
Research Article
On the Fock Kernel for the Generalized Fock Space and
Generalized Hypergeometric Series

Jong-Do Park

Department of Mathematics, Kyung Hee University, Seoul 02447, Republic of Korea

Correspondence should be addressed to Jong-Do Park; mathjdpark@khu.ac.kr

Received 27 April 2021; Accepted 7 August 2021; Published 23 August 2021

Academic Editor: Guozhen Lu

Copyright © 2021 Jong-Do Park. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we compute the reproducing kernel Bm,αðz,wÞ for the generalized Fock space F2
m,αðℂÞ. The usual Fock space is the

case when m = 2. We express the reproducing kernel in terms of a suitable hypergeometric series 1Fq. In particular, we show that
there is a close connection between B4,αðz,wÞ and the error function. We also obtain the closed forms of Bm,αðz,wÞ when m =
1, 2/3, 1/2. Finally, we also prove that Bm,αðz, zÞ ~ eαjzj

m jzjm−2 as ∣z ∣⟶∞.

1. Introduction

For any fixed parameter α > 0, we consider

dλm zð Þ≔ dλm,α zð Þ = cm,αe
−α zj jmdA zð Þ, ð1Þ

where dAðzÞ is the Euclidean area measure on the complex
plane ℂ. Here, cm,α is a normalizing constant so that dλm,α
is a probability measure on ℂ.

We call the generalized Fock space F2
mðℂÞ≔ F2

m,αðℂÞ the
set of all entire functions f in L2ðℂ, dλmðzÞÞ. It is easy to see
that F2

mðℂÞ is a Hilbert space with the inner product:

f , gh i≔
ð
C
f zð Þ �g zð Þdλm zð Þ: ð2Þ

Let fϕjð·Þ: j ∈ℕg be the countable orthonormal basis for

F2
mðℂÞ. Then, the generalized Fock kernel Bmðz,wÞ≔ Bm,αð

z,wÞ for F2
mðℂÞ is defined by

Bm z,wð Þ≔ 〠
j∈ℕ

ϕj zð Þ �ϕj wð Þ: ð3Þ

If m = 2, then F2
2ðℂÞ is the usual Fock space. In fact, it is

well known that B2ðz,wÞ = eαz �w for z,w ∈ℂ. See the detailed

properties on the usual Fock space in the book [1] written by
Zhu. In fact, the explicit form of B2ðz,wÞ is very useful for
studying the properties of the Fock space in [2].

In this paper, we focus on the following natural question.
Question: compute the Fock kernel Bmðz,wÞ for any

positive rational number m.
In the theory of the Bergman kernel, it is difficult to find

the closed form of the Bergman kernel for a general domain.
Instead, in the case of a complex ellipsoid or similar
domains, one can see the expression of the Bergman kernel
in terms of the hypergeometric series in [3, 4].

The generalized hypergeometric series pFqða1,⋯, ap ; b1
,⋯, bq ; xÞ is defined by

pFq a1,⋯, ap ; b1,⋯, bq ; x
� �

= 〠
∞

k=0

a1ð Þk ⋯ ap
� �

k

b1ð Þk ⋯ bq
� �

k

xk

k!
, ð4Þ

where ðaÞk is the Pochhammer symbol defined by

að Þk =
Γ a + kð Þ
Γ að Þ = a a + 1ð Þ⋯ a + k − 1ð Þ, k ≥ 1,

1, k = 0:

0
B@ ð5Þ

If p = q + 1, then the series converges for ∣x ∣ <1 and
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diverges for ∣x ∣ >1. If p < q + 1, then the series converges for
all x. If p > q + 1, then the series converges only at x = 0.

It is well known that the Bergman kernel for the complex
ellipsoid

D p1,⋯, pnð Þ≔ z1,⋯, znð Þ ∈ℂn : z1j j2p1+⋯+ znj j2pn < 1
� �

ð6Þ

is closely connected with 2F1 and its higher dimensional
hypergeometric series (Appell hypergeometric series or
Lauricella hypergeometric series). Using the theory of the
hypergeometric series, new formulas of the Bergman kernel
have been computed in [3, 5–7].

Recently, new interesting generalized Fock spaces have
been studied. In [8], Gonessa investigated the duality on
the generalized Fock space with respect to the minimal
norm. In [9], one can see the boundedness of the Bergman
projection on the generalized Fock-Sobolev space with
respect to dλmðzÞ. But they did not obtain the explicit forms
of the integral kernel. In [10], Cho et al. computed the Fock

kernel for the space with respect to dμαðzÞ = cαjzj2αe−jzj
2
dV

ðzÞ. For α > 0, the kernel Kαðz,wÞ is represented by Kαðz,
wÞ= 1F1ðn, n + α ; hz,wiÞ for z,w ∈ℂn.

The main theorem of this paper is the following. At first,
we consider the case when m is a positive integer.

Theorem 1. Let m be any positive integer and let ζ≔ α2/mz�w.

(i) If m is even, then

Bm z,wð Þ = mα2/m

2π
〠

m/2ð Þ−1

r=0

ζr

Γ 2r + 2ð Þ/mð Þ 1F1 1 ; 2r + 2
m

; ζm/2
� �

:

ð7Þ

(ii) If m is odd, then

Bm z,wð Þ = mα2/m

2π
〠
m−1

r=0

ζr

Γ 2r + 2ð Þ/mð Þ 1F2 1 ; r + 1
m

, r + 1
m

+ 1
2
; ζ

m

4

� �
:

ð8Þ

Now, we generalize to the case when m is a positive
rational number.

Theorem 2. Let m be any positive rational number and let
ζ≔ α2/mz�w.

(i) If m = 2p/q, where 2p and q are relatively prime, then

Bm z,wð Þ = mα2/m

2π
〠
p−1

r=0

ζr

Γ q r + 1ð Þ/pð Þ 1Fq 1 ; r + 1
p + j

!

q ; ζ
p

qq

 !
,

ð9Þ

where

r + 1
p + j

!

q = r + 1
p

, r + 1
p

+ 1
q
, r + 1

p
+ 2
q
,⋯, r + 1

p
+ q − 1

q

� �
:

ð10Þ

(ii) If m = ð2p + 1Þ/q, where 2p + 1 and q are relatively
prime, then

Bm z,wð Þ = mα2/m

2π
〠
2p

r=0

ζr

Γ 2q r + 1ð Þ/ 2p + 1ð Þð Þ 1F2q

� 1 ; r + 1
2p + 1

+ j
!

2q ; ζ2p+1

2qð Þ2q
 !

,
ð11Þ

where

r + 1
2p + 1

+ j
!

2q = r + 1
2p + 1

, r + 1
2p + 1

+ 1
2q

,⋯, r + 1
2p + 1

+ 2q − 1
2q

� �
:

ð12Þ

In particular, if m = 4, then there is a close connection
between B4ðz,wÞ and the error function.

Theorem 3. Let α > 0. Then,

B4 z,wð Þ = 2α
π
z�weα z �wð Þ2 erf

ffiffiffi
α

p
z�w

� �
+ 1

� �
+ 2

ffiffiffi
α

p
π
ffiffiffi
π

p , ð13Þ

where erf ðxÞ is the error function denoted by

erf xð Þ = 2ffiffiffi
π

p
ðx
0
e−t

2
dt: ð14Þ

In general, it is difficult to find the closed form of the
generalized hypergeometric series pFq. Using the hypergeo-
metric series in Theorems 1 and 2, we obtain the following
closed forms for m = 1, 2/3, 1/2.

Theorem 4. Let α > 0. Then,

(i) B1ðz,wÞ = ðα/2πÞðsinh ðαðz�wÞ1/2Þ/ðz�wÞ1/2Þ,
(ii) B2/3ðz,wÞ = αe−α/2ðz �wÞ1/3 /9πðz�wÞ2/3fe3/2αðz �wÞ1/3 − 2

sin ðð ffiffiffi
3

p
/2Þαðz�wÞ1/3 + ðπ/6ÞÞg,

(iii) B1/2ðz,wÞ = α/8πðz�wÞ3/4fsinh ðαðz�wÞ1/4Þ − sin ðα
ðz�wÞ1/4Þg.

Finally, we discuss the asymptotic behavior of the Fock
kernel. Now, we write AðxÞ ~ BðxÞ if AðxÞ/BðxÞ converges
to nonzero constant as x goes to some number or infinity.
Denote KDðz,wÞ by the Bergman kernel for the bounded
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domain D ⊂ℂn. It is a well-known fact that KDðz, zÞ
diverges to infinity under some condition. More precisely,
if dðzÞ is the distance to the boundary bD, then

KD z, zð Þ ~ d zð Þn+1, ð15Þ

as z approaches the strongly pseudoconvex boundary point
p ∈ bD.

Using the properties of the incomplete gamma function,
we can obtain the similar result also for the generalized Fock
space.

Theorem 5. Let m be any positive even integer. Then,

Bm z, zð Þ ~ eα zj jm zj jm−2 as∣z∣⟶∞: ð16Þ

Remark 6. The usual Fock kernel B2ðz,wÞ = eαz �w is very sim-
ple but plays an important role in the research of the func-
tion theoretic properties of the Fock space F2

2,αðℂÞ.
Theorems 1 and 2 in this paper are the first result on the
generalized Fock space F2

m,αðℂÞ for any m ≠ 2. Also, we hope
that the explicit formulas in Theorems 3 and 4 can give a
clue on studying optimal pointwise estimates for Bmðz,wÞ
for some m.

2. Computation of Bmðz,wÞ
Consider dλmðzÞ = cm,αe

−αjzjmdAðzÞ, where cm,α is a normal-
izing constant so that dλmðzÞ is a probability measure on
ℂ. In fact, we can obtain cm,α from the following lemma.

Lemma 7. For any nonnegative integers k, we have

∥zk∥2 = 2π

mα 2k+2ð Þ/m Γ
2k + 2
m

� �
, ð17Þ

where Γð·Þ is the usual gamma function. In particular, we
have

cm,α =
mα2/m

2πΓ 2/mð Þ : ð18Þ

Proof. Recall that the usual gamma function Γ is defined by

Γ zð Þ =
ð∞
0
xz−1e−xdx,R zð Þ > 0: ð19Þ

Using the polar coordinate change, we have

∥zk∥2 =
ð
ℂ
zk
			 			2e−α zj jmdA zð Þ = 2π

ð∞
0
r2k+1e−αr

m
dr: ð20Þ

If we can substitute s = αrm, then by (19)

∥zk∥2 = 2π
ð∞
0

s
α


 � 2k+1ð Þ/m
e−s

1
mα1/m

s 1/mð Þ−1ds

= 2π
mα 2k+2ð Þ/m

ð∞
0
s 2k+2ð Þ/m−1e−sds = 2π

mα 2k+2ð Þ/m Γ
2k + 2
m

� �
:

ð21Þ

It completes the proof. ☐

It follows that the reproducing kernel Bmðz,wÞ is written
as

Bm z,wð Þ = 〠
∞

k=0

z�wð Þk
∥zk∥2

= mα2/m

2π 〠
∞

k=0

α2/mz�w
� �k

Γ 2k + 2ð Þ/mð Þ : ð22Þ

Throughout this paper, we are focusing on computing
the function

Gm ζð Þ≔ 〠
∞

k=0

ζk

Γ 2k + 2ð Þ/mð Þ : ð23Þ

Then, we have

Bm z,wð Þ = mα2/m

2π Gm α2/mz�w
� �

: ð24Þ

Remark 8. If m = 2, then G2ðζÞ =∑∞
k=0ζ

k/k! = eζ. In this case,

B2 z,wð Þ = α

π
eαz �w, ð25Þ

which is just the usual Fock kernel.

Now, we investigate the relation between GmðζÞ and gen-
eralized hypergeometric series for any positive rational num-
ber m.

3. Proof of Theorem 1

In this section, we express the Fock kernel Bmðz,wÞ in terms
of the suitable hypergeometric series pFq when m is a posi-
tive integer. The crucial term for computing the form of
Bmðz,wÞ is Γðð2k + 2Þ/mÞ.
3.1. Proof of Theorem 1 (i). Assume thatm is an even integer.
Let m = 2p for some p ∈ℕ. Then, we have

Gm ζð Þ = 〠
∞

k=0

ζk

Γ k + 1ð Þ/pð Þ : ð26Þ

Theorem 1 (i) can be easily proven by the following
proposition using (24).
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Proposition 9. Let m be any even positive integer, and let ζ
≔ α2/mz�w. Then, we have

Gm ζð Þ = 〠
m/2ð Þ−1

r=0

ζr

Γ 2r + 2ð Þ/mð ÞΦ 1 ; 2r + 2
m

; ζm/2
� �

, ð27Þ

where Φða ; b ; xÞ: = 1F1ða ; b ; xÞ is the confluent hypergeo-
metric series.

Proof. Note that there exist unique integers ℓ and r such that
k = pℓ + r with 0 ≤ r ≤ p − 1. Thus, we have

Gm ζð Þ = 〠
p−1

r=0
ζr 〠

∞

ℓ=0

ζp
� �ℓ

Γ ℓ + r + 1ð Þ/pð Þð Þ = 〠
∞

r=0

ζr

Γ r + 1ð Þ/pð Þ〠
∞

ℓ=0

ζp
� �ℓ
r + 1ð Þ/pð Þℓ

:

ð28Þ

Note that

Φ 1 ; b ; xð Þ= 1F1 1 ; b ; xð Þ = 〠
∞

k=0

1
bð Þℓ

xℓ: ð29Þ

It follows that

Gm ζð Þ = 〠
p−1

r=0

ζr

Γ r + 1ð Þ/pð ÞΦ 1 ; r + 1
p

; ζp
� �

, ð30Þ

which completes the proof. ☐

3.2. Proof of Theorem 1 (ii). Assume thatm is an odd integer.
Let m = 2p + 1 for some p ∈ℕ. Then,

Gm ζð Þ = 〠
∞

k=0

ζk

Γ 2k + 2ð Þ/ 2p + 1ð Þð Þ : ð31Þ

Theorem 1 (ii) can be easily proven by the following
proposition using (24).

Proposition 10. Let m be any odd positive integer, and let
ζ≔ α2/mz�w. Then,

Gm ζð Þ = 〠
m−1

r=0

ζr

Γ 2r + 2ð Þ/mð Þ 1F2 1 ; r + 1
m

, r + 1
m

+ 1
2
; ζ

m

4

� �
:

ð32Þ

Proof. Note that there exist unique integers ℓ and r such that
k = ð2p + 1Þℓ + r with 0 ≤ r ≤ 2p. Then,

Gm ζð Þ = 〠
2p

r=0
ζr 〠

∞

ℓ=0

ζ2p+1

 �ℓ

Γ 2ℓ + 2r + 2ð Þ/ 2p + 1ð Þð Þð Þ : ð33Þ

Now, we will use the identity

Γ 2ℓ + 2tð Þ = 22ℓ tð Þℓ t + 1
2

� �
ℓ

Γ 2tð Þ, ð34Þ

for any nonnegative integer ℓ and t ∈ℝ. In fact, the identity
(34) can be proven by

Γ 2ℓ + 2tð Þ
Γ 2tð Þ = 2tð Þ 2t + 1ð Þ⋯ 2t + 2ℓ − 1ð Þ

= 22ℓt t + 1ð Þ · t + ℓ − 1ð Þ t + 1
2

� �
t + 3

2

� �
⋯ t + 2ℓ − 1

2

� �

= 22ℓ tð Þℓ t + 1
2

� �
ℓ

:

ð35Þ

Then, by (34), we have

Gm ζð Þ = 〠
2p

r=0

ζr

Γ 2r + 2ð Þ/ 2p + 1ð Þð Þ〠
∞

ℓ=0

1
r + 1ð Þ/ 2p + 1ð Þð Þℓ r + 1ð Þ/2p + 1ð Þ + 1/2ð Þℓ

ζ2p+1

4

 !ℓ

= 〠
2p

r=0

ζr

Γ 2r + 2ð Þ/ 2p + 1ð Þð Þ 1F2 1 ; r + 1
2p + 1 ,

r + 1
2p + 1 + 1

2 ; ζ
2p+1

4

 !
,

ð36Þ

since 1F2ð1 ; b1, b2 ; xÞ =∑∞
ℓ=0x

ℓ/ðb1Þℓðb2Þℓ. ☐

4. Proof of Theorem 2

In this section, we focus on computing Gm when m is a pos-
itive rational number.

4.1. Proof of Theorem 2 (i): Even Numerator. Let m = 2p/q,
where 2p and q are relatively prime. Then, we have

Gm ζð Þ = 〠
∞

k=0

ζk

Γ k + 1ð Þq/pð Þ = 〠
p−1

r=0
ζr 〠

∞

ℓ=0

ζp
� �ℓ

Γ qℓ + q r + 1ð Þ/pð Þð Þ ,

ð37Þ

where k = pℓ + r with 0 ≤ r ≤ p − 1.

Lemma 11. The gamma function Γ satisfies the identity

Γ xð ÞΓ x + 1
n

� �
Γ x + 2

n

� �
⋯ Γ x + n − 1

n

� �
= 2πð Þn−1/2n 1/2ð Þ−nxΓ nxð Þ:

ð38Þ

Using the above lemma, we can prove the following.

Lemma 12.

Γ qℓ + qtð Þ = qqℓ
Yq−1
j=0

t + j
q

� �
ℓ

Γ qtð Þ: ð39Þ

Proof. We will prove it in two different methods. Using the
property Γðx + 1Þ = xΓðxÞ, we have

Γ qℓ + qtð Þ
Γ qtð Þ =

Yqℓ−1
i=0

qt + ið Þ = qqℓ
Yqℓ−1
i=0

t + i
q

� �
: ð40Þ

Then, there exists x, y ∈ℤ such that i = qj + y with 0 ≤ j
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≤ ℓ − 1 and 0 ≤ y ≤ q − 1. It follows that

Yqℓ−1
i=0

t + i
q

� �
=
Yq−1
j=0

Yℓ−1
x=0

t + j
q
+ x

� �
=
Yq−1
j=0

t + j
q

� �
ℓ

: ð41Þ

It can be proven also using Lemma 11. Note that

Γ qℓ + qtð Þ = Γ ℓ + tð ÞΓ ℓ + t + 1/qð Þð Þ⋯ Γ ℓ + t + q − 1ð Þ/qð Þð Þ
2πð Þ q−1ð Þ/2q 1/2ð Þ−q ℓ+tð Þ

= Γ tð ÞΓ t + 1/qð Þ⋯ Γ t + q − 1ð Þ/qð Þ
2πð Þ q−1ð Þ/2q 1/2ð Þ−q ℓ+tð Þ tð Þℓ t + 1

q

� �
ℓ

⋯ t + q − 1
q

� �
ℓ

= 2πð Þ q−1ð Þ/2q 1/2ð Þ−qtΓ qtð Þ
2πð Þ q−1ð Þ/2q 1/2ð Þ−q ℓ+tð Þ tð Þℓ t + 1

q

� �
ℓ

⋯ t + q − 1
q

� �
ℓ

= qqℓΓ qtð Þ tð Þℓ t + 1
q

� �
ℓ

⋯ t + q − 1
q

� �
ℓ

:

ð42Þ

☐

Now, we prove Theorem 2 (i) using Lemma 12.

Theorem 13 (Theorem 2 (i) again). Let m = 2p/q, where 2p
and q are relatively prime. Then,

Gm ζð Þ = 〠
p−1

r=0

ζr

Γ q r + 1ð Þ/pð Þ 1Fq 1 ; r + 1
p + j

!

q ; ζ
p

qq

 !
, ð43Þ

where

r + 1
p + j

!

q = r + 1
p

, r + 1
p

+ 1
q
, r + 1

p
+ 2
q
,⋯, r + 1

p
+ q − 1

q

� �
:

ð44Þ

Thus, we have

Bm z,wð Þ = mα2/m

2π
〠
p−1

r=0

ζr

Γ q r + 1ð Þ/pð Þ 1Fq 1 ; r + 1
p + j

!

q ; ζ
p

qq

 !
:

ð45Þ

Proof. By Lemma 12, we have

Gm ζð Þ = 〠
p−1

r=0

ζr

Γ q r + 1ð Þ/pð Þ〠
∞

ℓ=0

1Qq−1
j=0 r + 1ð Þ/p + j/qð Þð Þℓ

ζp

qq

� �ℓ

:

ð46Þ

By the definition (4), we see that

1Fq 1 ; b1,⋯, bq ; x
� �

= 〠
∞

ℓ=0

xℓ

b1ð Þℓ ⋯ bq
� �

ℓ

: ð47Þ

It follows that

Gm ζð Þ = 〠
p−1

r=0

ζr

Γ q r + 1ð Þ/pð Þ 1Fq

� 1 ; r + 1
p

, r + 1
p

+ 1
q
,⋯, r + 1

p
+ q − 1

q
; ζ

p

qq

� �
:

ð48Þ

If we use (24), then it completes the proof. ☐

4.2. Proof of Theorem 2 (ii): Odd Numerator. Let m = 2p +
1/q, where 2p + 1 and q are relatively prime. Then,

Gm ζð Þ = 〠
∞

k=0

ζk

Γ 2k + 2ð Þq/ 2p + 1ð Þð Þ

= 〠
2p

r=0
ζr 〠

∞

ℓ=0

ζ2p+1

 �ℓ

Γ 2qℓ + 2q r + 1ð Þ/ 2p + 1ð Þð Þð Þ ,
ð49Þ

where k = ð2p + 1Þℓ + r with 0 ≤ r ≤ 2p. By Lemma 12, we
have

Γ 2qℓ + 2q r + 1ð Þ
2p + 1

� �
= Γ 2qtð Þ 2qð Þ2qℓ

Y2q−1
j=0

t + j
2q

� �
ℓ

, ð50Þ

where t ≔ ðr + 1Þ/ð2p + 1Þ. It follows that

Gm ζð Þ = 〠
2p

r=0

ζr

Γ 2qtð Þ〠
∞

ℓ=0

1Q2q−1
j=0 t + j/2qð Þð Þℓ

ζ2p+1

2qð Þ2q
 !ℓ

= 〠
2p

r=0

ζr

Γ 2qtð Þ 1F2q 1 ; t, t + 1
2q ,⋯,t + 2q − 1

2q ; ζ2p+1

2qð Þ2q
 !

:

ð51Þ

If we use (24), then we obtain the following.

Theorem 14 (Theorem 2 (ii) again). Let m = ð2p + 1Þ/q,
where 2p + 1 and q are relatively prime. Then,

Gm ζð Þ = 〠
2p

r=0

ζr

Γ 2q r + 1ð Þ/ 2p + 1ð Þð Þ 1F2q 1 ; r + 1
2p + 1

+ j
!

2q ; ζ2p+1

2qð Þ2q
 !

,

ð52Þ

where

r + 1
2p + 1

+ j
!

2q = r + 1
2p + 1

, r + 1
2p + 1

+ 1
2q

,⋯, r + 1
2p + 1

+ 2q − 1
2q

� �
:

ð53Þ
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Thus, we have

Bm z,wð Þ = mα2/m

2π
〠
2p

r=0

ζr

Γ 2q r + 1ð Þ/ 2p + 1ð Þð Þ 1F2q 1 ; r + 1
2p + 1

+ j
!

2q
; ζ2p+1

2qð Þ2q
 !

:

ð54Þ

5. Special Cases

In the last section, we express Bmðz,wÞ in terms of the gen-
eralized hypergeometric series 1Fq for a suitable q. However,
in general, it is difficult to find the closed form of 1Fqð1 ;
b1,⋯, bq ; xÞ for any b1,⋯, bq.

5.1. Proof of Theorem 3: The Case When m = 4. In this case,
we show that 1F1ð1, 1/2 ; xÞ is represented in terms of the
error function. In fact, we will conclude that

B4 z,wð Þ = 2α
π
z�weα z �wð Þ2 erf

ffiffiffi
α

p
z�w

� �
+ 1

� �
+ 2 ffiffiffi

α
p

π
ffiffiffi
π

p : ð55Þ

By Proposition 9, we need to study Φð1 ; b ; xÞ for any
rational number b with 0 < b ≤ 1. It is easy to see that Φð1
; 1 ; xÞ = ex. Also, if 0 < b < 1, then there is a connection
between Φð1 ; b ; xÞ and the incomplete gamma function.

Proposition 15. Φ satisfies the following identities.

(i) Kummer’s transformation: Φða ; b ; xÞ = exΦðb − a ;
b;−xÞ

(ii) If RðbÞ >RðaÞ, then the confluent hypergeometric
series Φða ; b ; xÞ has the integral representation

Φ a ; b ; xð Þ = Γ bð Þ
Γ að ÞΓ b − að Þ

ð1
0
exuua−1 1 − uð Þb−a−1du: ð56Þ

The upper incomplete gamma function Γðs, xÞ and the
lower incomplete gamma function γðs, xÞ are defined by

Γ s, xð Þ =
ð∞
x
ts−1e−tdt,

γ s, xð Þ =
ðx
0
ts−1e−tdt:

ð57Þ

Now, Φð1 ; b ; xÞ can be written in terms of the lower
incomplete gamma function.

Proposition 16. For any 0 < b < 1, we have

Φ 1 ; b ; xð Þ = b − 1ð Þexx1−bγ b − 1, xð Þ: ð58Þ

Proof. By Proposition 15 (i), we have

Φ 1 ; b ; xð Þ = exΦ b − 1 ; b;−xð Þ: ð59Þ

By Proposition 15 (ii), we have

Φ b − 1 ; b;−xð Þ = Γ bð Þ
Γ b − 1ð ÞΓ 1ð Þ

ð1
0
e−xuub−2du

= b − 1ð Þx1−b
ðx
0
e−t tb−2dt = b − 1ð Þx1−bγ b − 1, xð Þ:

ð60Þ

It completes the proof. ☐

In particular, if m = 4, then we can write G4ðζÞ and B4ð
z,wÞ in a simple form using the error function. Recall that
the error function erf ðxÞ is denoted by

erf xð Þ = 2ffiffiffi
π

p
ðx
0
e−t

2
dt: ð61Þ

It is easy to see that γð1/2, xÞ = ffiffiffi
π

p erf ð ffiffiffi
x

p Þ.
The following lemma can be proven easily by the inte-

gration parts of the integral.

Lemma 17. For any s, we have

γ s + 1, xð Þ = sγ s, xð Þ − xse−x: ð62Þ

By Lemma 17, we have

γ −
1
2 , x

� �
= −2γ 1

2 , x
� �

−
2e−xffiffiffi

x
p = −2

ffiffiffi
π

p
erf

ffiffiffi
x

p� �
−
2e−xffiffiffi

x
p :

ð63Þ

By Proposition 16, we have

Φ 1, 12 ; x
� �

= −
1
2 e

x ffiffiffi
x

p
γ −

1
2 , x

� �
=

ffiffiffiffiffiffi
πx

p
ex erf

ffiffiffi
x

p� �
+ 1:

ð64Þ

Now, we are ready to express G4ðζÞ and B4ðz,wÞ in
terms of the error function.

Theorem 18 (Theorem 3 again). If m = 4, then

G4 ζð Þ = ζeζ
2 erf ζð Þ + 1ð Þ + 1ffiffiffi

π
p : ð65Þ

Thus, we have

B4 z,wð Þ = 2α
π
z�weα z �wð Þ2 erf

ffiffiffi
α

p
z�w

� �
+ 1

� �
+ 2

ffiffiffi
α

p
π
ffiffiffi
π

p : ð66Þ

Proof. By Proposition 9, we have

G4 ζð Þ = 1ffiffiffi
π

p Φ 1, 12 ; ζ2
� �

+ ζΦ 1, 1 ; ζ2

 �

: ð67Þ

If we use (64) and the identity Φð1, 1 ; ζÞ = eζ, then we

6 Journal of Function Spaces



obtain (65). Since B4ðz,wÞ = ð2 ffiffiffi
α

p /πÞG4ð
ffiffiffi
α

p
z�wÞ, we obtain

the formula of B4ðz,wÞ. ☐

5.2. Proof of Theorem 4: The Case when m = 1, 2/3, 1/2. It is
surprising that we can obtain the explicit forms of B1ðz,wÞ
, B2/3ðz,wÞ, and B1/2ðz,wÞ.

Theorem 19 (Theorem 4 (i) again). If m = 1, then

G1 ζð Þ =
sinh

ffiffiffi
ζ

p
 �
ffiffiffi
ζ

p : ð68Þ

Thus, we have

B1 z,wð Þ = α

2π

sinh α z�wð Þ1/2� �
z�wð Þ1/2

: ð69Þ

Proof. Note that G1ðζÞ= 1F2ð1 ; 1, 3/2 ; ζ/4Þ. Use the identity

1F2 1 ; 1, 32 ; x
� �

= sinh 2 ffiffiffi
x

p� �
2 ffiffiffi

x
p : ð70Þ

In fact, the identity (70) can be proven as follows. Note
that

1F2 1 ; 1, 32 ; x
� �

= 〠
∞

k=0

xk

3/2ð Þkk!
,

3
2

� �
k

k! = 3
2 · 52 ⋯ k + 1

2

� �
k! = 3 · 5⋯ 2k + 1ð Þ

2k
k! = 2k + 1ð Þ!

4k
:

ð71Þ

It follows that

1F2 1 ; 1, 32 ; x
� �

= 〠
∞

k=0

4k
2k + 1ð Þ! x

k = sinh 2 ffiffiffi
x

p� �
2 ffiffiffi

x
p : ð72Þ

☐

In general, the explicit forms of the most hypergeometric
series are unknown. But the very special following the hyper-
geometric series including (70) can be computed.

Proposition 20. For any x, we have

(i) 1F3ð1 ; 1, 4/3, 5/3 ; xÞ = 2eð−3/2Þx
1/3 /27x2/3feð9/2Þx1/3 − 2

sin ðð3 ffiffiffi
3

p
/2Þx1/3 + π/6Þg

(ii) 1F4ð1 ; 1, 5/4, 6/4, 7/4 ; xÞ = 3/64x3/4fsinh ð4x1/4Þ −
sin ð4x1/4Þg

One can find the closed forms of various hypergeometric
series in [11]. In particular, one can find the closed forms of

1F3 1 ; 1, 43 ,
5
3 ; x

� �
= 0F2 ; 43 ,

5
3 ; x

� �
,

1F4 1 ; 1, 54 ,
6
4 ,

7
4 ; x

� �
= 0F3 ; 54 ,

6
4 ,

7
4 ; x

� �
,

ð73Þ

in [12, 13], respectively.
Now, we prove Theorem 4 (ii) and (iii) as finding the

closed forms of B2/3ðz,wÞ and B1/2ðz,wÞ using Proposition
20. Since we have

G2/3 ζð Þ = 1
2 1F3 1 ; 1, 43 ,

5
3 ; ζ

27

� �
, ð74Þ

it follows that

B2/3 z,wð Þ = α3

3πG2/3 α3z�w
� �

= α3

6π 1F3 1 ; 1, 43 ,
5
3 ; α

3z�w
27

� �
:

ð75Þ

By Proposition 20 (i), we have

B2/3 z,wð Þ = αe −α/2ð Þ z �wð Þ1/3

9π z�wð Þ2/3 e
3
2α z �wð Þ1/3 − 2 sin

ffiffiffi
3

p

2 α z�wð Þ1/3 + π

6

 !( )
:

ð76Þ

Since we have

G1/2 ζð Þ = 1
6 1F4 1 ; 1, 54 ,

6
4 ,

7
4 ; ζ

44
� �

, ð77Þ

it follows that

B1/2 z,wð Þ = α4

4πG1/2 α4z�w
� �

= α4

24π 1F4 1 ; 1, 54 ,
6
4 ,

7
4 ; α

4z�w

44
� �

:

ð78Þ

By Proposition 20 (ii), we have

B1/2 z,wð Þ = α

8π z�wð Þ3/4
sinh α z�wð Þ1/4� �

− sin α z�wð Þ1/4� �� �
:

ð79Þ

It completes the proof of Theorem 4 (ii) and (iii).

5.3. Proof of Theorem 5. In this section, AðxÞ ~ BðxÞ means
that AðxÞ/BðxÞ converges to a nonzero constant as x goes
to some number or infinity.

Theorem 21 (Theorem 5 again). Let m be any positive even
integer. Then,

Bm z, zð Þ ~ eα zj jm zj jm−2as∣z∣⟶∞: ð80Þ
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Proof. Let m = 2p. Then, by Theorem 1 (i),

B2p z,wð Þ = pα1/p

2π 〠
p−1

r=0

ζr

Γ r + 1ð Þ/pð ÞΦ 1 ; r + 1
p

; ζp
� �

= pα1/p

2π 〠
p−2

r=0

ζr

Γ r + 1ð Þ/pð ÞΦ 1 ; r + 1
p

; ζp
� �

+ ζp−1Φ 1 ; 1 ; ζp
� �( )

:

ð81Þ

If 0 ≤ r ≤ p − 2, then by Proposition 16,

Φ 1 ; r + 1
p

; ζp
� �

= r + 1
p

− 1
� �

eζ
p

ζp−r−1γ
r + 1
p

− 1, ζp
� �

,

ð82Þ

and Φð1 ; 1 ; ζpÞ = eζ
p
. It follows that

B2p z,wð Þ = pα1/p

2π 〠
p−2

r=0
eζ

p

ζp−1
γ r + 1ð Þ/pð Þ − 1, ζp
� �
Γ r + 1ð Þ/p − 1ð Þ + ζp−1eζ

p

( )
:

ð83Þ

Since γððr + 1Þ/p − 1, xÞ⟶ Γððr + 1Þ/pÞ as x⟶∞, it
completes the proof. ☐

In fact, it is easily checked that (80) holds also when m
= 1, 3/2, 1/2 using the explicit forms in Theorem 4. We
can conjecture that (80) holds for any m > 0.

6. Concluding Remarks

In fact, we can consider the more generalized Fock space. Let
dλϕðzÞ = cϕe−ϕðzÞdAðzÞ, where dAðzÞ is the Euclidean area
measure on the complex plane ℂ. We assume that ϕðrÞ is
radial and increasing on ½0,∞Þ with limr⟶∞ϕðrÞ =∞.
We call the (generalized) Fock space F2

ϕðℂÞ as the set of all
entire functions f in L2ðℂ, dλϕÞ. Another simple example
is ϕðrÞ = ln r. In this case, we can show that the Fock kernel
can be written in terms of the Meijer-G function. It will be
interesting that one finds the relation between the other
hypergeometric series and the new Fock kernel with respect
to ϕ.
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