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We investigate a nonlinear system of pantograph-type fractional differential equations (FDEs) via Caputo-Hadamard derivative
(CHD). We establish the conditions for existence theory and Ulam-Hyers-type stability for the underlying boundary value
system (BVS) of FDE. We use Krasnoselskii’s and Banach’s fixed point theorems to obtain the desired results for the existence
of solution. Stability is an important aspect from a numerical point of view we investigate here. To justify the main work,
relevant examples are provided.

1. Introduction

The generalized form of ordinary calculus is called fractional
calculus. This newly developed branch of mathematics has
numerous applications in many scientific fields including
the study of nonlinear oscillations of earthquakes, nanotech-
nology, and other engineering disciplines. Also, fractional
derivatives and integrals have the ability to explore the
dynamics of many real-world problems more comprehen-
sively and extensively. To these characteristics of the said
area, researchers in the past several decades have taken great
interest to investigate FDEs for a different kind of analysis.
For applications and usefulness, see [1–5]. The concerned
study includes optimization, stability and numerical results,
and theoretical analysis. In this regard, existence theory for
different kinds of problems of FDEs has been investigated
and plenty of research work has been done (see [6–8]).

One of the new emerging classes of FDEs is known as
pantograph differential equations (PDEs). The work related
to this new research field has been published in large
numbers. Initially, pantograph differential equations (PDEs)
were studied with delay terms [9, 10], material modeling
[11], and modeling lasers, especially quantum dot lasers

[12]. Basically, PDEs give change in terms of a dependent
variable at a previous time [13]. Some beneficial research
has been performed in this area [14–16]. Further, these types
of FDEs occur in traffic models, control systems, population
dynamics, and many natural phenomena.

In the last few decades, the stability analysis for FDEs has
been established very well. Therefore. different kinds of sta-
bility notions have been constructed in literature including
exponential, Mittag-Leffler, and Lyapunov. The mentioned
stability concepts have been very well investigated for FDEs.
Among these, UH stability analysis is an important tool that
has gained the attention of researchers [17, 18]. The afore-
said UH stability has extended to other forms in large
many articles [19, 20]. The UH stability analysis method
has been developed for ordinary and FDEs over the last
twenty years [21–23].

It is remarkable that great interest has been observed to
derive various kinds of results including qualitative and
numerical for higher-order problems under BCs [24–26].
Since fractional derivative has various definitions, each and
every definition has its own uncharacteristic features. One
of the well-known definitions is called the Caputo-
Hadamard derivative. The said area has been initiated in
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the last few years (for detail, see [27–29]). After that, the said
definition has been used in large numbers of articles. Moti-
vated from aforesaid work, the qualitative study of a coupled
system of FDEs under BCs with fractional CHD has not
been investigated properly involving proportional delay
term. Therefore, using the results from fixed point theory,
we studied the qualitative aspects of the system of FDEs
under BCs with CHD given as

CDð
1+v tð Þ + f t, v tðג Þ,Y tð Þð Þ = 0,

CDð1+Y tð Þ + g t, v tð Þ,Y tðג Þð Þ = 0,
v 1ð Þ = v′ 1ð Þ = 0 = v′ eð Þ, v eð Þ = φ vð Þ,
Y 1ð Þ =Y ′ 1ð Þ = 0 =Y ′ eð Þ,Y eð Þ =Ψ Yð Þ,

8>>>>><
>>>>>:

ð1Þ

with t ∈ ½1, e� =H , ð ∈ ð3, 4�, ג ∈ ð0, 1Þ also the functions f , g
: H × R × R⟶ R and Φ,Ψ : Y ⟶ R are continuous func-
tions. The complete norm space is defined by Y , k,k under
the norm kyk =max

t∈H
jyj:

Consequently, P is a Banach space such that P = Y × Y

with norms kðv,YÞk = kvk + kYk or kðv,YÞk =max fkvk,
kYkg. We established sufficient conditions under which
the problem under our investigation has at least one solu-
tion. Further, some adequate results are studied to check
the stability of the UH type for the corresponding solution.
These results are derived by using fixed point theory and
nonlinear analysis. The analysis is justified by pertinent
examples.

2. Preliminaries

Here, we recall some needful preliminary results.

Definition 1. For a function v : ðJ Þ = ð1, eÞ⟶ R, the
fractional Hadamard integral is expressed as [30]:

Ið1+v tð Þ = 1
Γ ðð Þ

ðt
1

ln t
θ

� �ð−1
v θð Þ dθ

θ
, ð2Þ

if the above integral exists.

Definition 2. For a function v : ðJ Þ⟶ R, the fractional
Hadamard derivative is denoted as [30]:

CDð
1+v tð Þ = σkIk−ð1+ = 1

Γ k − ðð Þ t
d
dt

� �kðt
1

ln t
θ

� �k−ð−1
v θð Þ dθ

θ
,

ð3Þ

where k = ½ð� + 1 and σ = tðd/dtÞ.

Lemma 3 (see [30]). Let vðtÞ ∈ ACk
σ½1, e�, then for fractional

differential equation (FDE)

CDð
1+v tð Þ = 0, ð ∈ k − 1, kð �, ð4Þ

the solution is given as follows:

v tð Þ = 〠
k−1

j=0
aj ln tð Þj, j = 1, 2, 3,⋯, k − 1,where aj ∈ R: ð5Þ

Lemma 4 (see [30]). The FDE holds the result in the follow-
ing:

Iða+
CDa

ð
+v tð Þ

h i
= v tð Þ + 〠

k−1

j=0
aj ln tð Þj, j = 1, 2, 3,⋯, k − 1,

ð6Þ

where k = ½ð� + 1.

Definition 5 (see [31]). Let for operators V1, V2 ∋ V1,
V2 : P⟶ Y , denoted by

v tð Þ =V1 v, Yð Þ tð Þ,
Y tð Þ =V2 v, Yð Þ tð Þ

(
ð7Þ

is called UH stable if for real positive constants aiði = 1, 2,
3, 4Þ, δiði = 1, 2Þ and for each solution ðv∧, Y∧Þ ∈ P, we have

v∧ −V1 v∧, Y∧ð Þk k ≤ δ1,

Y∧ −V2 v∧, Y∧ð Þk k ≤ δ2,

(
ð8Þ

there exist a solution ðv, YÞ ∈ P of (7),∋

V1 v, Yð Þ − V1 v∧, Y∧ð Þk k ≤ b1 v − v∧k k + b2 Y − Y∧k k,
V2 v, Yð Þ − V2 v∧, Y∧ð Þk k ≤ b3 v − v∧k k + b4 Y − Y∧k k:

(

ð9Þ

Furthermore, if the matrix

M =
b1 b2

b3 b4

" #
ð10Þ

converges to zero, then the solution of (7) is UH stable.

Theorem 6 (see [32–34]). Let E ≠∅ be closed convex subset
of the Banach space P, and there exist two operators F,ℵ
such that ðaÞ Fx +ℵy ∈ E whenever x, y ∈ E, ðbÞF is contin-
uous and compact, and ðcÞℵ is contraction. So one has
z = ðv, YÞ ∈ E such that Fz +ℵz = z.

ðM1Þ For all v, Y ∈ CðH, RÞ,∃R∗
Φ,R∗

ψ > 0∍

Φ vð Þ −Φ vð Þj j ≤R∗
Φ v − vj j, ψ Yð Þ − ψ Yð Þj j ≤R∗

ψ Y − Yj j:
ð11Þ
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ðM2Þ For all v, v, Y , Y ∈ CðH, RÞ∀t ∈H∃L∗f > 0 ∋

∣f t, v tðג Þ, Y tð Þð Þ − f t, v tðג Þ, Y tð Þð Þ∣ ≤ L∗f ∣v − v +j jY − Y ∣½ �:
ð12Þ

ðM3Þ For all v, v, Y , Y ∈ CðH, RÞ∀t ∈H∃L∗g > 0 ∋

ℵ t, v tð Þ, Y tðג Þð Þ −ℵ t, v tð Þ, Y tðג Þð Þj j ≤ L∗g v − vj j + Y − Yj j½ �:
ð13Þ

ðM4Þ There exist positive real numbers C∗
f ,D∗

f , and M∗
f ,

M∗
f ∋

f t, v tðג Þ, Y tð Þð Þj j ≤ C∗
f vj j +D∗

f Yj j +M∗
f ,

∣ℵ t, v tð Þ, Y tðג Þð Þ∣ ≤ C∗
g∣v∣ +D∗

g Yj j +M∗
g:

ð14Þ

ðM5Þ There exist positive real numbers κiði = 1, 2Þ, βΦ,
βΨ ∋

Φ vð Þj j ≤ κ1 vj j + βΦ, Ψ Yð Þj j ≤ κ2 Yj j + βΨ: ð15Þ

ðM6Þ For simplicity, we introduce the notation as follows:

ℏ tð Þ = 3 ln tð Þ2 − 2 ln tð Þ3: ð16Þ

3. Main Results

Theorem 7. Let v ∈ C½1, e� and x ∈ ACk
σ½1, e�, the solution for

linear problem

CDð
1+v tð Þ = x tð Þ, t ∈H, ð ∈ 3, 4ð �, ð17Þ

v 1ð Þ = v′ 1ð Þ = v′ eð Þ = 0, v eð Þ =Φ vð Þ ð18Þ
converts to the following form:

v tð Þ =Φ vð Þℏ tð Þ + l
Γ ðð Þ

ðt
1

ln t
θ

� �ð−1

x θð Þ dθ
θ
: ð19Þ

Proof. Thanks to Lemma (4), Equation (18) obtained the
form

v tð Þ = Ið1+x tð Þ + a0 + a1 ln tð Þ + a2 ln tð Þ2 + a3 ln tð Þ3, ð20Þ

by making use of the considered boundary conditions vð1Þ =
v′ð1Þ = 0, we get a0 = a1 = 0 also by

v eð Þ =Φ vð Þ, v′ eð Þ = 0⇒ ,

Φ vð Þ = a2 + a3, 0 = 2a2 + 3a3,
ð21Þ

from this, we can say that a2 = 3ΦðvÞ and a3 = −2ΦðvÞ. By
making use of a0, a1, a2, and a3 in (20), we obtain the solution
as follows:

v tð Þ =Φ vð Þℏ tð Þ + l
Γ ðð Þ

ðt
1

ln t
θ

� �ð−1
x θð Þ dθ

θ
: ð22Þ

Also, for Y ∈ C½1, e�, and z ∈ ACk
σ½1, e�, the solution of

CDð
1+Y tð Þ = z tð Þ, t ∈H, ð ∈ 3, 4ð �,

Y 1ð Þ = Y ′ 1ð Þ = Y ′ eð Þ = 0, Y eð Þ =Ψ Yð Þ
ð23Þ

may be expressed as

y tð Þ =Ψ yð Þℏ tð Þ + l
Γ ðð Þ

ðt
1

ln t
θ

� �ð−1
z θð Þ dθ

θ
: ð24Þ

Corollary 8. The solution of the concerned problem (1) is
expressed as follows:

v tð Þ =Φ vð Þℏ tð Þ + l
Γ ðð Þ

ðt
1

ln t
θ

� �ð−1
f θ, v θðג Þ, Y θð Þð Þ, dθ

θ
,

y tð Þ =Ψ yð Þℏ tð Þ + l
Γ ðð Þ

ðt
1

ln t
θ

� �ð−1

g θ, v θð Þ, Y θðג Þð Þ, dθ
θ
:

8>>>><
>>>>:

ð25Þ

Theorem 9. Consider two functions f , g possesses continuity
and then the solution of (25) is ðv, YÞ ∈ P, if f ðv, Y Þ is the
solution of (1).

Proof. If ðv, YÞ is the solution of (25), then by the differenti-
ation of both sides of (25), we have (1). However, if ðv, YÞ is
a solution of (1), then ðv, YÞ is the solution of (25).

Let F1, F2 : P⟶ P ∋

F1 v, Yð Þ =Φ vð Þℏ tð Þ + l
Γ ðð Þ

ðt
1

ln t
θ

� �ð−1
f θ, v θðג Þ, Y θð Þð Þ dθ

θ
,

F2 v, Yð Þ =Ψ yð Þℏ tð Þ + l
Γ ðð Þ

ðt
1

ln t
θ

� �ð−1
g θ, v θð Þ, Y θðג Þð Þ dθ

θ
,

ð26Þ

and Fðv, YÞ = F1ðv, YÞ
F2ðv, YÞ

 !
. Hence, solution of (25) is a fixed

point of F.

Theorem 10. If Δ < 1, with the help of assumptions ðM1Þ −
ðM3Þ, system (1) has at most one solution, where

Δ =max R∗
Φ +

L∗f
Γ ð + 1ð Þ ,R

∗
Ψ +

L∗g
Γ ð + 1ð Þ

� �
: ð27Þ
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Proof. Let ðv, YÞ, ðv, YÞ ∈ P and for all t ∈H, we have

F1 v, Yð Þ − F1 v, Yð Þk k
≤max

t∈H
∣Φ vð Þ −Φ vð Þ∣ℏ tð Þ +max

t∈H

l
Γ ðð Þ

�
ðt
1

ln t
θ

� �ð−1
f θ, v θðג Þ, Y tð Þ − f θ, v θðג Þ, Y tð Þðð Þð Þj j dθ

θ

≤max
t∈H

R∗
Φ v − vj jℏ tð Þ +max

t∈H
ln tð Þð L∗f

Γ ð + 1ð Þ v − vj j + Y − Yj jð Þ

≤ R∗
Φ +

L∗f
Γ ð + 1ð Þ

� �
v − vk k + L∗f

Γ ð + 1ð Þ Y − Yk k

≤ Δ1 Y − Yk k + Y − Yk kð Þ,
ð28Þ

where

Δ1 =R∗
Φ +

L∗f
Γ ð + 1ð Þ : ð29Þ

In a similar way, we obtain

F2 v, Yð Þ − F2 v, Yð Þk k ≤ Δ2 v − vk k + Y − Yk kð Þ, ð30Þ

where

Δ2 =R∗
Ψ +

L∗g
Γ ð + 1ð Þ : ð31Þ

Hence, from (28) and (30), one has

F v, Yð Þ − F v, Yð Þk ∣ ≤max Δ1, Δ2ð Þ v − vk k + Y − Yk kð Þ
= Δ v − vk k + Y − Yk kð Þ,

ð32Þ

where Δ =maxt∈HfΔ1, Δ2g. Hence, it is obvious that F is
contraction; therefore, (1) has a unique result.

Theorem 11. In the light of hypotheses ðM1Þ, ðM4Þ, and ðM5Þ
together with condition max fY1, Y2g < 1, system (1) has a
minimum of one solution.

Proof. Let

J1 = κ1 + κ2 +
C∗

f +D∗
f + C∗

g +D∗
g

� �
Γ ð + 1ð Þ ,

J2 = βΦ + βΨ +
M∗

f +M∗
g

� �
Γ ð + 1ð Þ :

ð33Þ

We define a subset B of P which is closed. That is,

B = v, Yð Þ ∈ P : v, Yð Þk k ≤ ρf g, forρ ≥max J2
1 − J1

� �
: ð34Þ

Let us define the following operators as

ℵ1 v, Yð Þ = 1
Γ ðð Þ

ðt
1

ln t
θ

� �ð−1
f θ, v θðג Þ, Y θð Þð Þ dθ

θ
,

ℵ2 v, Yð Þ = 1
Γ ðð Þ

ðt
1

ln t
θ

� �ð−1
g θ, v θð Þ, Y θðג Þð Þ dθ

θ
,

S1v tð Þ =Φ vð Þℏ tð Þ,
S2Y tð Þ =Ψ Yð Þℏ tð Þ:

ð35Þ

It is obvious that ~T1 =ℵ1 + S1, ~T2 =ℵ2 + S2. Further, we
prove that

~T v, Yð Þ =ℵ v, Yð Þ + S v, Yð Þ ∈ B, for all v, Yð Þ ∈ B: ð36Þ

For any ðv, Y Þ ∈ B, we have

T1 v, Yð Þj j = Φ vð Þℏ tð Þ + l
Γ ðð Þ

ðt
1

ln t
θ

� �ð−1
f θ, v θðג Þ, Y θð Þð Þ dθ

θ

�����
�����

≤max
t∈H

+ Φ vð Þℏ tð Þj j +max
t∈H

1
Γ ðð Þ

�
ðt
1

ln t
θ

� �ð−1
f θ, v θðג Þ, Y θð Þð Þj j dθ

θ

≤max
t∈H

ℏ tð Þ κ1 vj j + βΦð Þ

+max
t∈H

C∗
f vj j +D∗

f Yj j +M∗
f

� � 1
Γ ð + 1ð Þ ln t

a

� �ð

≤ κ1ρ + βΦ +
C∗

f ρ +D∗
f ρ +M∗

f

� �
Γ ð + 1ð Þ ≤

ρ

2 :

ð37Þ

In a similar way, we obtain

∣~T2 v,Yð Þ∣ ≤ κ2ρ + βΨ +
C∗
gρ +D∗

gρ +M∗
g

� �
Γ ð + 1ð Þ ≤

ρ

2 : ð38Þ

The preceding calculations imply that k~Tðv,Y Þk ≤ ρ,
which clarify that ~TðBÞ ⊆ B: For ðv, YÞ, ðv, YÞ ∈ B, we can
write it as

S1 vð Þ − S1 vð Þk k ≤max
t∈H

Φ vð Þ −Φ vð Þj j½ �
≤max

t∈H
R∗

Φℏ tð Þ v − vk k
≤ Y1 v − vk k:

ð39Þ

We can also prove that

S2 Yð Þ − S2 Yð Þk k ≤Y2 Y −Yk k, ð40Þ
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where

Y1 =R∗
Φ,

Y2 =R∗
Ψ:

ð41Þ

Clearly, (39) and (40) assure the contraction of S. Now,
we need to show the relative compactness of ℵ. Now, as
f and g are continuous, hence ℵ is continuous too. For
ðv, YÞ ∈ B, we have

ℵ1 v,Yð Þj j ≤max
t∈H

l
Γ ðð Þ

ðt
1

ln t
θ

� �ð−1
f θ, v θðג Þ,Y θð Þð Þj j dθ

θ

≤
C∗

f ρ +D∗
f ρ +M∗

f

� �
Γ ð + 1ð Þ :

ð42Þ

In the same way, one can get

ℵ2 v,Yð Þj j ≤
C∗
gρ +D∗

gρ +M∗
g

� �
Γ ð + 1ð Þ : ð43Þ

Therefore, from (42) and (43), it implies

ρ ≥ ℵ v,Yð Þk k: ð44Þ

Hence, from (44), the boundedness of ℵ can also be
deduced on B. Take any ðv,Y Þ ∈ B. Subsequently, for t1,
t2 ∈H with t1 ≤ t2 ∈ ½1, e�, one has

ℵ1 v t1ð Þ,Y t1ð Þð Þ −ℵ1 v t2ð Þ,Y t2ð Þðj j

≤
1

Γ ðð Þ
ðt1
1

ln t1
θ

� �ð−1
− ln t2

θ

� �ð−1
 !

� f θ, v θðג Þ,Y θð Þð Þj j dθ
θ

+ 1
Γ ðð Þ

ðt2
t1

ln t2
θ

� �ð−1

� f θ, v θðג Þ,Y θð Þð Þj j dθ
θ

≤
1

Γ ð + 1ð Þ C∗
f vj j +D∗

f Yj j +M∗
f

� �

× ln t2ð Þð + 2 ln t2
t1

� �ð

− ln t1ð Þð
 !

:

ð45Þ

From the previous inequality, we can claim that (45)
approaches to zero on t1 ⟶ t2. As ℵ1 possesses the prop-
erties of continuity and boundedness, it clearly means that
ℵ1 possesses uniform boundedness. Therefore, kℵ1ðvðt2Þ,
Yðt2ÞÞ −ℵ1ðvðt1Þ,Yðt1ÞÞk⟶ 0 as t1 tends to t2. Simi-
larly, kℵ2ðvðt2Þ,Yðt2ÞÞ −ℵ2ðvðt1Þ,Yðt1ÞÞk⟶ 0 as t1
tends to t2. Hence, all the assumptions of at least one solu-
tion for system (1) are achieved.

4. Stability Results

Theorem 12. Under the hypothesis ðM1Þ − ðM3Þ together
with condition Δ < 1, the considered system has UH stable
solution.

Proof. Let for arbitrary solutions ðv,YÞ, ðv,YÞ ∈ P, and for
all t ∈H , we have

F1 v,Yð Þ − F1 v,Yð Þk k

≤max
t∈H

∣Φ vð Þ −Φ vð Þ∣ℏ tð Þ +max
t∈H

1
Γ ðð Þ

ðt
1

ln t
θ

� �ð−1

� f θ, v θðג Þ,Y tð Þð − f θ, v θðג Þ,Y tð Þð Þð Þj j dθ
θ

≤max
t∈H

ℏ tð ÞR∗
Φ v − vj j +max

t∈H
ln tð Þð L∗f

Γ ð + 1ð Þ v − vj j + Y −Yj jð Þ

≤ R∗
Φ +

L∗f
Γ ð + 1ð Þ

� �
v − vk k + L∗f

Γ ð + 1ð Þ Y −Yk k

≤ b1 Y −Yk k + b2 Y −Yk k,
ð46Þ

where

b1 =R∗
Φ +

L∗f
Γ ð + 1ð Þ ,

b2 =
L∗f

Γ ð + 1ð Þ :
ð47Þ

Similarly, one has

F2 v,Yð Þ − F2 v,Yð Þk k ≤ b3 Y −Yk k + b4 Y −Yk k, ð48Þ

where

b3 =R∗
Ψ +

L∗g
Γ ð + 1ð Þ ,

b4 =
L∗g

Γ ð + 1ð Þ :
ð49Þ

So, from (46) and (48), we get

F1 v,Yð Þ − F1 v,Yð Þk k
≤ b1 Y −Yk k + b2 Y −Yk k, F2 v,Yð Þ − F2 v,Yð Þk k
≤ b3 Y −Yk k + b4 Y −Yk k:

ð50Þ

Using (50), we have

M =
b1 b2

b3 b4

" #
: ð51Þ

Since M converges to zero, hence the result of (1) is UH
stable.
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5. Applications

Example 13. Taking a coupled system as.

CD3:8
1+ v tð Þ + sin ∣ v 0:3tð Þ∣+ cos ∣ Ytð Þ∣+et + 4

t2 + 10ð Þ3
= 0, t ∈H ,

CD3:8
1+Y tð Þ + t3+∣v tð Þ −j jY 0:3tð Þ ∣

et + 50ð Þ = 0, t ∈H ,

v 1ð Þ = v′ 1ð Þ = 0 = v′ eð Þ, v eð Þ = sin ∣ v ∣
30 ,

Y 1ð Þ =Y ′ 1ð Þ = 0 =Y ′ eð Þ,Y eð Þ = cos Yð Þ
29 :

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð52Þ

From above, ð = 3:8, ג = 0:3 after calculation, we have
L∗f = 0:0001, L∗g = 0:02,R∗

Φ = 0:033,R∗
Ψ = 0:034,

Δ1 = 0:0331,
Δ2 = 0:0351:

ð53Þ

It is obvious that max fΔ1, Δ2g = 0:0351 < 1. So (52) has
a unique solution by Theorem 10. Moreover, from the values
of bi, ði = 1, 2, 3, 4Þ, we have

M =
0:0331 0:0001
0:0351 0:0011

" #
, ð54Þ

after calculation, the eigenvalues are ð1 = 0:0332, ð2 = 0:0010
. Therefore ΛðMÞ = 0:0332 < 1. Thus, the given system is
HU stable by using Theorem 12.

Example 14. Consider the following problem:

CD3:7
1+ v tð Þ + arctan tð Þ

10 + v 0:4tð Þj j = 0, t ∈H ,

CD3:7
1+Y tð Þ + ln t

8 + Y 0:4tð Þj j = 0, t ∈H ,

v 1ð Þ = v′ 1ð Þ = 0 = v′ eð Þ, v eð Þ = vj j + t2

60 ,

Y 1ð Þ =Y ′ 1ð Þ = 0 =Y ′ eð Þ,Y eð Þ = sin Yj j
25 :

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð55Þ

From above, ð = 3:7, ג = 0:4 after calculation, we have
L∗f = 0:1218, L∗g = 0:125,R∗

Φ = 0:016,R∗
Ψ = 0:04,

Δ1 = 0:0239,
Δ2 = 0:0481:

ð56Þ

It is obvious that max fΔ1, Δ2g = 0:0481 < 1. So (55) has
a unique solution by Theorem 10. Moreover, from the values
of bi ði = 1, 2, 3, 4Þ, we have

M =
0:0239 0:0079
0:0481 0:0081

" #
, ð57Þ

after calculation, the eigenvalues are ð1 = 0:0351, ð2 = −0:0102.
Therefore, ΛðMÞ = 0:0351 < 1. Thus, the given system is HU
stable by using Theorem 12.

6. Conclusion

In this research work, nonlinear BVPs of FDEs containing
proportional delay with CHD operator have been success-
fully investigated. We have utilized the techniques of fixed
point theory and nonlinear analysis, to develop the existence
and stability results for the proposed system. Through some
examples, the main results have been justified. In the future,
one can investigate the aforementioned system of FDEs for
more complicated boundary conditions.
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