
Research Article
Numerical Analysis of the Klein-Gordon Equations by Using the
New Iteration Transform Method

Ahmad Haji Zadeh ,1 Kavikumar Jacob ,1 Nehad Ali Shah ,2,3 and Jae Dong Chung2

1Department of Mathematics and Statistics, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia,
86400 Parit Raja, Malaysia
2Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
3Department of Mathematics, Lahore Leads University, Lahore, Pakistan

Correspondence should be addressed to Ahmad Haji Zadeh; haji.ahmad@gmail.com

Received 1 May 2021; Revised 21 June 2021; Accepted 15 July 2021; Published 5 August 2021

Academic Editor: Fanglei Wang

Copyright © 2021 Ahmad Haji Zadeh et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is properly cited.

This paper presents an analysis based on a mixture of the Laplace transform and the new iteration method to obtain new
approximate results of the fractional-order Klein-Gordon equations in the Caputo-Fabrizio sense. So, a general system to
investigate the approximate results of the fractional-order Klein-Gordon equations is obtained. This technique’s effectiveness is
demonstrated by comparing the actual results of the fractional-order equations suggested with the results achieved.

1. Introduction

Fractional partial differential equations (FPDEs) are critical
tools for analyzing and simulating numerous narrative
models in physics and mathematical models, such as electri-
cal circuits, fluid dynamics, damping, induction, mathemati-
cal biology, ad relaxation, (Klimek, 2005; Baleanu et al., 2009;
Kilbas et al., 2010; Jumarie, 2009; Mainardi, 2010; Ortigueira,
2010). Fractional derivatives provide more precise represen-
tations of real-world problems than integer-order derivatives;
they are regarded as an effective technique for describing
such physical problems. The subject of fractional calculus is
an important and valuable branch of mathematics that plays
a critical and severe role in explaining complex dynamic
behavior in a wide range of application areas, helps to under-
stand the essence of the matter as well as simplify the control
design without any lack of inherited behavior, and describes
even more complex structures [1, 2].

The Klein-Gordon equations (KGEs) play an important
role in physics, nonlinear optics, quantum field theory and
solid state physics, plasma physics, kinematics, mathematical
biology, and the recurrence of the initial state. The modeling
of many phenomena, including the behavior of elementary
particles and dislocation of crystals propagation, is the
important applications of KGEs. To study solitons [3], exam-

ining nonlinear wave equations [4] and condensed matter
physics equations gained the attention of scholars. In the
previous few years, mathematicians have made many consid-
erable efforts to find the solutions to these equations. There
are many methods introduced to find the solution of these
equations such as the radial basis functions [5], B-spline
collocation method [5], auxiliary approach [6], and
exponential-type potential, and there are some more methods
mentioned in [7–11] for the solution of these equations. To
solve the KGEs of a nonlinear type got tremendous attention
of scholar, and a verity of methods were developed as men-
tioned in [12–14]. Some other methods are the stationary
solution [15], the Homotopy perturbation technique [16],
the tanh technique [17], the variation iteration technique
[18], the traveling wave solutions, and so on.

In the recent paper, we are applying new iterative trans-
form method to KGEs of both linear and nonlinear orders
of the following form:

∂ϱμ
∂τϱ

−
∂2μ
∂ζ2

+Ψ = g ζð Þ, 1 < ρ ≤ 2, ð1Þ

with the boundary conditions
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μ ζ, 0ð Þ = 0 μτ ζ, 0ð Þ = k ζð Þ: ð2Þ

Daftardar-Gejji and Jafari developed a new iterative
approach for solving nonlinear equations in 2006 [19, 20]. Jafari
et al. first applied the Laplace transformation in the iterative
technique. They proposed a new straightforward technique
called the iterative Laplace transform method (ILTM) [21] to
look for the numerical solution of the FPDE system. The itera-
tive Laplace transformmethodwasused to solve linear andnon-
linear partial differential equations such as the time-fractional
Fokker-Planck equation [22], Zakharov-Kuznetsov equation
[23], and Fornberg-Whitham equation [24]. The Elzaki trans-
form was used to modify the iterative technique, known as the
new iterative transform method.

The new iterative transform method is implemented to
investigate the fractional-order of the Klein-Gordon equa-
tions. The solution of the fractional-order problems and
integral-order models is calculated applying the current tech-
niques. The proposed approach is also helpful for dealing
with other fractional-orders of linear and nonlinear PDEs.

2. Fractional Calculus

This section provides some fundamental concepts of
fractional calculus.

Definition 1. TheLiouville-Caputooperator (C) is given as [25]

Dϱ
Iu ζ,Ið Þ = 1

Γ n − βð Þ
ðI
0

I − θð Þn−1un ζ, θð Þdθ, n − 1 < ρ < n,

ð3Þ

where unðζ, θÞ is the derivative of integer nth order of uðζ,IÞ,
n = 1, 2,⋯∈N and n − 1 < ϱ ≤ n. If 0 < ϱ ≤ 1; then, we defined
the Laplace transformation for the Caputo fractional derivative
as follows:

L Dϱ
Iu ζ,Ið Þ� �

sð Þ = sϱL u ζ,Ið Þ½ � sð Þ − sϱ−1 u ζ, 0ð Þ½ �: ð4Þ

Definition 2. The Caputo-Fabrizio operator (CF) is define as
given [25]:

Dϱ
Iu ζ,Ið Þ = 2 − ϱð ÞM ϱð Þ

2 n − ϱð Þ
ðI
0

exp −ϱ
I − θð Þ
n − ϱ

� �
u nð Þ ζ, θð Þdθ, n < ϱ ≤ n + 1:

ð5Þ

MðϱÞ is a normalization form, andMð0Þ =Mð1Þ = 1. The
exponential law is used as the nonsingular kernel in this
fractional operator.

If 0 < ρ ≤ 1, then we define the Caputo-Fabrizio of the
Laplace transformation for the fractional derivative is
given as

L Dϱ
Iu ζ,Ið Þ� �

sð Þ = sL u ζ,Ið Þ½ � sð Þ − u ζ, 0ð Þ
s + ϱ 1 − sð Þ

� �
: ð6Þ

3. The Iterative Transform Method
Basic Procedure

Consider a particular type of a FPDE.

Dϱ
τυ ζ, τð Þ +Mυ ζ, τð Þ +Nυ ζ, τð Þ = h ζ, τð Þ, n ∈N , n − 1 < ϱ ≤ n,

ð7Þ

where the functions of linear and nonlinear are M and N ,
respectively.

With the initial condition

υk ζ, 0ð Þ = gk ζð Þ, k = 0, 1, 2⋯ n − 1, ð8Þ

implementing the Laplace transformation of Equation (7),
we have

L Dϱ
τυ ζ, τð Þ½ � + L Mυ ζ, τð Þ +Nυ ζ, τð Þ½ � = L h ζ, τð Þ½ �: ð9Þ

Applying the Laplace differentiation is given to

L υ ζ, τð Þ½ � = 1
s
υ ζ, 0ð Þ + s + ϱ 1 − sð Þ

s2
L h ζ, τð Þ½ �

−
s + ϱ 1 − sð Þ

s2
L Mυ ζ, τð Þ +Nυ ζ, τð Þ½ �,

ð10Þ

using the inverse Laplace transformation of Equation (10) into

υ ζ, τð Þ = L−1
1
s
υ ζ, 0ð Þ + s + ϱ 1 − sð Þ

s2
L h ζ, τð Þ½ �

� �� �

− L−1
s + ϱ 1 − sð Þ

s2
L Mυ ζ, τð Þ +Nυ ζ, τð Þ½ �

� �
:

ð11Þ

As through the iterative technique, we have

υ ζ, τð Þ = 〠
∞

m=0
υm ζ, τð Þ: ð12Þ

Further, the operator M is linear; therefore

M 〠
∞

m=0
υm ζ, τð Þ

 !
= 〠

∞

m=0
M υm ζ, τð Þ½ �, ð13Þ

and the operator N is nonlinear; we have the following

N 〠
∞

m=0
υm ζ, τð Þ

 !
= υ0 ζ, τð Þ +M 〠

m

k=0
υk ζ, τð Þ

 !

−N 〠
m

k=0
υk ζ, τð Þ

 !
:

ð14Þ
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Putting Equations (12)–(14) in Equation (11), we obtain

〠
∞

m=0
υm ζ, τð Þ = L−1

1
s
υ ζ, 0ð Þ + s + ϱ 1 − sð Þ

s2
L h ζ, τð Þ½ �

� �� �

− L−1
s + ϱ 1 − sð Þ

s2
E M 〠

m

k=0
υk ζ, τð Þ

 !
−N 〠

m

k=0
υk ζ, τð Þ

 !" #" #
:

ð15Þ

The new iterative transform method is defined as

υ0 ζ, τð Þ = L−1
1
s
υ ζ, 0ð Þ + s + ϱ 1 − sð Þ

s2
L g ζ, τð Þð Þ

� �� �
,

υ1 ζ, τð Þ = −L−1
s + ϱ 1 − sð Þ

s2
L M½ υ0 ζ, τð Þ½ � +N υ0 ζ, τð Þ½ �

� �
,

υm+1 ζ, τð Þ = −L−1
s + ϱ 1 − sð Þ

s2
L −M 〠

m

k=0
υk ζ, τð Þ

 !
−N 〠

m

k=0
υk ζ, τð Þ

 !" #" #
,m ≥ 1:

ð16Þ

Finally, Equations (7) and (8) provide the m-terms
solution in a series form given as

υ ζ, τð Þ ≅ υ0 ζ, τð Þ + υ1 ζ, τð Þ + υ2 ζ, τð Þ+⋯+υm ζ, τð Þ,m = 1, 2,⋯:

ð17Þ

4. Applications of the Proposed Method

4.1. Example. Consider the fractional-order Klein-Gordon
equation [18]

CF∂ϱ+1μ ζ, τð Þ
∂τϱ+1

−
∂2μ ζ, τð Þ

∂ζ2
+ μ ζ, τð Þ = 0 0 < ζ τ < 0 0 < ϱ ≤ 1,

ð18Þ

with the initial conditions

μ ζ, 0ð Þ = 0, μτ ζ, 0ð Þ = ζ: ð19Þ

Applying the Laplace transform to Equation (18), we have

sϱL μ ζ, τð Þ½ � = μ 0ð Þ ζ, 0ð Þs−1 + μ τð Þ ζ, 0ð Þs−2 + L
∂2μ ζ, τð Þ

∂ζ2
− μ ζ, τð Þ

" #
,

ð20Þ

L μ ζ, τð Þ½ � = s−1μ ζ, 0ð Þ + s−2μ τð Þ ζ, 0ð Þ + s + ϱ 1 − sð Þ
s2

L
∂2μ ζ, τð Þ

∂ζ2
− μ ζ, τð Þ

" #
:

ð21Þ
Applying the inverse Laplace transform of Equation (21),

we have

μ ζ, τð Þ = L−1 s−1μ ζ, 0ð Þ + s−2μ τð Þ ζ, 0ð Þ
h i

+ L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ ζ, τð Þ
∂ζ2

− μ ζ, τð Þ
 !" #

:

ð22Þ

Now, by using the suggested analytical method, we get

μ0 ζ, τð Þ = ζτ,

μ1 ζ, τð Þ = L−1
s + ρ 1 − sð Þ

s2
L

∂2μ0 ζ, τð Þ
∂ζ2

− μ0 ζ, τð Þ
 !" #

= −
ζτ2

6 τρ + 3 − 3ρð Þ,

μ2 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ1 ζ, τð Þ
∂ζ2

− μ1 ζ, τð Þ
 !" #

= ζτ3

120 10τϱ − 10τϱ2 − 40ϱ + 20 + 20ϱ2 + τ2ϱ2
� 	

,

μ3 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ2 ζ, τð Þ
∂ζ2

− μ2 ζ, τð Þ
 !" #

,

μ3 ζ, τð Þ = −
ζτ4

5040 630ϱ2 − 630ϱ + 210 − 210ϱ3 + τ3ϱ3
�

+ 21τ2ϱ2 − 21τ2ϱ3 − 252τϱ2 + 126τϱ + 126τϱ3
	
,

μ4 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ3 ζ, τð Þ
∂ζ2

− μ3 ζ, τð Þ
 !" #

,

μ4 ζ, τð Þ = ζτ5

362880 τϱ + 6 − 6ϱð Þ ∗ τ3ϱ3 − 30τ2ϱ3 + 30τ2ϱ2
�

+ 252τϱ3 − 504τϱ2 + 252τϱ,−504ϱ3

+ 1512ϱ2 − 1512ϱ + 504Þ,
⋮

μn + 1 ζ, τð Þ = L−1
s + ϱ 1 − sð Þð Þn

s2n+2
L

∂2μn ζ, τð Þ
∂ζ2

− μn ζ, τð Þ
 !" #

:

ð23Þ

The series form result is

μ ζ, τð Þ = μ0 ζ, τð Þ + μ1 ζ, τð Þ + μ2 ζ, τð Þ + μ3 ζ, τð Þ+⋯μn ζ, τð Þ,

μ ζ, τð Þ = ζτ −
ζτ2

6 τϱ + 3 − 3ϱð Þ + ζτ3

120 10τϱ − 10τϱ2 − 40ϱ
�

+ 20 + 20ϱ2 + τ2ϱ2
	
−

ζτ4

5040 630ϱ2 − 630ϱ + 210
�

− 210ϱ3 + τ3ϱ3 + 21τ2ϱ2 − 21τ2ϱ3 − 252τϱ2

+ 126τϱ + 126τϱ3
	
+ ζτ5

362880 τϱ + 6 − 6ϱð Þ
� τ3ϱ3 − 30τ2ϱ3 + 30τ2ϱ2 + 252τϱ3 − 504τϱ2
�
+ 252τϱ − 504ϱ3 + 1512ϱ2 − 1512ϱ + 504

	
−⋯:

ð24Þ

The problem has the exact solution at ϱ = 1:

μ ζ, τð Þ = ζ sin τð Þ: ð25Þ

In Figure 1, the exact and the approximate solutions of
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example 1 at ϱ = 1 are shown, and the second graph shows the
3D graph of different fractional-order ρ, respectively. From
the given graphs, it can be shown that both the approximate
and exact solutions are in close relation with each other. Also,
in Figure 2, the 2D figure of the approximate solutions of
problem 1 is analysis at different fractional-order ρ for ζ and
τ. It is demonstrated that the outcomes of time-fractional
problems converge to an integer-order effect as the time-
fractional evaluation to integer-order.

4.2. Example. Consider the fractional-order Klein-Gordon
equation [18]:

CF∂ϱ+1μ ζ, τð Þ
∂τϱ+1

−
∂2μ ζ, τð Þ

∂ζ2
+ μ ζ, τð Þ = 2 sin ζð Þ 0 < ζ τ < 0 0 < ϱ ≤ 1,

ð26Þ

with the initial conditions

μ ζ, 0ð Þ = sin ζð Þ, μτ ζ, 0ð Þ = 1: ð27Þ

We apply the Laplace transformation to Equation (26),
and we get

s2

s + ϱ 1 − sð Þ L μ ζ, τð Þ½ � = μ 0ð Þ ζ, 0ð Þs−1 + μ τð Þ ζ, 0ð Þs−2

+ L
∂2μ ζ, τð Þ

∂ζ2
− μ ζ, τð Þ + 2 sin ζð Þ

" #
,

ð28Þ

L μ ζ, τð Þ½ � = s−1μ ζ, 0ð Þ + s−2μ τð Þ ζ, 0ð Þ + s + ϱ 1 − sð Þ
s2

L

� ∂2μ ζ, τð Þ
∂ζ2

− μ ζ, τð Þ + 2 sin ζð Þ
" #

:

ð29Þ

Now, using the inverse Laplace transformation of Equa-
tion (29), we have

μ ζ, τð Þ = L−1 s−1μ ζ, 0ð Þ + s−2μ τð Þ ζ, 0ð Þ
h i

+ L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ ζ, τð Þ
∂ζ2

− μ ζ, τð Þ + 2 sin ζð Þ
 !" #

:

ð30Þ

Now, by using the suggested analytical method, we get

μ0 ζ, τð Þ = sin ζð Þ + τ,

μ1 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ0 ζ, τð Þ
∂ζ2

− μ0 ζ, τð Þ + 2 sin ζð Þ
 !" #

= −
τ2

6 τϱ + 3 − 3ϱð Þ,

μ2 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ1 ζ, τð Þ
∂ζ2

− μ1 ζ, τð Þ + 2 sin ζð Þ
 !" #

,

μ2 ζ, τð Þ = τ2

120 20τ − 60τϱ + 20τϱ2 + τ3ϱ2 − 60
�

+ 60ϱ + 10τ2ϱ − 10τ2ϱ2
	
,

μ3 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ2 ζ, τð Þ
∂ζ2

− μ2 ζ, τð Þ + 2 sin ζð Þ
 !" #

,

μ3 ζ, τð Þ = −
τ2

5040 4200τϱ − 1680τ − 1680τϱ2 − 336τ3ϱ2
�

+ 126ϱτ3 + 126τ3ϱ3 + ϱ3τ5 + 2520 − 2520ϱ
+ 1470τ2ϱ2 − 1470τ2ϱ + 210τ2 − 210τ2ϱ3

+ 21ϱ2τ4 − 21τ4ϱ3Þ,

0
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Figure 1: (a) Exact and an approximate graph of problem 1 and (b) different fractional-order graphs of problem 1.
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μ4 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ3 ζ, τð Þ
∂ζ2

− μ3 ζ, τð Þ + 2 sin ζð Þ
 !" #

,

μ4 ζ, τð Þ = τ2

362880 181440τϱ2 + 181440τ − 423360τϱ
�

+ 81648τ3ϱ2 − 39312τ3ϱ3 − 39312ϱτ3 + 3024τ3

+ 3024τ3ϱ4 + 36ϱ3τ6 − 36ϱ4τ6 − 1080ϱ3τ5

+ 432ϱ2τ5 + 432τ5ϱ4 + τ7ϱ4 − 181440 + 11440ϱ
+ 226800τ2ϱ + 45360τ2ϱ3 − 226800τ2ϱ2

− 45360τ2 − 10584ϱ2τ4 + 10584τ4ϱ3

− 2016τ4ϱ4 + 2016ϱτ4
	
,

⋮

μn ζ, τð Þ = L−1
s + ϱ 1 − sð Þð Þn

s2n+2
L

∂2μn ζ, τð Þ
∂ζ2

− μn ζ, τð Þ + 2 sin ζð Þ
 !" #

:

ð31Þ

The series form result is

μ ζ, τð Þ = μ0 ζ, τð Þ + μ1 ζ, τð Þ + μ2 ζ, τð Þ + μ3 ζ, τð Þ+⋯μn ζ, τð Þ,

μ ζ, τð Þ == sin ζð Þ + τ −
τ2

6 τϱ + 3 − 3ϱð Þ

+ τ2

120 20τ − 60τϱ + 20τϱ2 + τ3ϱ2 − 60
�

+ 60ϱ + 10τ2ϱ − 10τ2ϱ2
	
+− τ2

5040
� 4200τϱ − 1680τ − 1680τϱ2 − 336τ3ϱ2
�
+ 126ϱτ3 + 126τ3ϱ3 + ϱ3τ5 + 2520 − 2520ϱ
+ 1470τ2ϱ2 − 1470τ2ϱ + 210τ2 − 210τ2ϱ3

+ 21ϱ2τ4 − 21τ4ϱ3
	
+ τ2

362880
� 181440τϱ2 + 181440τ − 423360τϱ + 81648τ3ϱ2
�
− 39312τ3ϱ3 − 39312ϱτ3 + 3024τ3 + 3024τ3ϱ4

+ 36ϱ3τ6 − 36ϱ4τ6 − 1080ϱ3τ5 + 432ϱ2τ5 + 432τ5ϱ4

+ τ7ϱ4 − 181440 + 11440ρ + 226800τ2ϱ + 45360τ2ϱ3

− 226800τ2ϱ2 − 45360τ2 − 10584ϱ2τ4 + 10584τ4ϱ3

− 2016τ4ϱ4 + 2016ϱτ4
	
+⋯:

ð32Þ

The problem has the exact solution at ϱ = 1:

μ ζ, τð Þ = sin ζð Þ + sin τð Þ: ð33Þ

In Figure 3, the exact and the approximate solutions of
example 2 at ϱ = 1 are shown. From the given figures, it can
be seen that both the approximate and exact solutions are
in close contact with each other. Also, in Figure 4, the 2D
graph of the approximate results of problem 2 is investigated
at different fractional-order ρ for ζ and τ. It is demonstrated
that the outcomes of time-fractional problems converge to an
integer-order effect as the time-fractional evaluation to
integer-order.

4.3. Example. Consider the fractional-order nonlinear
Klein-Gordon equation [18]:

CF∂ϱ+1μ ζ, τð Þ
∂τϱ+1

−
∂2μ ζ, τð Þ

∂ζ2
+ μ2 ζ, τð Þ = ζ2τ2 0 < ζ τ < 0 0 < ϱ ≤ 1,

ð34Þ

with the initial conditions

μ ζ, 0ð Þ = 0, μτ ζ, 0ð Þ = ζ: ð35Þ

Using the Laplace transform to Equation (34), we get

s2

s + ϱ 1 − sð Þ L μ ζ, τð Þ½ � = μ 0ð Þ ζ, 0ð Þs−1 + μ τð Þ ζ, 0ð Þs−2

+ L
∂2μ ζ, τð Þ

∂ζ2
− μ2 ζ, τð Þ + ζ2τ2

" #
,

ð36Þ

L μ ζ, τð Þ½ � = s−1μ ζ, 0ð Þ + s−2μ τð Þ ζ, 0ð Þ + s + ϱ 1 − sð Þ
s2

L

� ∂2μ ζ, τð Þ
∂ζ2

− μ2 ζ, τð Þ + ζ2τ2
" #

:

ð37Þ

–1
0 10.5 1.5 2.52 3 3.5 4 4.5 4 5

–0.5

0

0.5

1

1.5

–1
–2 –1.5 –0.5–1 0 10.5 1.5 2

–0.5

0

0.5

1

1.5

𝜌 = 1
𝜌 = 0.9
𝜌 = 0.8
𝜌 = 0.7

𝜌 = 0.6
𝜌 = 0.5
𝜌 = 0.4

Figure 2: The different fractional-orders with respect to ζ and τ of problem 1.
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Applying the inverse Laplace transform of Equation
(37), we have

μ ζ, τð Þ = L−1 s−1μ ζ, 0ð Þ + s−2μ τð Þ ζ, 0ð Þ
h i

+ L−1

� s + ϱ 1 − sð Þ
s2

L
∂2μ2 ζ, τð Þ

∂ζ2
− μ2 ζ, τð Þ + ζ2τ2

 !" #
:

ð38Þ

Now, byusing the suggested an approximatemethod,we get

μ0 ζ, τð Þ = ζτ,

μ1 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ0 ζ, τð Þ
∂ζ2

− μ20 ζ, τð Þ + ζ2τ2
 !" #

= 0,

⋮

μn ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μn ζ, τð Þ
∂ζ2

− μ2n ζ, τð Þ + ζ2τ2
 !" #

:

ð39Þ

The series form result is

μ ζ, τð Þ = μ0 ζ, τð Þ + μ1 ζ, τð Þ + μ2 ζ, τð Þ + μ3 ζ, τð Þ+⋯μn ζ, τð Þ,
μ ζ, τð Þ = ζτ + 0+⋯:

ð40Þ

The problem has the exact solution at ϱ = 2:

μ ζ, τð Þ = ζτ: ð41Þ

Figure 5 compares the exact solution and approximate solu-
tion of example 3 for the nonlinear fractional-order Klein-
Gordon equation at ϱ = 1. The figure shows the close relation-
ship between the exact and an approximate solution.

4.4. Example. Consider the fractional-order nonlinear Klein-
Gordon equation [18]:

CF∂ϱ+1μ ζ, τð Þ
∂τϱ+1

−
∂2μ ζ, τð Þ

∂ζ2
+ μ2 ζ, τð Þ = 2ζ2 − 2τ2 + ζ4τ4 0 < ζ τ < 0 0 < ϱ ≤ 1,

ð42Þ

0
5

0.5
𝜏

𝜁

–10
–5

0.4
0.3

0.2
0.1

0

0.5

0

1.5

1

0
5

0.5
𝜏

𝜁

–10
–5

0.4
0.3

0.2
0.1

0

0.5

0

1.5

1

Figure 3: The exact and an approximate graph of problem 2.
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Figure 4: The different fractional-orders with respect to ζ and τ of problem 2.
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with the initial conditions

μ ζ, 0ð Þ = μτ ζ, 0ð Þ = 0: ð43Þ

Using the Laplace transform to Equation (42), we get

s2

s + ϱ 1 − sð Þ L μ ζ, τð Þ½ � = μ 0ð Þ ζ, 0ð Þs−1 + μ τð Þ ζ, 0ð Þs−2

+ L
∂2μ ζ, τð Þ

∂ζ2
− μ2 ζ, τð Þ + 2ζ2 − 2τ2 + ζ4τ4

" #
,

ð44Þ

L μ ζ, τð Þ½ � = s−1μ ζ, 0ð Þ + s−2μ τð Þ ζ, 0ð Þ + s + ϱ 1 − sð Þ
s2

L

� ∂2μ ζ, τð Þ
∂ζ2

− μ2 ζ, τð Þ + 2ζ2 − 2τ2 + ζ4τ4
" #

:

ð45Þ
Applying the inverse Laplace transform of Equation (45),

we have

μ ζ, τð Þ = L−1 s−1μ ζ, 0ð Þ + s−2μ τð Þ ζ, 0ð Þ
h i

+ L−1

� s + ϱ 1 − sð Þ
s2

L
∂2μ2 ζ, τð Þ

∂ζ2
− μ2 ζ, τð Þ + 2ζ2 − 2τ2 + ζ4τ4

 !" #
:

ð46Þ

Now, by using the suggested analytical method, we get

μ0 ζ, τð Þ = 0,

μ1 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ0 ζ, τð Þ
∂ζ2

− μ20 ζ, τð Þ + 2ζ2 − 2τ2 + ζ4τ4
 !" #

,

μ1 ζ, τð Þ = τ

30 −5ϱτ3 + 20τ2ϱζ4τ5ϱ + 60ζ2 − 60ϱζ2 + 30ζ2τϱ + 6τ4ζ4 − 6τ4ζ4ϱ

 �

,

μ2 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ1 ζ, τð Þ
∂ζ2

− μ21 ζ, τð Þ + 2ζ2 − 2τ2 + ζ4τ4
 !" #

,

μ2 ζ, τð Þ = −
τ

162116200 −32432400τϱ2 − 2702700τ3ϱ2
�

− 32432400τ2ϱ + 21621600τ2ϱ2 − 228228τ9ϱ3ζ4

+ 456456τ9ϱ2ζ4 − 228228τ9ϱζ4 + 12012τ9ζ6ϱ3

− 32760ϱ2τ10ζ4 + 32760ϱ3τ10ζ4 − 1365τ11ϱ3ζ4

+ 22932τ11ζ8ϱ3 + 22932τ11ζ8ϱ + 5005τ9ϱ3

+ 100100ϱ2τ8 − 100100ϱ3τ8 − 1158300τ7ϱ2

+ 579150τ7ϱ − 480480τ8ζ4 + 58968τ10ζ8

+ 1853280τ6ζ6 + 3088800τ6ϱ2 − 3088800τ6ϱ
+ 21621600τ2ζ4 + 579150ϱ3τ7 − 8648640τ4ζ2

− 6486480ζ2τ5 + 1029600τ6 + 240240ϱ2τ8ζ6

− 240240ϱ3τ8ζ6 + 1312740τ7ζ6ϱ3 − 2625480τ7ζ6ϱ2

− 96525τ7ϱ3ζ2 + 1312740τ7ζ6ϱ − 115830τ7ϱ2ζ2

− 6486480ϱ3τ4ζ4 + 6486480ϱ2τ4ζ4 − 43243200τ3ϱ2ζ4

+ 21621600τ3ϱ3ζ4 + 21621600τ3ϱζ4 + 99ζ8ϱ3τ13

− 1853280τ6ϱζ2 + 308880τ6ϱ2ζ2 + 1544400τ6ϱ3ζ2

+ 540540τ5ϱ3ζ4 − 6846840τ5ϱ3ζ2 + 6126120τ5ϱζ2

+ 7207200τ5ϱ2ζ2 + 2772ϱ2τ12ζ8 − 2772ϱ3τ12ζ8

+ 480480τ8ϱ3ζ4 − 1441440τ8ϱ2ζ4 + 1441440τ8ϱζ4

− 58968τ10ζ8ϱ3 − 176904τ10ζ8ϱ − 1853280τ6ζ6ϱ3

+ 5559840τ6ζ6ϱ2 − 5559840τ6ζ6ϱ + 64864800τ2ϱ2ζ4

− 21621600τ2ϱ3ζ4 − 64864800τ2ϱζ4 + 8648640τ4ϱ3ζ2

− 25945920τ4ϱ2ζ2 + 176904τ10ζ8ϱ2 + 25945920ζ2ϱτ4

− 45864τ11ζ8ϱ2 + 2702700ϱτ3 − 32432400ζ2

− 540540ζ4τ5ϱ − 16216200ζ2τϱ + 3243240τ4ζ4ρ
− 1029600ρ3τ6 − 3243240τ4ζ4 − 32432400τ
+ 32432400ρζ2 + 64864800τϱ + 10810800τ2

	
,⋮

μn ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μn ζ, τð Þ
∂ζ2

− μ2n ζ, τð Þ + 2ζ2 − 2τ2 + ζ4τ4
 !" #

:

ð47Þ
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Figure 5: The exact and an approximate graph of problem 3.
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The series form result is

μ ζ, τð Þ = μ0 ζ, τð Þ + μ1 ζ, τð Þ + μ2 ζ, τð Þ + μ3 ζ, τð Þ+⋯μn ζ, τð Þ,

μ ζ, τð Þ = τ

30 −5ϱτ3 + 20τ2ϱζ4τ5ϱ + 60ζ2 − 60ϱζ2



+ 30ζ2τϱ + 6τ4ζ4 − 6τ4ζ4ϱ
�
−

τ

162116200
� −32432400τϱ2 − 2702700τ3ϱ2 − 32432400τ2ϱ
�
+ 21621600τ2ϱ2 − 228228τ9ϱ3ζ4 + 456456τ9ϱ2ζ4

− 228228τ9ϱζ4 + 12012τ9ζ6ϱ3 − 32760ϱ2τ10ζ4

+ 32760ϱ3τ10ζ4 − 1365τ11ϱ3ζ4 + 22932τ11ζ8ϱ3

+ 22932τ11ζ8ϱ + 5005τ9ϱ3 + 100100ϱ2τ8

− 100100ϱ3τ8 − 1158300τ7ϱ2 + 579150τ7ϱ
− 480480τ8ζ4 + 58968τ10ζ8 + 1853280τ6ζ6

+ 3088800τ6ϱ2 − 3088800τ6ϱ + 21621600τ2ζ4

+ 579150ϱ3τ7 − 8648640τ4ζ2 − 6486480ζ2τ5

+ 1029600τ6 + 240240ϱ2τ8ζ6 − 240240ϱ3τ8ζ6

+ 1312740τ7ζ6ϱ3 − 2625480τ7ζ6ϱ2 − 96525τ7ϱ3ζ2

+ 1312740τ7ζ6ϱ − 115830τ7ϱ2ζ2 − 6486480ϱ3τ4ζ4

+ 6486480ϱ2τ4ζ4 − 43243200τ3ϱ2ζ4 + 21621600τ3ϱ3ζ4

+ 21621600τ3ϱζ4 + 99ζ8ϱ3τ13 − 1853280τ6ϱζ2

+ 308880τ6ϱ2ζ2 + 1544400τ6ϱ3ζ2 + 540540τ5ϱ3ζ4

− 6846840τ5ϱ3ζ2 + 6126120τ5ϱζ2 + 7207200τ5ϱ2ζ2

+ 2772ϱ2τ12ζ8 − 2772ϱ3τ12ζ8 + 480480τ8ϱ3ζ4

− 1441440τ8ϱ2ζ4 + 1441440τ8ϱζ4 − 58968τ10ζ8ϱ3

− 176904τ10ζ8ϱ − 1853280τ6ζ6ϱ3 + 5559840τ6ζ6ϱ2

− 5559840τ6ζ6ϱ + 64864800τ2ϱ2ζ4 − 21621600τ2ϱ3ζ4

− 64864800τ2ϱζ4 + 8648640τ4ϱ3ζ2 − 25945920τ4ϱ2ζ2

+ 176904τ10ζ8ϱ2 + 25945920ζ2ϱτ4 − 45864τ11ζ8ϱ2

+ 2702700ϱτ3 − 32432400ζ2 − 540540ζ4τ5ϱ
− 16216200ζ2τϱ + 3243240τ4ζ4ϱ − 1029600ϱ3τ6

− 3243240τ4ζ4 − 32432400τ + 32432400ϱζ2

+ 64864800τϱ + 10810800τ2Þ+⋯:

ð48Þ

The problem has the exact solution at ϱ = 1:

μ ζ, τð Þ = ζ2τ2: ð49Þ

In Figure 6, the exact and the approximate solutions of
example 4 at ϱ = 1 are shown, and the second graph shows
the 3D graph of different fractional-order ρ, respectively.
From the given figures, it can be seen that both the approxi-
mate and exact solutions are in close contact with each other.
It is demonstrated that the outcomes of time-fractional prob-
lems converge to an integer-order effect as the time-
fractional evaluation to integer-order.

5. Conclusion

In this paper, the iterative transformation method is imple-
mented to achieve approximate analytical results of the
fractional-order Klein-Gordon equations, which is widely
applied in problems for spatial effects in applied sciences.
In physical models, the technique yields series form results
that converge very quickly. The obtained results in this
article are expected to be important for further analysis
of the sophisticated nonlinear models. The calculations of
this method are very simple and straightforward. As a
result, we conclude that this technique can be used to solve
a variety of nonlinear fractional-order partial differential
equation systems.

Data Availability

The numerical data used to support the findings of this study
are included within the article.
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