is written
as

U (zw)* _ ma?m & (az’mzﬂ))k
B, (zw) = ;) o ,;)F((Zk+2)/m)' (22)

Throughout this paper, we are focusing on computing
the function

B 00 Ck
Gn(6) = ;}r((zk +2)/m)’ (23)
Then, we have
B, (z,w) = m;x:m G, (e’ zw). (24)

Remark 8. If m =2, then G,({) = Zﬁoék/k! = ¢%. In this case,
)
B,(z,w) = —e (25)

which is just the usual Fock kernel.

Now, we investigate the relation between G,,({) and gen-
eralized hypergeometric series for any positive rational num-
ber m.

3. Proof of Theorem 1

In this section, we express the Fock kernel B,,(z, w) in terms
of the suitable hypergeometric series ,F, when m is a posi-

tive integer. The crucial term for computing the form of
B,,(z,w) is I'((2k +2)/m).

3.1. Proof of Theorem 1 (i). Assume that m is an even integer.
Let m = 2p for some p € N. Then, we have

~ 00 (k
Gn(6) = ,;OF((IH 1)/p) (26)

Theorem 1 (i) can be easily proven by the following
proposition using (24).



Proposition 9. Let m be any even positive integer, and let {

= a?"zw. Then, we have
(mi2)-1 I 2r+2
— 10} 1’ m/2 , 2
Cn(©) ;) I'((2r+2)/m) < m ¢ > (27)

where ®(a;b;x): = ,F
metric series.

1(as;b;x) is the confluent hypergeo-

Proof. Note that there exist unique integers ¢ and r such that
k=pe+rwith 0<r<p-1. Thus, we have

y €

o P)f & <
rz(;{ Z ((r+1)p)) ZI“((r+1)/p ;) /P)e

r=0
(28)
Note that
O(1;b;%)=,F,(1;b;x) Z (29)
=

It follows that

pt ' r+1
Gm(g)zr;)r((Hl)/p)@(“ > ;(p)’ (30)

which completes the proof. O

3.2. Proof of Theorem 1 (ii). Assume that m is an odd integer.
Let m=2p + 1 for some p € N. Then,

‘:«k

I((2k+2)/(2p+1)) (31)

G.(0)=)
k=0

Theorem 1 (ii) can be easily proven by the following
proposition using (24).

Proposition 10. Let m be any odd positive integer, and let
(= a?"ziw. Then,

m—1 T m
+1 r+1 1

2(71132 l;r_, r +_;C_ .

S T((2r+2)/m) m  m 2 4

Gn(6) =

Proof. Note that there exist unique integers ¢ and r such that
=(2p +1)€ +r with 0 <7 <2p. Then,

0w oo (@)
Gu(C) = ZO( ;r(zz+((2r+2)/(2p+1)))' )

Now, we will use the identity

r(2¢+2t) =2%(t), (t + %) r(2t), (34)

4
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for any nonnegative integer £ and t € R. In fact, the identity
(34) can be proven by

I'(2¢+2t)

T(2t)

=262t +1) -

:zzzt(t+1)~(t+‘3—1)<t+%> (t+ ;) (t+ MT_I)
=2%(1), <t+ %) .
2

Then, by (34), we have

(2t+2¢-1)

2p 4 © 1 c2p+] ¢
Gul©)= F((2r+2)/(2p+1));((r+1)/(2p+1))6(((r+1)/2p+1)+1/2)¢( 4 )

2 4 r+l r+l 1 P
= 2711:2 L3 , +55 ,
2 L((2r+2)/(2p + 1)) 2p+1 2p+1 2 4

since | F,(1;b;,b,;5x) =

Z?Soxz/(bl)e(bz)e- g
4. Proof of Theorem 2

In this section, we focus on computing G,, when m is a pos-
itive rational number.

4.1. Proof of Theorem 2 (i): Even Numerator. Let m =2plq,
where 2p and g are relatively prime. Then, we have

0 Cp)
z I(qe+ (q(r+1)/p))’
(37)

[ Ck —
Gnl®)= X s Talp) E

k=0 r

where k=pl+rwith0<r<p-1.

Lemma 11. The gamma function I satisfies the identity
F(x)F<x+ i)1"(x+ E) --~F<x+ -l
n n n

Using the above lemma, we can prove the following.

> — (27_[) n—1/2n(1/2)7nx1-(nx).

(38)

Lemma 12.

I'(qt+qt)=q" H (t + ) (39)

Proof. We will prove it in two different methods. Using the
property I'(x + 1) = xI'(x), we have

+ qe-1 qt-1
7(618(611‘)611‘) H qt +1) q" H (t + ) (40)

Then, there exists x, y € Z such that i =qj+ y with 0<j
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<€-1and 0<y<gq-1.It follows that

(=) - TIH (= 2e) - T (),

=0 x=0 =0

It can be proven also using Lemma 11. Note that

re+e)re+t+(1/q))---rt+t+((g-1)/q))
(27r) q- 1)/2q(1/2) q(e+t)

:F(t)T(t+1/q) I(t+(q- l)/q)()e<t+l> <t+q—1>
(271)( 12 q(2)-a(t+) a/, q /.
(q-1)12 ;(1/2)-qt _
- GO (14 1) - (14422)
(Zﬂ)(q, )/Zq(IIZ)—q(KH) a4/, q /),

- " r(an)o 1+ é) G %1)

I'(qt+qt)=

Now, we prove Theorem 2 (i) using Lemma 12.

Theorem 13 (Theorem 2 (i) again). Let m = 2p/q, where 2p
and q are relatively prime. Then,

p-1 r -~ P
1
¢ @(1;%+%;%>, (43)

@O Lt o)

Thus, we have
Q2m bl o
B, F, ITLAEIND RS
=T r+1/p p q q1

Proof. By Lemma 12, we have

p-1 r &) 1 CP ¢
rzor r+1 )Ip) & Z T ((r+ V)lp+ (jlq)), (?) '
(46)

By the definition (4), we see that

1Fq(1;b1""

5
It follows that
p-1 (r
G, (¢
( ) rOF( (7’+1)/p)
— P
. <1; i,i + l’...)ﬂ + u’c_>
p p q p q q
(48)
If we use (24), then it completes the proof. O

4.2. Proof of Theorem 2 (ii): Odd Numerator. Let m =2p +
1/g, where 2p + 1 and q are relatively prime. Then,

~ 00 (k
Gn(6) = ,;)r((zk+2)q/(2p+ 1))
2 ((zpﬂ)e (49)
AP reraerayeEy
where k= (2p+1)€+r with 0<r<2p. By Lemma 12, we
have

r 2g-1 .
F(zqe+ %) =TI(2qt)(2q)*" g (t + ZJ_q> , (50)

[2

where t:= (r+1)/(2p + 1). It follows that

2p r 0 1 2p+1 ¢
6= Y. 5 . (4 2q>

S5 (t+ (i), \(29)

2p r 1 zq -1 (2p+1
z | st t 4 — et 22— :
F(z r) 2q 29 (29)™
(51)
If we use (24), then we obtain the following.
Theorem 14 (Theorem 2 (ii) again). Let m=(2p+1)/q,

where 2p + 1 and q are relatively prime. Then,

2 . Iy 2p+1
B ¢ r+l ) . ¢
G,(0)= ;F(Zq(r+1)/(2p+1)) 1F2q (1 C2p+1 + 2q° (2q)2q>,

(52)

where

r+1 N j _(r+l r+l N 1 r+1 +2q 1
2p+1 2q \2p+1'2p+1 2q° 2p+1 2q )
(53)



6
Thus, we have
ma2lm 2 r r+1 j CZPH
B, (z,w) = 124 ( 15 tog o]
2n S T(2q(r+1)/(2p+1)) 2p+1 29 (29)

(54)

5. Special Cases

In the last section, we express B,,(z, w) in terms of the gen-
eralized hypergeometric series | F, for a suitable g. However,

in general, it is difficult to find the closed form of | F q(l ;
by, -+, by x) for any by, -+, b,.

5.1. Proof of Theorem 3: The Case When m = 4. In this case,
we show that | F,(1,1/2;x) is represented in terms of the
error function. In fact, we will conclude that

2@

B4(z, w) = Z;azﬁ)ea(zw)z (erf (\/&Zﬂ)) + 1) + W‘; (55)

By Proposition 9, we need to study @(1;b;x) for any
rational number b with 0 <b < 1. It is easy to see that O(1
;15;x) =€ Also, if 0<b<1, then there is a connection
between @(1;b;x) and the incomplete gamma function.

Proposition 15. O satisfies the following identities.

(i) Kummer’s transformation: ®(a;b;x)=e®(b-a;
b;—x)

(ii) If R(b) >NR(a), then the confluent hypergeometric
series @(a; b x) has the integral representation

D(a;b;x) = F(a)rr((lz)_a)‘[oe"”u“‘l(l —uw)™ " du. (56)

The upper incomplete gamma function I'(s,x) and the
lower incomplete gamma function y(s, x) are defined by

(o)
I'(s,x) :J £l dt,
X

: 7
y(s,x) = J e dt.

0

Now, @(1;b;x) can be written in terms of the lower
incomplete gamma function.

Proposition 16. For any 0< b < 1, we have
D(1;b;5x) = (b- 1) x"Py(b - 1, x). (58)
Proof. By Proposition 15 (i), we have

D(1;b;x)=e"D(b-1;b;—x). (59)
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By Proposition 15 (ii), we have

1
F(b) J e—xuuh—ldu

@(b—l;b;—x)zm )

"X

=(b- l)xl_bJ et 2dt = (b- 1D)x' Py (b -1, x).
0

(60)
It completes the proof. O
In particular, if m =4, then we can write G,({) and B,(

z,w) in a simple form using the error function. Recall that
the error function erf (x) is denoted by

erf (x) = \/igretzdt. (61)

It is easy to see that y(1/2, x) = /7 erf (/x).

The following lemma can be proven easily by the inte-
gration parts of the integral.
Lemma 17. For any s, we have

p(s+ 1, x) =sp(s, x) —x'e™. (62)

By Lemma 17, we have

() lae)- 5

=5

By Proposition 16, we have

@(1, : ;x> - "ﬁy(—%,x) = e erf (V) + 1.
(64)

Now, we are ready to express G,({) and B,(z,w) in
terms of the error function.

Theorem 18 (Theorem 3 again). If m =4, then

G,(¢)=Ce (erf (O)+ 1) +

1
T
Thus, we have

B,(z,w) = Z;OCZtDe"‘(ZLD)2 (erf (Vazw) +1) + i—\\;—;. (66)

Proof. By Proposition 9, we have

1

N

If we use (64) and the identity ®(1,1;{) = ¢’, then we

G,(0) @(1, % ;cz) Ho(L18). (o)
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obtain (65). Since B,(z, w) = (2+/a/m)G,(\/azw), we obtain
the formula of B,(z, w). O

5.2. Proof of Theorem 4: The Case when m=1,2/3,1/2. 1t is
surprising that we can obtain the explicit forms of B, (z, w)
, Byj3(z, w), and By, (z, w).

Theorem 19 (Theorem 4 (i) again). If m = I, then

B sinh (\/Z> |

G,(0) = VG (68)
Thus, we have
« sinh (a(zw)'?
Bi(z,w) = %% (69)

Proof. Note that G, ({)=,F,(1;1,3/2;/4). Use the identity

1F2<1;1,;;x> =w. (70)

In fact, the identity (70) can be proven as follows. Note
that

3 o X
F (1,1,—;x>= >
12 2 ;(3/2)kk'
|
N w35 (e Do 35 @k, (2k+1)
2), 22 2 2k o
(71)

It follows that

3\ 4 _ sinh (2V/x)
1F2(1,1,2,x)—]§)(2k+1)!xk— NI (72)

d

In general, the explicit forms of the most hypergeometric
series are unknown. But the very special following the hyper-
geometric series including (70) can be computed.

Proposition 20. For any x, we have

(i) |F5(151,4/13,5/3;x) = 2e032x" 127523 {920 _ 2
sin ((3v/3/2)x"3 + n/6)}

(i) F,(1;1,5/4,6/4,7/4;x)=3/64x"*{sinh (4x!"*) -
sin (4x1%)}

One can find the closed forms of various hypergeometric
series in [11]. In particular, one can find the closed forms of

F(1 5 F 4 5
5 sy T X | = 5T X s
e 3 072’373
P 115 7 P 56 7

s, =, a_;x = ;_)_)_;x >
b 44’4 0347474

in [12, 13], respectively.

Now, we prove Theorem 4 (ii) and (iii) as finding the
closed forms of B,;(z, w) and B,,(z, w) using Proposition
20. Since we have

1;

oY W

it follows that

o’ ol 4 5 o&’zw
Bys(zw) = §G2/3(“3zw) T on 1 F3 (1 ;L 33 27 )

By Proposition 20 (i), we have

(701/2)(z11))”3 N _ 1 3
By;s(z,w) = e {ei“(zw) -2sin (%_ a(zw)'” + g .

9r(zw)*?
(76)
Since we have
1 567 ¢
Gm(c):€1F4(1;1’Z’4_1’Z;4_4)’ (77)
it follows that
4 4 4, .~
o 4 - o 56 7 azw
Biy(zw) = EGI/Z(O‘ Zw) = i 1F4(1 31, YRRV T)'
(78)
By Proposition 20 (ii), we have
o
B, (z,w) = —— {sinh (a(z)"*) - sin (a(zw)"*) ).
) = i (o)) -sin e
(79)

It completes the proof of Theorem 4 (ii) and (iii).

5.3. Proof of Theorem 5. In this section, A(x) ~ B(x) means
that A(x)/B(x) converges to a nonzero constant as x goes
to some number or infinity.

Theorem 21 (Theorem 5 again). Let m be any positive even
integer. Then,

B,,(z,2) ~ " |z|"2as|z| — oo. (80)



Proof. Let m =2p. Then, by Theorem 1 (i),

r+1
@ 1;—;(*’)
( p

_ pal? p2 'd o+l . .
G {%mw@(l’p"P)* ' ‘D(l'““’)}'

(81)

1/pp-1 Id
B o) = S 2T i)

If 0 <r <p -2, then by Proposition 16,
r+1 r+1 b opy1 [(TH1
O(1; — ;(P) = (— —1>e‘ & 1y<— —1,61’),
( p p p
(82)

and @(1;1;¢) =€ It follows that

B pall? 2 _1y<((r+ 1)/p) - LC‘D) -1 ¢
B,,(z,w) = Ere {,ZO PG I((r+1)/p-1) IR

(83)

Since yp((r+1)/p-1,x) — I'((r+1)/p) as x — o0, it
completes the proof. d

In fact, it is easily checked that (80) holds also when m
=1,3/2,1/2 using the explicit forms in Theorem 4. We
can conjecture that (80) holds for any m > 0.

6. Concluding Remarks

In fact, we can consider the more generalized Fock space. Let
dAy(z) = c¢e‘¢(z)dA(z), where dA(z) is the Euclidean area
measure on the complex plane C. We assume that ¢(r) is
radial and increasing on [0,00) with lim,  ¢(r)=oco.
We call the (generalized) Fock space Fi(C) as the set of all
entire functions f in L*(C,dAy). Another simple example

is ¢(r) =In r. In this case, we can show that the Fock kernel
can be written in terms of the Meijer-G function. It will be
interesting that one finds the relation between the other
hypergeometric series and the new Fock kernel with respect

to ¢.
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