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Jensen’s and its related inequalities have attracted the attention of several mathematicians due to the fact that Jensen’s inequality
has numerous applications in almost all disciplines of mathematics and in other fields of science. In this article, we propose new
bounds for the difference of two sides of Jensen’s inequality in terms of power means. An example has been presented for the
importance and support of the main results. Related results have been given in quantum calculus. As consequences,
improvements of quantum integral version of Hermite-Hadamard inequality have been derived. The obtained inequalities have
been applied for some well-known inequalities such as Hermite-Hadamrd, Hölder, and power mean inequalities. Finally, some
applications are given in information theory. The tools performed for obtaining the main results may be applied to obtain
more results for other inequalities.

1. Introduction

There is no doubt that one of the most important classes of
functions is the class of convex functions. The beauty of con-
vex functions is due to its unique graphical representation,
geometrical interpretation, and developments in the theory
of inequalities. There are numerous applicable inequalities
which have been established for this class of functions such
as Jensen’s, the Jensen-Steffensen, and majorization inequal-
ities [1, 2]. One of the most important and widely applicable
inequalities which has attracted the attention of many math-
ematicians is the Jensen inequality [2 , p. 43]. According to
this inequality, if ϕ : ½α1, α2�⟶ℝ is a convex function
and xi ∈ ½α1, α2�, pi ≥ 0 for each i ∈ f1, 2,⋯, ng with Pn ≔
∑n

i=1pi > 0, then

ϕ
∑n

i=1xipi
Pn

� �
≤

1
Pn

〠
n

i=1
piϕ xið Þ: ð1Þ

The inequality in (1) flips when the function is concave.

The integral version of the Jensen inequality is presented
in the following theorem [3].

Theorem 1. Suppose that ½α1, α2� is an interval and g1, g2
: ½a1, a2�⟶ℝ be functions such that g1ðyÞ ∈ ½α1, α2� for y
∈ ½a1, a2�: Let the function ϕ : ½α1, α2�⟶ℝ be convex and
the functions g2, g1g2, ð f ∘ g1Þ:g2 be integrable. Also, assume
that g2ðyÞ ≥ 0 for all y ∈ ½a1, a2� and

Ð a2
a1
g2ðyÞdy = Γ > 0, then

ϕ
1
Γ

ða2
a1

g1 yð Þg2 yð Þdy
 !

≤
1
Γ

ða2
a1

ϕ ∘ g1ð Þ yð Þg2 yð Þdy: ð2Þ

This inequality has been utlized in Economics [4], Engi-
neering [5], Optimization [6], Finance [7], Statistics [8], and
Information theory [3, 9, 10]. For a particular convex func-
tion, this inequality provides many other inequalities such
as AM-GM, Hölder and Ky Fan inequalities.

In the literature, discrepancy between the two sides of
Jensen’s inequality has been studied by several mathemati-
cians in different directions which provides error bounds
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for certain approximations. In 2015, Costarelli and Spigler
[11] studied the discrepancy between the right and left sides
of Jensen’s inequality by using convex functions from the class
of C2 functions as well as the class of merely Lipschitz contin-
uous functions. Some illustrative examples are presented and
compared the bounds with some existing bounds. In 2018,
Pec̆arić et al. [12] focused to find the bounds for the difference
of two sides of Jensen’s inequality. They considered some
Green convex functions and their related identities and
derived bounds for the Jensen gap for the class of C2 functions
without using convexity condition. In particular, they have
applied the Hölder inequality. Related discrete results have
also been obtained, and several applications in information
theory are presented. In 2020, Khan et al. [3] introduced a
new method for the derivation of bounds using higher-order
convex functions that is 4-convexity. First of all, they obtained
an identity for the Jensen difference in terms of Green convex
functions and double derivative of a function. Further, they
obtained bounds by using 4-convexity and some properties
of absolute function. Some examples are considered for their
main results and compared with earlier bounds. Also, several
applications for some well-known inequalities such as Hölder
and Hermite-Hadmard inequalities have been given. At the
end, several applications in information theory also presented.
Related discrete results are given in [13]. In 2021, Khan et al.
[14] further modified the method given in [3, 13] and derived
several results for Jensen and related inequalities. In this
method, they have used real weights and found the integrals
of some functions which pertaining Green functions, in a very
simple way with the help of the obtained identity for the Jen-
sen gap. By virtue of this procedure, they were able to obtain
bounds for the Jensen-Steffensen and converse of Jensen’s
inequalities. For more interesting results related to the cele-
brated Jensen’s inequality, we recommend [15–17].

The main results of this manuscript utilize power means
and its related inequalities; therefore, we want to mention
them in the following part of this section. The following
well-known power means and their monotonicity are given
in [18, p.19]:

For two positive real n-tuples x = ðx1,⋯, xnÞ and p =
ðp1,⋯, pnÞ, the power mean of order κ ∈ℝ is defined by

Mκ x ; pð Þ =

1
Pn

〠
n

i=1
pix

κ
i

 !1/κ

, if κ ≠ 0,

Yn
i=1

xpii

 !1/Pn

, if κ = 0,

8>>>>>><
>>>>>>:

ð3Þ

where Pn =∑n
i=1pi.

For the above n-tuples, the quasiarithmetic mean is
defined by

~Mh x ; pð Þ = h−1
1
Pn

〠
n

i=1
pih xið Þ

 !
, ð4Þ

where h is a strictly monotone and continuous function.

The integral power mean can be defined as follows: If p,
g : ½a, b�⟶ R+ and g are integrable functions, then the inte-
gral power mean of order κ ∈ℝ is defined by

�Mκ g ; pð Þ =

1Ð b
ap ωð Þdω

ðb
a
p ωð Þgκ ωð Þdω

 !1/κ

, if κ ≠ 0,

exp
Ð b
ap ωð Þ log g ωð ÞdωÐ b

ap ωð Þdω

 !
, if κ = 0:

8>>>>><
>>>>>:

ð5Þ

If κ1 ≤ κ2, then

Mκ1
x ; pð Þ ≤Mκ2

x ; pð Þ, ð6Þ

�Mκ1
g ; pð Þ ≤ �Mκ2

g ; pð Þ: ð7Þ
The main aim of this paper is to obtain new interesting

bounds for the discrepancy of the two sides of the Jensen
inequality using new tools. The bounds pertain power means.
We give an example, which shows that the bounds obtained in
this paper are better than the earlier ones. We proved Jensen’s
inequality for quantum integrals and also derived its improve-
ments. As applications, Hermite-Hadamard inequality and its
improvements have been deduced for q-integrals.We also give
applications for some well-known inequalities such as Her-
mite-Harmard, Hölder, power, and quasiarithmetic mean
inequalities. At the end, we focused to give applications for
Shannon-entropy, Csiszár, and Zipf-Mandelbrot entropy etc.

2. Main Results

We begin by presenting our first major finding.

Theorem 2. Let ϕ : ½a, b�⟶ℝ be a convex function, xi ∈
½a, b�, pi > 0 for i = 1, 2,⋯, n with Pn =∑n

i=1pi. Then, for s ≥
1 and r ≤ 1, the following inequalities hold:

Mr y ; pð Þ ≤ 1
Pn

〠
n

i=1
piϕ xið Þ − ϕ �xð Þ ≤Ms y ; pð Þ, ð8Þ

where �x = ð1/PnÞ∑n
i=1pixi and y = ðy1, y2,⋯, ynÞ with yi = ϕð

xiÞ − ϕð�xÞ − ϕ′+ð�xÞðxi − �xÞ for i = 1, 2,⋯, n.

Proof. It is obvious that

1
Pn

〠
n

i=1
piϕ xið Þ − ϕ �xð Þ = 1

Pn
〠
n

i=1
pi ϕ xið Þ − ϕ �xð Þ − ϕ′+ �xð Þ xi − �xð Þ
� �

= 1
Pn

〠
n

i=1
piyi:

ð9Þ

Since the function ϕ is convex, therefore, we have

yi ≔ ϕ xið Þ − ϕ �xð Þ − ϕ′+ �xð Þ xi − �xð Þ ≥ 0: ð10Þ
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Hence, by the power mean inequality (6), we have

1
Pn

〠
n

i=1
piyi ≤Ms y ; pð Þ, for s ≥ 1, ð11Þ

and similarly,

Mr y ; pð Þ ≤ 1
Pn

〠
n

i=1
piyi, for r ≤ 1: ð12Þ

Using (11) and (12) in (9), we obtain (8).

In the theorem below, we give an integral version of the
above theorem.

Theorem 3. Consider the interval I and the convex function
ϕ : I ⟶ℝ and let g, p : ½a, b�⟶ℝ be integrable functions
such that gðℓÞ ∈ I, pðℓÞ ∈ℝ+ for all ℓ ∈ ½a, b� and P =

Ð b
apðℓÞdℓ

. Then, for s ≥ 1 and r ≤ 1, we have

�Mr h ; pð Þ ≤ 1
P

ðb
a
p ℓð Þϕ g ℓð Þð Þdℓ − ϕ �gð Þ ≤ �Ms h ; pð Þ, ð13Þ

where hðℓÞ = ϕðgðℓÞÞ − ϕð�gÞ − ϕ′+ð�gÞðgðℓÞ − �gÞ with �g = ð1/
PÞÐ bapðℓÞgðℓÞdℓ, ℓ ∈ ½a, b�.

The next main result is presented in the following
theorem.

Theorem 4. Let ϕ : ½a, b�⟶ℝ be a convex function, xi ∈
½a, b� and pi > 0 for i = 1, 2,⋯, n with Pn =∑n

i=1pi. Then,
for s ≥ 1 and r ≤ 1, we have

�y
Pn

Mr p ; yð Þ ≤ 1
Pn

〠
n

i=1
piϕ xið Þ − ϕ �xð Þ ≤ �y

Pn
Ms p ; yð Þ, ð14Þ

where y = ðy1, y2,⋯, ynÞ with yi = ϕðxiÞ − ϕð�xÞ − ϕ′+ð�xÞðxi
− �xÞ for i = 1, 2,⋯, n and �x = ð1/PnÞ∑n

i=1pixi, �y =∑n
i=1yi:

Proof. By simple calculation, we can write

1
Pn

〠
n

i=1
piϕ xið Þ − ϕ �xð Þ = 1

Pn
〠
n

i=1
pi ϕ xið Þ − ϕ �xð Þ − ϕ′+ �xð Þ xi − �xð Þ
� �

= 1
Pn

〠
n

i=1
piyi:

ð15Þ

Since the function ϕ is convex, therefore, we have

yi ≔ ϕ xið Þ − ϕ �xð Þ − ϕ′+ �xð Þ xi − �xð Þ ≥ 0: ð16Þ

As �y≔∑n
i=1yi, so from (15), we can write

1
Pn

〠
n

i=1
piϕ xið Þ − ϕ �xð Þ = �y

Pn

∑n
i=1yipi
�y

: ð17Þ

Now, by considering the weights yi and applying power
mean inequality (6), we have

∑n
i=1yipi
�y

≤Ms p ; yð Þ, for s ≥ 1, ð18Þ

and similarly,

∑n
i=1yipi
�y

≥Mr p ; yð Þ, for r ≤ 1: ð19Þ

Using (18) and (19) in (17), we obtain (14).

In the forthcoming theorem, we present the integral ver-
sion of the above theorem.

Theorem 5. Consider ϕ : I ⟶ℝ be a convex function and
p, g : ½a, b�⟶ℝ be integrable functions such that gðωÞ ∈ I
, pðωÞ ∈ℝ+ for all ω ∈ ½a, b� and P =

Ð b
apðωÞdω. Then, for s

≥ 1 and r ≤ 1, the following inequalities hold:

�h
P
�Mr p ; hð Þ ≤ 1

P

ðb
a
p ωð Þϕ g ωð Þð Þdω − ϕ �gð Þ ≤

�h
P
�Ms p ; hð Þ,

ð20Þ

where �g = ð1/PÞÐ bapðωÞgðωÞdω and �h =
Ð b
ahðωÞdω with

hðωÞ = ϕðgðωÞÞ − ϕð�gÞ − ϕ′+ð�gÞðgðωÞ − �gÞ, ω ∈ ½a, b�.

In the following example, we compare our new bound
with earlier bounds of the Jensen gap.

Example 1. Let the functions ϕ, g : ½0, 1�⟶ℝ be defined by
ϕðxÞ = x4, gðxÞ = x and pðxÞ = 1 for all x ∈ ½0, 1�. Then,

P = 1, �g = 1
P

ð1
0
p xð Þg xð Þdx =

ð1
0
xdx = 1

2 , ϕ
′ �gð Þ = 1

2 , ð21Þ

and hðxÞ = x4 − ðx/2Þ + ð3/16Þ, �h =
Ð 1
0ðx4 − ðx/2Þ + ð3/16ÞÞd

x = 0:1375.
Now, we calculate the right hand side of (13) for s = 2:

�M2 h ; pð Þ =
ð1
0

x4 −
x
2 + 3

16

� �2
dx

 !1/2

= 0:2101: ð22Þ

For the same functions, the bound for the Jensen gap
from inequality (5) in [3] is a1 ≔ 0:25. Also, in bounds for
the Jensen gap from the inequalities (6) and (11) in [11],
we have a2 = 0:8748 and a3 = 0:4998, respectively.
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Hence, we concluded that �M2ðh, pÞ = 0:2101 < ai for i
= 1, 2, 3: That is, for these functions, the bound obtained
in (13) is better than the earlier bound obtained in [3, 11].

As �Msðh ; pÞ is increasing with respect to s, therefore for
more better estimate, we can find �Msðh, pÞ for 1 < s < 2. For
example, �M1:5ðh ; pÞ is given by

�M1:5 h ; pð Þ =
ð1
0

x4 −
x
2 + 3

16

� �1:5
dx

 !1/1:5

≈ 0:1753, that is �M1:5 h ; pð Þ < �M2 h ; pð Þ:
ð23Þ

For inequality (20), we consider the above functions with
pðxÞ = x. For these functions, the value of the Jensen differ-
ence is 0:1358, and the value of the bound for the Jensen
gap from the inequality (5) in [3] is: b1 ≔ 0:2074. Now, we
calculate the right hand side of (20).

P = 0:2, �h =
ð1
0
x4 − 1:1854x + 0:5927
� �

dx = 0:2,

�h
P
�M2 p ; hð Þ = 0:2

0:5
1
0:2

ð1
0
x4 − 1:1854x + 0:5927
� �

x2dx
� �1/2

= 0:1878:
ð24Þ

So, ð�h/PÞ �M2ðp ; hÞ < b1. Similarly, we can take more bet-
ter bound by considering s = 1/2 that is

�h
P
�M1:5 p ; hð Þ = 0:2

0:5
1
0:2

ð1
0
x4 − 1:1854x + 0:5927
� �

x1:5dx
� �1/1:5

= 0:1634:
ð25Þ

Hence, in this case, we concluded that the bound
obtained in (20) is better than the earlier bound obtained
in the inequality (5) in [3].

3. Jensen’s Type Inequalities in
Quantum Calculus

The q-calculus or quantum calculus deals with the study of
calculus without utlizing the idea of limits. The popular
mathematician Euler proposed the ponder q-calculus within
the 18th century, while he introduced the term q in Newton’s
work of infinite series. Jackson has begun a symmetric study
of q-calculus and presented q-definite integrals in twentieth
century [19]. The field of q-calculus has various interesting
applications in several branches of Physics, Mathematics,
and in other areas [20, 21]. This field has gotten extraordi-
nary attention by numerous researchers, and a lot of
research is devoted to this field. In [22], the authors defined
q-analogue operator of Ruscheweyh type involving multiva-
lent functions and derived several properties. By using the
newly presented Harmonic q-Starlike class of functions,
some important problems such as distortion limits, neces-

sary and sufficient conditions, convolutions and convexity,
and problems with partial sums have been studied in [23].
Srivastava et al. [24] applied the idea of a particular
advanced convolution q-operator together with the concept
of convolution and analyzed two new classes of meromor-
phically harmonic functions.

First, we give some preliminaries which are useful in our
results. Throughout this section, q belongs to ð0, 1Þ. Also, we
assume that all the series which are used in this section are
convergent.

Definition 6 (see [25]). Let ψ : ½a, b�⟶ℝ be a continuous
function and y ∈ ½a, b�: Then, the q -derivative of the func-
tion ψ at y is denoted by aDqψðyÞ and defined by

aDqψ yð Þ = ψ yð Þ − ψ qy + 1 − qð Það Þ
1 − qð Þ y − að Þ , y ≠ a,

aDqψ að Þ = lim
y⟶aa

Dqψ yð Þ:
ð26Þ

We say that ψ is q-differentiable on ½a, b� if aDqψðyÞ
exists for all y ∈ ½a, b�.

Definition 7 (see [25]). Let ψ : ½a, b�⟶ℝ be a continuous
function. Then, the q -integral on ½a, b� is defined as

ðy
a
ψ xð Þadqx = 1 − qð Þ y − að Þ〠

∞

k=0
qkψ qky + 1 − qk

� �
a

� �
,

ð27Þ

for y ∈ ½a, b�. Moreover, if c ∈ ða, yÞ, then the q-integral on ½
a, b� is defined as

ðy
c
ψ xð Þadqx =

ðy
a
ψ xð Þadqx −

ðc
a
ψ xð Þadqx: ð28Þ

Remark 8. From Definitions 6 and 7, we make the following
remarks:

(1) By taking a = 0, the expression in (26) becomes the
well-known q-derivative, DqψðwÞ, of the function ψ

defined by

Dqψ wð Þ = ψ yð Þ − ψ qyð Þ
1 − qð Þy ð29Þ

(2) Also, if a = 0, then (27) reduces to the classical q
-integral of a function ψ : ½0,∞Þ⟶ℝ defined by

ðy
0
ψ xð Þ0dqx = 1 − qð Þy〠

∞

k=0
qkψ qky
� �

ð30Þ

Now, we present Jensen’s inequality for q-integrals.
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Theorem 9. Let ϕ : I ⟶ℝ be a continuous convex function
defined on the interval I and ψ : ½a, b�⟶ I be a continuous
function. Then,

ϕ
1

b − a

ðb
a
ψ xð Þadqx

� �
≤

1
b − a

ðb
a
ϕ ψ xð Þð Þadqx: ð31Þ

Proof. From the convexity of ϕ, we have

ϕ xð Þ − ϕ yð Þ ≥ ϕ′+ yð Þ x − yð Þ, for all x, y ∈ I: ð32Þ

Taking x = ψðqkb + ð1 − qkÞaÞ for k = 0, 1, 2,⋯ and y =
�y = ð1 − qÞ∑∞

k=0q
kψðqkb + ð1 − qkÞaÞ = ð1/ðb − aÞb − aÞÐ baψ

ðxÞadqx, in (32), we obtain

ϕ ψ qkb + 1 − qk
� �

a
� �� �

− ϕ �yð Þ
≥ ϕ′+ �yð Þ ψ qkb + 1 − qk

� �
a

� �
− �y

� �
:

ð33Þ

Multiplying both sides of (33) by ð1 − qÞqk and then tak-
ing summation over k, we get

1 − qð Þ〠
∞

k=0
qkϕ ψ qkb + 1 − qk

� �
a

� �� �
− ϕ �yð Þ ≥ ϕ+′ �yð Þ

� 1 − qð Þ〠
∞

k=0
qkψ qkb + 1 − qk

� �
a

� �
− �y

 !
:

ð34Þ

Since �y = ð1 − qÞ∑∞
k=0q

kψðqkb + ð1 − qkÞaÞ, therefore,
from (34), we have

1 − qð Þ〠
∞

k=0
qkϕ ψ qkb + 1 − qk

� �
a

� �� �
− ϕ �yð Þ ≥ 0, ð35Þ

which is equivalent to (31).

As a consequence of the above theorem, we deduce
Hermite-Hadamard inequality for quantum integral. This
inequality has been proved in [26, 27].

Corollary 10. Let ϕ : ½a, b�⟶ℝ be a continuous convex
function. Then,

ϕ
b + aq
1 + q

� �
≤

1
b − a

ðb
a
ϕ xð Þadqx: ð36Þ

Proof. If ψðxÞ = x, then

ðb
a
ψ xð Þadqx =

ðb
a
xadqx = 1 − qð Þ b − að Þ〠

∞

k=0
qk qkb + 1 − qk

� �
a

� �

= 1 − qð Þ b − að Þ b〠
∞

k=0
q2k + a〠

∞

k=0
qk − a〠

∞

k=0
q2k

 !

= 1 − qð Þ b − að Þ b
1 − q2

+ a
1 − q

−
a

1 − q2

� �

= b + aqð Þ b − að Þ
1 + q

:

ð37Þ

Hence, using ψðxÞ = x in (31), we obtain (36).

Now, we give improvement of quantum integral version
of Jensen’s inequality in terms of means.

Theorem 11. Let ϕ : I ⟶ℝ be a continuous convex func-
tion defined on the interval I and ψ : ½a, b�⟶ I be a contin-
uous function. Then, for s ≥ 1 and r ≤ 1, the following
inequalities hold:

1 − qð Þ〠
∞

k=0
qkzsk

 !1/s

≤
1

b − a

ðb
a
ϕ ψ xð Þð Þadqx − ϕ

1
b − a

ðb
a
ψ xð Þadqx

� �

≤ 1 − qð Þ〠
∞

k=0
qkzrk

 !1/r

, 

ð38Þ

where zk ≔ ϕðψðqkb + ð1 − qkÞaÞÞ − ϕð�yÞ − ϕ′+ð�yÞðψðqkb +
ð1 − qkÞaÞ − �yÞ with �y = ð1/ðb − aÞb − aÞÐ baψðxÞadqx.
Proof. From the proof of Theorem 9, we see that

1
b − a

ðb
a
ϕ ψ xð Þð Þadqx − ϕ

1
b − a

ðb
a
ψ xð Þadqx

� �

= 1 − qð Þ〠
∞

k=0
qk
�
ϕ ψ qkb + 1 − qk

� �
a

� �� �

− ϕ �yð Þ − ϕ′+ �yð Þ ψ qkb + 1 − qk
� �

a
� �

− �y
� ��

: 

ð39Þ

By convexity of ϕ, we have zk ≔ ϕðψðqkb + ð1 − qkÞaÞÞ
− ϕð�yÞ − ϕ′+ð�yÞðψðqkb + ð1 − qkÞaÞ − �yÞ ≥ 0. Also, as q ∈ ð0,
1Þ so by geometric series we have ∑∞

k=0q
k = 1/ð1 − qÞ that is

ð1 − qÞ∑∞
k=0q

k = 1/ð1 − qÞ = 1 and hence ð1 − qÞ∑∞
k=0q

kzk is
the arithmetic mean. Now, by using power mean inequality
in (39), we obtain
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1
b − a

ðb
a
ϕ ψ xð Þð Þadqx − ϕ

1
b − a

ðb
a
ψ xð Þadqx

� �

= 1 − qð Þ〠
∞

k=0
qkzk ≤ 1 − qð Þ〠

∞

k=0
qkzrk

 !1/r

:

ð40Þ

Similarly, we can prove the left inequality in (42).

As an application of the above theorem, we deduce
improvement of quantum integral version of Hermite-
Hadamard inequality.

Corollary 12. Let ϕ : ½a, b�⟶ℝ be a continuous convex
function. Then, for s ≥ 1 and r ≤ 1, the following inequalities
hold:

1 − qð Þ〠
∞

k=0
qktsk

 !1/s

≤
1

b − a

ðb
a
ϕ xð Þadqx − ϕ

b + aq
1 + q

� �

≤ 1 − qð Þ〠
∞

k=0
qktrk

 !1/r

:

ð41Þ

where tk ≔ ϕðqkb + ð1 − qkÞaÞ − ϕðb + aq/1 + qÞ − ϕ′+ðb + aq
/1 + qÞðqkb + ð1 − qkÞa − b + aq/1 + qÞ.

Proof. Using ψðxÞ = x in (42), we obtain (41).

In the following theorem, we present another improve-
ment of quantum integral version of Jensen’s inequality in
terms of means.

Theorem 13. Let ϕ : I ⟶ℝ be a continuous convex func-
tion defined on the interval I and ψ : ½a, b�⟶ I be a contin-
uous function. Then, for s ≥ 1 and r ≤ 1, the following
inequalities hold:

1 − qð Þ〠
∞

k=0
zk

∑∞
k=0zkq

ks

∑∞
k=0zk

� �1/s

≤
1

b − a

ðb
a
ϕ ψ xð Þð Þadqx − ϕ

1
b − a

ðb
a
ψ xð Þadqx

� �

≤ 1 − qð Þ〠
∞

k=0
zk

∑∞
k=0zkq

kr

∑∞
k=0zk

� �1/r
, 

ð42Þ

where zk ≔ ϕðψðqkb + ð1 − qkÞaÞÞ − ϕð�yÞ − ϕ′+ð�yÞðψðqkb +
ð1 − qkÞaÞ − �yÞ with �y = ð1/ðb − aÞb − aÞÐ baψðxÞadqx:
Proof. The proof can be given by a similar way as the proof
of Theorem 11.

As an application of Theorem 13, we deduce improve-
ment of quantum integral version of Hermite-Hadamard
inequality.

Corollary 14. Let ϕ : ½a, b�⟶ℝ be a continuous convex
function. Then, for s ≥ 1 and r ≤ 1, the following inequalities
hold:

1 − qð Þ〠
∞

k=0
qktsk

 !1/s

≤
1

b − a

ðb
a
ϕ xð Þadqx − ϕ

b + aq
1 + q

� �

≤ 1 − qð Þ〠
∞

k=0
qk

∑∞
k=0q

krtrk
∑∞

k=0q
k

� �1/r
:

ð43Þ

where tk ≔ ϕðqkb + ð1 − qkÞaÞ − ϕððb + aqÞ/ð1 + qÞÞ − ϕ′+ððb
+ aqÞ/ð1 + qÞÞðqkb + ð1 − qkÞa − ððb + aqÞ/ð1 + qÞÞÞ.

Proof. Using ψðxÞ = x in (42), we obtain (43).

4. Applications for Some Well-
Known Inequalities

In this section, we demonstrate improvements of some well-
known inequalities. We start with the Hermite-Hadamard
inequality.

Corollary 15. Let ϕ : ½a, b�⟶ℝ be a convex function and
s ≥ 1, r ≤ 1, then

�Mr ψ, Ið Þ ≤ 1
b − a

ðb
a
ϕ xð Þdx − ϕ

a + b
2

� �
≤ �Ms ψ, Ið Þ, ð44Þ

where ψðxÞ = ϕðxÞ − ϕðða + bÞ/2Þ − ϕ′+ðða + bÞ/2Þðx − ðða +
bÞ/2ÞÞ and IðxÞ = 1 is the constant function.

Proof. Applying Theorem 5 for pðωÞ = 1, gðωÞ = ω, we
obtain (44).

In the corollary below, we give improvements of power
means inequality.

Corollary 16. Let x = ðx1,⋯, xnÞ and p = ðp1,⋯, pnÞ be pos-
itive n-tuples with Pn =∑n

i=1pi and s, r, k1, k2 ∈ℝ such that s
≥ 1, r ≤ 1 and k1 ≤ k2.

(i) If k2 ≠ 0 and k1 < 0, then

Mr w, pð Þ ≤Mk1
k1

x, pð Þ −Mk1
k2

x, pð Þ ≤Ms w, pð Þ ð45Þ

(ii) If k1 > 0, then the reverse inequalities hold in (45)

6 Journal of Function Spaces



(iii) If k1 ≠ 0 and k2 ≥ 0, then

Mr z, pð Þ ≤Mk2
k2

x, pð Þ −Mk2
k1

x, pð Þ ≤Ms z, pð Þ ð46Þ

(iv) If k2 < 0, then the reverse inequalities hold in (46)

where w = ðw1,w2,⋯,wnÞ with wi = xk1i + ððk1 − k2Þ/k2Þ
Mk1

k2
ðx, pÞ − ðk1/k2Þxk2i Mk1−k2

k2
ðx, pÞ and z = ðz1, z2,⋯, znÞ

with zi = xk2i + ððk2 − k1Þ/k1ÞMk1
k2
ðx, pÞ − ðk2/k1Þxk1i Mk2−k1

k1
ðx,

pÞ for i = 1, 2,⋯, n.

Proof.

(i) If k1 < 0, k1 ≤ k2 and ϕðxÞ = xk1/k2 , then ϕ is convex.
Therefore, applying Theorem 4 for this function

and xi ⟶ xk2i , we obtain (45)

(ii) If k1 > 0, then ϕðxÞ = xk1/k2 is a concave function, so
applying Theorem 4 for concave function, we
deduce the reverse inequality in (45)

(iii) If k1 ≠ 0, k2 ≥ 0 and ϕðxÞ = xk2/k1 , then ϕ is convex.
Therefore, applying Theorem 4 for this function

and xi ⟶ xk1i , we obtain (46)

Similarly, we can prove the reverse inequality in (46).

Corollary 17. Let p = ðp1,⋯, pnÞ and x = ðx1,⋯, xnÞ be pos-
itive n-tuples with Pn =∑n

i=1pi and s, r, ∈ℝ such that s ≥ 1, r
≤ 1. Let the function h be monotone continuous function
and f ∘ h−1 be convex function, then

Mr �z, pð Þ ≤ 1
Pn

〠
n

i=1
pi f xið Þ − f ~Mh x, pð Þ� �

≤Ms �z, pð Þ, ð47Þ

where �z = ð�z1, �z2,⋯, �znÞ with �zi = f ðxiÞ − f ð ~Mhðx, pÞÞ − ð f ∘
h−1Þ′+ðð1/PnÞ∑n

i=1pihðxiÞÞðhðxiÞ − ð1/PnÞ∑n
i=1pihðxiÞÞ for i =

1, 2,⋯, n.

Proof. The inequality (47) can be obtained by using Theorem
2 for ϕ⟶ f ∘ h−1 and xi ⟶ hðxiÞ for i = 1, 2,⋯, n.

The following two results are devoted to improvements
of Hölder inequality.

Proposition 18. Let ðγ1, γ2,⋯, γnÞ, ðη1, η2,⋯, ηnÞ be posi-
tive n -tuples and s, l,m ∈ℝ be such that s ≥ 1 and l,m > 1
with ð1/lÞ + ð1/mÞ = 1, then

〠
n

i=1
ηmi

 !1/m

〠
n

i=1
γli

 !1/l

− 〠
n

i=1
ηiγi

≤ 〠
n

i=1
γli

 !1−1/ms 
〠
n

i=1
γli

"
ηmi ζ

−l
i −

∑n
i=1γiηi
∑n

i=1γ
l
i

� �m

−m
∑n

i=1γiηi
∑n

i=1γ
l
i

� �m−1

ηiγ
−l/m
i −

∑n
i=1ηiγi
∑n

i=1γ
l
i

� �#s!1/ms

:

ð48Þ

Proof. Let ϕðzÞ = zm, then clearly ϕ is convex for z > 0 and
m > 1, therefore, using the right inequality in (8) for ϕðzÞ
= zm, pi = γli, and xi = ηiγ

−l/m
i , and then simplifying, we

derive that

〠
n

i=1
ηmi

 !
〠
n

i=1
γli

 !m−1

− 〠
n

i=1
ηiγi

 !m !1/m

≤ 〠
n

i=1
γli

 !1−1/ms 
〠
n

i=1
γli

"
ηmi ζ

−l
i −

∑n
i=1γiηi
∑n

i=1γ
l
i

� �m

−m
∑n

i=1γiηi
∑n

i=1γ
l
i

� �m−1
ηiγ

−l/m
i −

∑n
i=1ηiγi
∑n

i=1γ
l
i

� �#s!1/ms

:

ð49Þ

Since the inequality kη1 − kη2 ≤ ðk1 − k2Þη holds for η ∈ ½0,
1� and 0 ≤ k2 ≤ k1, therefore by putting k1 = ð∑n

i=1η
m
i Þ

ð∑n
i=1γ

l
iÞ
m−1

, k2 = ð∑n
i=1ηiγiÞm, and η = 1/m, we obtain

〠
n

i=1
ηmi

 !1/m

〠
n

i=1
γli

 !1/l

− 〠
n

i=1
ηiγi

≤ 〠
n

i=1
ηmi

 !
〠
n

i=1
γli

 !m−1

− 〠
n

i=1
ηiγi

 !m !1/m

:

ð50Þ

Now, (49) and (50) give (48).

Corollary 19. Let ðγ1, γ2,⋯, γnÞ, ðη1, η2,⋯, ηnÞ be positive n
-tuples and let s, r, l,m ∈ℝ be such that 0 < l < 1,m = l/ðl − 1Þ
and s ≥ 1, r ≤ 1, then

Mr j, ηmð Þ〠
n

i=1
ηmi ≤ 〠

n

i=1
ηiγi − 〠

n

i=1
ηmi

 !1/m

〠
n

i=1
γli

 !1/l

≤Ms j, ηmð Þ〠
n

i=1
ηmi ,

ð51Þ

where ηm = ðηm1 , ηm2 ,⋯, ηmn Þ and j = ðj1, j2,⋯, jnÞ with ji =
γiη

−m/l
i − ð∑n

i=1γ
l
i/∑n

i=1η
m
i Þ

1/l − ð1/lÞð∑n
i=1γ

l
i/∑n

i=1η
m
i Þ

ð1/lÞ−1ðγi
ηl−mi − ð∑n

i=1γ
l
i/∑

n
i=1η

m
i ÞÞ:

Proof. As the function ϕðxÞ = x1/l is convex for x > 0, l ∈ ð0,
1Þ. So by using (8) for ϕðxÞ = x1/l, pi = ηmi , and xi = γliη

−m
i ,

we get (51).
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Remark 20. Similarly, we can present applications of the sec-
ond main results. Also, we can give integral version of the
above results.

5. Applications in Information Theory

Information theory studies how to measure, store, and trans-
mit digital information. The field of information theory was
initially entrenched by Hartley’s work in 1920 and got world-
wide attention by the work of Shannon in 1940s. The field of
information theory is in close collaboration with probability
theory, statistical mechanics, information, and electrical engi-
neering. A fundamental measure in information theory is
entropy that measures the uncertainty involved in the occur-
rence of a random process. After Shannon’s work, the field
attracted the concentration of various scientists and got
inflated. Different entropy functional have been introduced
that can be elaborated as generalized entropies.

Definition 21. The Csiszár f -divergence for two positive n
-tuples l = ðl1, l2,⋯, lnÞ, m = ðm1,m2,⋯,mnÞ is defined by

Cf l,mð Þ = 〠
n

i=1
mif

li
mi

� �
, ð52Þ

where f : ð0,∞Þ⟶ℝ is a convex function.

Theorem 22. Let l = ðl1, l2,⋯, lnÞ, m = ðm1,m2,⋯,mnÞ be
positive n-tuples and f : ð0,∞Þ⟶ℝ be a convex function.
If s ≥ 1 and r ≤ 1, then

Mr z,mð Þ〠
n

i=1
mi ≤ Cf l,mð Þ − f

∑n
i=1li

∑n
i=1mi

� �
〠
n

i=1
mi

≤Ms z,mð Þ〠
n

i=1
mi,

ð53Þ

where z = ðz1, z2,⋯, znÞ with zi = f ðli/miÞ − f ð∑n
i=1li/∑n

i=1miÞ
− f ′+ð∑n

i=1li/∑n
i=1miÞððli/miÞ − ð∑n

i=1li/∑n
i=1miÞÞ for i = 1, 2,

⋯, n.

Proof. Using (8) for ϕ = f , xi = li/mi, and pi =mi for i ∈ f1,
2,⋯, ng, we obtain (53).

Definition 23 (Shannon entropy). Let q = ðq1, q2,⋯, qnÞ be
positive probability distribution, then the Shannon entropy
is defined by

S qð Þ = −〠
n

i=1
qi log qi: ð54Þ

Corollary 24. Let m = ðm1,m2,⋯,mnÞ be a positive proba-
bility distribution. If s ≥ 1 and r ≤ 1, then

Mr z,mð Þ ≤ log n − S mð Þ ≤Ms z,mð Þ, ð55Þ

where z = ðz1, z2,⋯, znÞ with zi = log mi + log n + ð1/nmiÞ
− 1 for i = 1, 2,⋯, n.

Proof. Taking f ðξÞ = −log ξ, ξ ∈ ð0,∞Þ, li = 1, for each i ∈ f
1, 2,⋯, ng, in (53), we obtain (55).

Corollary 25. Let m = ðm1,m2,⋯,mnÞ, l = ðl1, l2,⋯, lnÞ be
positive n -tuples with ∑n

i=1li = 1 . If s ≥ 1 and r ≤ 1, then

Mr z,mð Þ〠
n

i=1
mi ≤ −S lð Þ − 〠

n

i=1
li log mi + log 〠

n

i=1
mi

 !

≤Ms z,mð Þ〠
n

i=1
mi,

ð56Þ

where z = ðz1, z2,⋯, znÞ with zi = ðli/miÞ log ðli/miÞ − ð1/
∑n

i=1miÞ log ð1/∑n
i=1miÞ − ð1 − log ð∑n

i=1miÞÞððli/miÞ − ð1/
∑n

i=1miÞÞ for i = 1, 2,⋯, n.
In particular, if mi = 1 for each i = 1, 2,⋯, n, then

nMr z, ið Þ ≤ −S lð Þ − log n
n

≤ nMs z, ið Þ, ð57Þ

where i = ð1, 1,⋯, 1Þ and z = ðz1, z2,⋯, znÞ with zi = li log li
+ ð1/nÞ log n − ð1 − log nÞðli − ð1/nÞÞ for i = 1, 2,⋯, n.

Proof. Taking f ðxÞ = x, x ∈ ð0,∞Þ, for each i ∈ f1, 2,⋯, ng,
in (53), we obtain (56).

Definition 26. The Kullback-Leibler divergence for two
positive probability distributions l = ðl1, l2,⋯, lnÞ and m =
ðm1,m2,⋯,mnÞ is defined by

Kd l,mð Þ = 〠
n

i=1
li log

li
mi

� �
: ð58Þ

Corollary 27. Let l = ðl1, l2,⋯, lnÞ, m = ðm1,m2,⋯,mnÞ be
positive probability distributions, then for s ≥ 1 and r ≤ 1, we
have

Mr z,mð Þ ≤ Kd l,mð Þ ≤Ms z,mð Þ, ð59Þ

where z = ðz1, z2,⋯, znÞ with zi = ðli/miÞ log ðli/miÞ − 2ððli/
miÞ − 1Þ for i = 1, 2,⋯, n.

Proof. Taking f ðxÞ = x log x, x ∈ ð0,∞Þ, in (53), we obtain
(59).

Corollary 28. Assume that all the assumptions of Corollary
27 hold. Then,

Mr z,mð Þ ≤ Kd m, lð Þ ≤Ms z,mð Þ, ð60Þ

where z = ðz1, z2,⋯, znÞ with zi = −log ðli/miÞ + ððli/miÞ − 1Þ
for i = 1, 2,⋯, n.

Proof. Taking f ðxÞ = −log x, x ∈ ð0,∞Þ, in (53), we obtain
(60).

Definition 29. If l = ðl1, l2,⋯, lnÞ and m = ðm1,m2,⋯,mnÞ
are two positive probability distributions, then the
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variational distance is defined by

Vd l,mð Þ = 〠
n

i=1
li −mij j: ð61Þ

Corollary 30. Assume that all the assumptions of Corollary
27 hold. Then,

Mr z,mð Þ ≤Vd l,mð Þ ≤Ms z,mð Þ, ð62Þ

where z = ðz1, z2,⋯, znÞ with zi = ∣ðli/miÞ − 1 ∣ −ðli/miÞ + 1
for i = 1, 2,⋯, n.

Proof. Using the function f ðxÞ = jx − 1j, x ∈ ð0,∞Þ, in (53),
we obtain (62).

Definition 31. If l = ðl1, l2,⋯, lnÞ and m = ðm1,m2,⋯,mnÞ
are two positive probability distributions, then the Jeffrey
distance is defined by

Jd l,mð Þ = 〠
n

i=1
li −mið Þ log li

miz

� �
: ð63Þ

Corollary 32. Assume that all the assumptions of Corollary
27 hold. Then,

Mr z,mð Þ ≤ Jd l,mð Þ ≤Ms z,mð Þ, ð64Þ

where z = ðz1, z2,⋯, znÞ with zi = ððli/miÞ − 1Þ log ðli/miÞ for
i = 1, 2,⋯, n.

Proof. Applying the function f ðxÞ = ðx − 1Þ log x, x ∈ ð0,∞Þ,
in (53), we obtain (64).

Definition 33. If l = ðl1, l2,⋯, lnÞ and m = ðm1,m2,⋯,mnÞ
are positive probability distributions, then the Bhattacharyya
coefficient is defined by

Bd l,mð Þ = 〠
n

i=1

ffiffiffiffiffiffiffiffi
limi

p
: ð65Þ

Corollary 34. Assume that all the assumptions of Corollary
27 hold, then

Mr z,mð Þ ≤ 1 − Bd l,mð Þ ≤Ms z,mð Þ, ð66Þ

where z = ðz1, z2,⋯, znÞ with zi = −
ffiffiffiffiffiffiffiffiffi
li/mi

p
+ ðli/2miÞ + ð1/2Þ

for i = 1, 2,⋯, n.

Proof. Using the function f ðxÞ = −
ffiffiffi
x

p , x ∈ ð0,∞Þ, in (53), we
obtain (66).

Definition 35. If l = ðl1, l2,⋯, lnÞ and m = ðm1,m2,⋯,mnÞ
are positive probability distributions, then the Hellinger dis-
tance is defined by

Hd l,mð Þ = 〠
n

i=1

ffiffiffi
li

p
−

ffiffiffiffiffi
mi

p� �2
: ð67Þ

Corollary 36. Under the assumptions of Corollary 27, the fol-
lowing inequality holds:

Mr z,mð Þ ≤Hd l,mð Þ ≤Ms z,mð Þ, ð68Þ

where z = ðz1, z2,⋯, znÞ with zi = ð ffiffiffiffiffiffiffiffiffi
li/mi

p
− 1Þ2 for i = 1, 2,

⋯, n.

Proof. Using the function f ðxÞ = ð ffiffiffi
x

p
− 1Þ2, x ∈ ð0,∞Þ, in

(53), we obtain (68).

Definition 37. For two positive probability distributions m
= ðm1,m2,⋯,mnÞ, l = ðl1, l2,⋯, lnÞ, the triangular discrimi-
nation is defined by

Td l,mð Þ = 〠
n

i=1

li −mið Þ2
li +mi

: ð69Þ

Corollary 38. Assume that all the assumptions of Corollary
27 hold, then

Mr z,mð Þ ≤ Td l,mð Þ ≤Ms z,mð Þ, ð70Þ

where z = ðz1, z2,⋯, znÞ with zi = ðli −miÞ2/ðmiðli +miÞÞ for
i = 1, 2,⋯, n.

Proof. As the function ϕðxÞ = ðx − 1Þ2/ðx + 1Þ, x ∈ ð0,∞Þ is
convex. Therefore applying the function f ðxÞ = ϕðxÞ, in
(53), we obtain (70).

Now, we begin to give inequalities for Zipf-Mandelbrot
entropy. Before presenting the results, we include some
introductory part about Zipf-Mandelbrot entropy.

Zipf’s law is a fundamental and helpful law in the field of
information science. In the field of social studies, this law
was regarded as a valuable statistical distribution procedure.
The law demonstrate the relation between the size and the
rank of discrete phenomena. Furthermore, this law is also
applied to the intensity of solar flares, earth quack magni-
tude, geology, city populations, the size of moon craters,
and website traffic etc. It has had limited success in the realm
of geology when it comes to assessing petroleum and other
mining.

Mandelbrot invented the Zipf-Mandelbrot law in 1966,
which is a further enhancement of Zipf’s law [28]. The
low-rank words in the corpus are taken into account by this
law, where i < 100 [29]: lðiÞ = c/ði + εÞs, if one put ε = 0; the
law of Zipf will then be deduced. There are numerous appli-
cations of Zipf-Mandelbrot law, which are available in lin-
guistics [29, 30] and information sciences [31] and is also
generally useful in ecological field studies [32]. The Zipf-
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Mandelbrot entropy ZeðT, ε, sÞ is given by

Ze T, ε, sð Þ = s
Tn,ε,s

〠
n

i=1

log i + εð Þ
i + εð Þs + log Tn,ε,s, ð71Þ

where ε ≥ 0, n ∈ℕ, s > 0, Tn,ε,s =∑n
i=11/ði + εÞs and the Zipf-

Mandelbrot law is given by: ZMLði, n, ε, sÞ = ð1/ði + εÞsÞ/
Tn,ε,s:

Now, we are in position to give inequalities for Zipf-
Mandelbrot entropy.

Corollary 39. Let ε ≥ 0, s,mi > 0, i = 1, 2, ::, n with ∑n
i=1mi = 1

. If s ≥ 1 and r ≤ 1, then

Mr z,mð Þ ≤ −Ze T, ε, sð Þ − 〠
n

i=1

log mi

i + εð ÞsTn,ε,s
≤Ms z,mð Þ, ð72Þ

where z = ðz1, z2,⋯, znÞ with zi = ð1/ðmiði + εÞsTn,ε,sÞÞ log
ð1/ðmiði + εÞsTn,ε,sÞÞ − 2ðð1/ðmiði + εÞsTn,ε,sÞÞ − 1Þ for i = 1,
2,⋯, n.

Proof. Let li = 1/ðði + εÞsTn,ε,sÞ, i ∈ f1, 2,⋯, ng, then

〠
n

i=1
li log li = 〠

n

i=1

1
i + εð ÞsTn,ε,s

log 1
i + εð ÞsTn,ε,s

= −〠
n

i=1

1
i + εð ÞsTn,ε,s

log i + εð ÞsTn,ε,sð Þ

= −〠
n

i=1

s
i + εð ÞsTn,ε,s

log i + εð Þ − 〠
n

i=1

log Tn,ε,s
i + εð ÞsTn,ε,s

= −
s

Tn,ε,s
〠
n

i=1

log i + εð Þ
i + εð Þs −

log Tn,ε,s
Tn,ε,s

〠
n

i=1

1
i + εð Þs

= −Ze T, ε, sð Þ:
ð73Þ

Since Tn,ε,s =∑n
i=11/ðε + iÞs, therefore, ∑n

i=11/ðði + εÞs
Tn,ε,sÞ = 1. Hence, using (59) for li = 1/ði + εÞsTn,ε,s, i = 1, 2,
::, n, we obtain (72).

Utilizing two Zipf’s law associated to distinct parameters,
we derive estimation for Zipf-Mandelbrot entropy.

Corollary 40. Let ξ1, ξ2 ≥ 0, s1, s2 > 0 . If s ≥ 1 and r ≤ 1, then

Mr z,mð Þ ≤ −Ze T, ξ1, s1ð Þ + 〠
n

i=1

log i + ξ2ð Þs2Tn,ξ2 ,s2
� �
i + ξ1ð Þs1Tn,ξ1 ,s1

≤Ms z,mð Þ,
ð74Þ

where z = ðz1, z2,⋯, znÞwith zi = ðði + ξ2Þs2Tn,ξ2 ,s2Þ/ðði + ξ1Þs1
Tn,ξ,s1Þ log ððði + ξ2Þs2Tn,ξ2 ,s2Þ/ðði + ξ1Þs1Tn,ξ1 ,s1ÞÞ − 2ððði +
ξ2Þs2Tn,ξ2 ,s2 /ði + ξÞs1Tn,ξ1 ,s1Þ − 1Þ, i = 1, 2,⋯, n.

Proof. Let li = 1/ði + ξ1Þs1Tn,ξ1,s1 and mi = 1/ði + ξ2Þs2Tn,ξ2,s2 ,
i = 1, 2,⋯, n, then as in the proof of Corollary 39, we have

〠
n

i=1
li log li = 〠

n

i=1

1
i + ξ1ð Þs1Tn,ξ1,s1

log 1
i + ξ1ð Þs1Tn,ξ1,s1

= −Ze T, ξ1, s1ð Þ,

〠
n

i=1
li log mi = 〠

n

i=1

1
i + ξ1ð Þs1Tn,ξ1,s1

log 1
i + ξ2ð Þs2Tn,ξ2,s2

= −〠
n

i=1

log i + ξ2ð Þs2Tn,ξ2,s2
� �
i + ξ1ð Þs1Tn,ξ1,s1

:

ð75Þ

Also, ∑n
i=1li =∑n

i=11/ði + ξ1Þs1Tn,ξ1,s1 = 1 and ∑n
i=1mi =

∑n
i=11/ði + ξ2Þs2Tn,ξ2,s2 = 1:
Therefore using (59) for li = 1/ði + ξ1Þs1Tn,ξ1,s1 and mi =

1/ði + ξ2Þs2Tn,ξ2,s2 , i = 1, 2,⋯, n, we obtain (74).

Remark 41. Similarly, we can use (60) and derive inequalities
for Zipf-Mandelbrot entropy.

6. Conclusion

In the literature, there are several results which are devoted
to Jensen’s and its related inequalities. In this manuscript,
we have used a new approach for the derivation of improve-
ments of Jensen’s inequality. We have given Jensen’s
inequality and its improvements in quantum calculus. In
particular, we have deduced Hermite-Hadamard type
inequalities for q-integrals. We have also given applications
of main results for some well-known inequalities and in
information theory. The results of this manuscript which
are initiated and given in quantum calculus may stimulate
further research.
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