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The integrability of a function defined on the abstract Wiener space of double Fourier coefficients is explored. The abstract
Wiener space is also a Hilbert space. We define an orthonormal system of the Hilbert space to establish a measure and
integration on the abstract Wiener space. We examine the integrability of a function eαk·k

2
defined on the abstract Wiener

space for Fernique theorem. With respect to the abstract Wiener measure, the integral of the function turns out to be
convergent for α < 1/2. The result provides a wider choice of the constant α than that of Fernique.

1. Introduction

We explore an abstract Wiener space that consists of double
Fourier coefficients focused on the integrability of functions
defined on the space. The space is also a Hilbert space. We
define an orthonormal system of the Hilbert space and uti-
lise the system to define a probability measure on the
abstract Wiener space of double sequences and develop to
integration. Using the probability measure, we examine the

integral of eαk·k
2
, i.e., Fernique theorem in the abstract

Wiener space. It is proved that the integral of the function
with respect to the abstract Wiener measure converges for
α < 1/2. The specified range of α that we verified in this
paper provides a wider choice of the constant α than that
of Fernique. We expect that the results can be applied to
check integrability of related functions.

The concepts of an abstract Wiener space are known to
be first appeared on [1], and we mainly refer to [2] for nec-
essary definitions and theorems of an abstract Wiener space.
An analogue Wiener space of sequences is studied in [3]. An
abstract Wiener space of sequences is discussed in [4]. Both
of them are for the single-indexed sequences. An abstract
Wiener space of double Fourier coefficients is defined in
the author’s work [5] where detailed development of the
space can be found. Fernique theorem is introduced in [6];
we use an English version for the theorem. There is a work

[7] that generalises the Fernique theorem to functions hav-
ing values in the extended real number system.

For background knowledge, we introduce an abstract
Wiener space as well as the Hilbert spaces of double Fourier
coefficients in the next section. An orthonormal system for
the Hilbert space is defined in Section 3. In Section 4, we
define an abstract Wiener measure using the orthonormal
system and provide the main theorems related to Fernique
theorem. In the last section, conclusions and discussions
are given.

2. Preliminaries

In this paper, underlying concepts are overlapped with the
author’s recent work [5], such as the setting of an abstract
Wiener space based on double Fourier coefficients. We
briefly introduce definitions, notations, and basic properties
of the space; some of which are in common with the author’s
previous work.

(1) Let S and T be real numbers. A function f : ℝ ×ℝ
⟶ℝ is said to be ðS, TÞ-periodic in variables s
and t provided that f ðs + S, t + TÞ = f ðs, tÞ holds for
all s and t

(2) Trigonometric form [8]: let a function f : ℝ ×ℝ
⟶ℝ be continuous on ½−S, S� × ½−T , T� and
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periodic with period ð2S, 2TÞ. Then, the double
Fourier series of f is as follows:

f x, yð Þ = 〠
∞

m,n=0

n
Am,n fð Þ cos mπx

S
cos nπy

T

+ Bm,n fð Þ sin mπx
S

cos nπy
T

+ Cm,n fð Þ cos mπx
S

sin nπy
T

+Dm,n fð Þ sin mπx
S

sin nπy
T

o
,

ð1Þ

where

Am,n fð Þ = 1
ST

ðS
−S

ðT
−T
f x, yð Þ cos mπx

S
cos nπy

T
dxdy,

Bm,n fð Þ = 1
ST

ðS
−S

ðT
−T
f x, yð Þ sin mπx

S
cos nπy

T
dxdy,

Cm,n fð Þ = 1
ST

ðS
−S

ðT
−T
f x, yð Þ cos mπx

S
sin nπy

T
dxdy,

Dm,n fð Þ = 1
ST

ðS
−S

ðT
−T
f x, yð Þ sin mπx

S
sin nπy

T
dxdy:

ð2Þ

The derivation of double Fourier series can be found
in [9].

(3) Let R = ½0, S� × ½0, T� and FðRÞ be the space of two-
variable functions on R. For x in FðRÞ, we define
~xðs, tÞ as a periodic function having period ð2S, 2TÞ
and to be symmetric with respect to the first argu-
ment and symmetric with respect to the second
argument within the rectangle ½−S, S� × ½−T , T�; ~xð
s, tÞ = xðs, tÞ in R and ~x is ð2S, 2TÞ-periodic in the
whole plane ℝ ×ℝ

(4) The coefficients B, C,D of ~x are all zero due to the
symmetries in s and t

~x s, tð Þ = 〠
∞

m,n=0
Am,n ~xð Þ cos mπs

S
cos nπt

T

� �
,

〠
∞

m,n=0
Am,n ~xð Þ2 = 1

ST

ðS
−S

ðT
−T
~x s, tð Þ2 dsdt:

ð3Þ

The underlying spaces of this paper are the following
three types of double sequences.

Definition 1 (see [5]). A double sequence is denoted by fam,ng.

(a) For 1 ≤ p <∞, let ℓp = ffam,ngj ð∑∞
m,n=0jam,njpÞ1/p<

∞g

(b) Let H be the space of all double sequences fam,ng in
ℓ1 with an inner product

am,n
� �

, bm,n
� �� �

= 〠
∞

k=0
〠
k

l=0

k k + 1ð Þ
2 + l + 1

� 	2
al,k−lbl,k−l

 !
:

ð4Þ

For fam,ng in H , we let kfam,ngkH =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihfam,ng, fam,ngi
p

.

(c) Let U be the space of all double sequences fam,ng in
ℓ2 such that the limit

x s, tð Þ≔ limp⟶∞
1

p p + 1ð Þ/2ð Þ + q + 1 〠
p

m=0

� 〠
m

u=0
〠
q

k=0
ak,u−k cos

kπs
S

cos u − kð Þπt
T

 ! ð5Þ

converges uniformly on ℝ ×ℝ.

Remark 2 (see [5]).

(a) It is obvious that ℓp ⊂ ℓq holds for 1 ≤ p ≤ q

(b) In this work, ∑∞
m,n=0am,n represents a double sum. A

double sum may not coincide with iterated sums. As
known well, if a double series converges absolutely,
then the double sum and iterated sums exist and
are all equivalent. We deal with sequences in ℓ1 for
the paper, and rearranging the order of summation
does not affect the convergence of double series in
the definition

(c) The double summation ∑∞
k=0∑

k
l=0ak,k−l is carried out

by diagonal directions, a0,0 + ða0,1 + a1,0Þ + ða0,2 +
a1,1a2,0Þ +⋯

(d) The space U is defined in association with a double
Fourier series; the limit of the arithmetic means of
partial sums of the series is called a Cesáro mean.
The denominator ðpðp + 1Þ/2Þ + q + 1 in its limit is
the number of terms involved in a partial sum for
each diagonal explained in (c). The inner product
defined for H in (b) is also motivated by this

Proposition 3 (see [5]). If fam,ng is in ℓ1, then, the series
∑∞

m,n=0am,n cos ðmπs/SÞ cos ðnπt/TÞ converges uniformly on
½−S, S� × ½−T , T�.

Proposition 4 (see [5]).

H ⊊ ℓ1 ⊊U ⊊ ℓ2: ð6Þ

The following notations are for the definitions from [2].
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(i) H be a real separable Hilbert space with norm k·k
=

ffiffiffiffiffiffiffiffiffiffih·, · ip
(ii) P is an orthogonal projection on H

(iii) F is the partially ordered set of orthogonal projec-
tions P of H (P >Q means PðHÞ ⊃QðHÞ for P,Q ∈
F)

Definition 5 (see [2] p59). A seminorm k·k in Hilbert space
H is called measurable if for ε > 0, there exists P0 ∈F such
that μfkPxk > εg < ε for all P⊥P0, P ∈F .

Definition 6 (see [2] p63). Let B be the completion of H with
respect to a measurable norm k·k. i will denote the inclusion
map of H into B. The triple ði,H, BÞ is called an abstract
Wiener space.

Proposition 7 (see [5]). ði,H ,UÞ is an abstract Wiener
space.

3. An Orthonormal System of the Hilbert
Space H

From Equation (6), the space of double sequences U con-
tains H , which is a Hilbert space. We find an orthonormal
system in H to define an appropriate probability and inte-
gration in the space U that will be used in the next section.

Definition 8. For nonnegative integersm and n, we define the
following:

am,n u, vð Þ≔
1

m + nð Þ m + n − 1ð Þ/2ð Þ + n + 1 , if u, vð Þ = m, nð Þ,

0, otherwise:

8><
>:

ð7Þ

Here, the argument ðu, vÞ is for a component of am,n.
That is, am,n is a member of H whose components are all
0 except for the ðm, nÞ-th component.

Theorem 9. The set fam,ng in Definition 8 constitutes an
orthonormal system in H .

Proof. Let c = fcu,vg be inH . By Definition 1, the inner prod-
uct of c and am,n is as follows:

c, am,nh i = cu,v
� �

, am,n
u,v

� �� �

=
cm,n

m + nð Þ m + n − 1ð Þ/2ð Þ + n + 1 , if u, vð Þ = m, nð Þ,

0, otherwise:

8><
>:

ð8Þ

We have hai,j, am,ni = 0 for ði, jÞ ≠ ðm, nÞ, and

am,n, am,nh i = 〠
∞

k=0
〠
k

l=0

k k + 1ð Þ
2 + l + 1

� 	2
am,n
l,k−la

m,n
l,k−l

 !

= m + nð Þ m + n + 1ð Þ
2 + n + 1

� 	2

� 1
m + nð Þ m + n − 1ð Þ/2ð Þ + n + 1

� 	2
= 1:

ð9Þ

Therefore, fam,ng is a complete orthonormal system in
H .

Remark 10. By Theorem 9, any c = fcu,vg in U can be
expressed as the following limit:

c = lim
m,n⟶∞

〠
m

i=0
〠
n

j=0
c, ai,j
� �

ai,j = lim
m⟶∞

〠
m

k=0
〠
k

l=0
c, al,k−l
D E

al,k−l:

ð10Þ

Then, Theorem 9 is also valid for U.
We introduce an operator for an expression of an inner

product in U. Let Tm,n : U⟶U be an operator defined
by the following:

Tm,n du,v
� �� �

≔
dm,n

m + nð Þ m + n − 1ð Þ/2ð Þ + n + 1 , if u, vð Þ = m, nð Þ,

0, otherwise:

8><
>:

ð11Þ

If d is inH , then Tm,nðdÞ = hd, am,ni obviously. We want
to extend the concept of thisH inner product to members of
the larger space U or ℓ2.

Theorem 11. Let c = fcu,vg be in H , d = fdu,vg in U, and
fam,ng is the orthonormal system in Definition 8. The limit
limm⟶∞∑m

k=0∑
k
l=0hc, Tl,k−lðdÞial,k−l exists in the ℓ2-sense.

Proof. Let d = fdu,vg be in U. We want to show that ∑∞
m,n=0

hfcu,vg, Tm,nðfdu,vgÞial,k−l exists for any d in U (or in ℓ2).
We express the double sum ∑∞

m,n=0 as ∑∞
k=0∑

k
l=0. It suffices

to show that ∑m
k=0∑

k
l=0hc, Tl,k−lðdÞi is Cauchy.

c, 〠
m2

k=m1+1
〠
k

l=0
Tl,k−l dð Þ

* +


= cu,v
� �

, 〠
m2

k=m1+1
〠
k

l=0
Tl,k−l du,v

� �� �* +
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= 〠
m2

k=m1+1
〠
k

l=0

k k + 1ð Þ
2 + l + 1

� 	2
cl,k−l

dl,k−l
k k + 1ð Þ/2ð Þ + l + 1

= 〠
m2

k=m1+1
〠
k

l=0

k k + 1ð Þ
2 + l + 1

� 	
cl,k−l

� 	
dl,k−l

� �

≤ cu,v
� ��� ��

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
m2

k=m1+1
〠
k

l=0
d2l,k−l

vuut :

ð12Þ

The last inequality comes from Schwarz inequality and
the norm defined in Definition 1.

Definition 12. Let c = fcu,vg be in U and d = fdu,vg be in U.
We define the following:

c, dh i = lim
m⟶∞

〠
m

k=0
〠
k

l=0
c, Tl,k−l dð Þ
D E

= 〠
∞

k=0
〠
k

l=0
c, Tl,k−l dð Þ
D E

,

ð13Þ

where the limit is in ℓ2-sense, which has been verified in
Theorem 11.

4. Integrability of eαk·k
2
in U

We defined an orthonormal system fam,ng in Definition 8 for
Fernique theorem in the abstract Wiener spaceU. Each mem-
ber of the orthonormal system fam,ng is a double sequence;
the components of am,n are all 0 except for the ðm, nÞ-th com-
ponent. We define an abstract Wiener measure with the dual
of the orthonormal system. Then, we can examine the integra-

bility of eαk·k
2
in U as in Fernique theorem.

Proposition 13 (Kuo and Fernique [2, 6]). There exists α > 0
such that

Ð
Be

αkxk2dμðxÞ <∞, where B is a Banach space and
μ is an abstract Wiener measure.

Let b∗ : U⟶ℝ be a member ofU∗, the dual space ofU,
which has been defined using the orthonormal system am,n in
Definition 8; bm,nðdÞ = hd, am,ni as in Equation (8). That is,
for d = fdu,vg in U

bm,n dð Þ≔ dm,n
m + nð Þ m + n − 1ð Þ/2ð Þ + n + 1

: ð14Þ

4.1. Single Indexing for a Double Sequence. The underlying
space of integral for Fernique theorem will be U. Since the
orthonormal system and its dual on the space are double
sequences, we need to deal with double indexing. This makes
calculation and development of the functional onU very com-
plicated. Hence, we convert double indexing of sequences
in U into single indexing to alleviate the complexity in
manipulation.

Definition 14. We define ψ : ℕ ∪ f0g⟶ ðℕ ∪ f0gÞ × ðℕ
∪ f0gÞ, ψðpÞ≔ ðqp, rpÞ for p ∈ℕ ∪ f0g. Here,

qp =max k ∈ℕ
k k + 1ð Þ

2 ≤ p


� �
,

rp = p −
qp qp + 1
� �

2 :

ð15Þ

Remark 15. For Definition 14, we have the following:

(1) The function ψ is a bijection

(2) We adopt the following notation for a double
sequence fdm,ng

〠
∞

p=0
dp = 〠

ψ pð Þ∈ ℕ∪ 0f gð Þ× ℕ∪ 0f gð Þ
dψ pð Þ = diag − 〠

∞

m,n=0
dm,n, ð16Þ

where diag − ∑∞
m,n=0 denotes summation by diagonals as in

Definition 14 for a double sequence.

Using Definition 14, any double sequence can be
regarded as a single indexed sequence. For the integrability
of a function in relation to Fernique theorem, we use the
expression of single indexing in Equation (16) in this
section.

4.2. Orthogonal System of Dual Members with Single
Indexing. The orthonormal system fam,ng in U in Definition
8 can be regarded as a single indexed sequence using Equa-
tion (16); we denote the system by f f ng, the new name of
fam,ng. Applying Definition 14 to Equation (14), the n-th
component of f n is 1/ðn + 1Þ and all other components are
zero:

f n kð Þ =
1

n + 1 , if k = n,

0, otherwise,

8<
: ð17Þ

where k is the k-th component of f n.
According to this conversion with Equation (16), we

rewrite the properties of the orthonormal system fam,ng in
terms of a single indexed sequence f f ng. As is fam,ng, h f n,
f mi = 0 for n ≠m, and k f nk2 = h f n, f ni =∑∞

j=0ðn + 1Þ2
ð f nðjÞÞ2 = ðn + 1Þ2/ðn + 1Þ2 = 1, f f ng consists of an ortho-
normal system in U. Here, k·k is the ℓ2-norm.

Consider the dual space U∗ of U; for b∗ inU∗ðb = fbngÞ,
its norm is defined by kb∗k = supkfcngk=1hfcng, fbngi/kfcngk
= supkfcngk=1j∑

∞
n=0cnbnj.

Let f ∗n , the dual of f n, be a member of U∗. Then,
f ∗n : U⟶ℝ maps fdkg to its n-th component divided by
n + 1; i.e., f ∗nðfdkgÞ = dn/ðn + 1Þ. Let us compute the norm
of f ∗n :
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f ∗nk k = sup
cmf gk k=1

f ∗n cmf gð Þj j
cmf gk ku

= sup
cmf gk k=1

cn
n + 1
  = 1

n + 1 : ð18Þ

Then, the set of f ∗nconsists of an orthogonal system inU∗.

4.3. Fernique Theorem on U. In order to be used in Fernique
theorem, we need a functional for a measure (density) on the
abstract Wiener space U. We regard each f ∗n as a random
variable defined on U and have the following theorems.

Theorem 16. Each f ∗n of the orthogonal system is normally
distributed; f ∗n ~Nð0, k f ∗nk2Þ.

Proof. For a real number a, we calculate the probability
wðfc ∈Uj f ∗nðcÞ < agÞ as follows. Let c = fcmg be in U.
Then, for nonzero f ∗n ∈U

∗,

w c ∈U : c, f nh i < af g
=w c ∈U : c, f n

f ∗nk k
� �

< a
f ∗nk k

� �

= 1ffiffiffiffiffiffi
2π

p
ða/ f ∗nk k

−∞
exp −

u2

2

� �
du

= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π f ∗nk k2

q ða
−∞

exp −
u2

2 f ∗nk k2
( )

du:

ð19Þ

Hence, f ∗n is normally distributed with mean 0 and
variance k f ∗nk2.

Then, the space U is with the measure w defined in the
proof of Theorem 16.

Theorem 17. Km = f ∗0 + f ∗1 +⋯ + f ∗m is normally distributed;
Km ~Nð0,∑m

k=0k f ∗kk2Þ.

Proof. We first show that the random variables f ∗n ’s are
independent to each other using characteristic functions,
i.e., Fourier transforms: if X is a random variable and X ~
Nðμ, σ2Þ, then the Fourier transform of X is ½FðXÞ�ðtÞ =
eðiμt−σ

2t2Þ/2.
Suppose m ≠ n. Then, k f ∗m + f ∗nk2 = supkfckgk=1jðcm/ðm

+ 1ÞÞ + ðcn/ðn + 1ÞÞj = ð1/ðm + 1Þ2Þ + ð1/ðn + 1Þ2Þ. We have

f ∗m + f ∗n ~Nð0, ð1/ðm + 1Þ2Þ + ð1/ðn + 1Þ2ÞÞ, and ½Fð f ∗m + f ∗n
Þ�ðtÞ = e−ð1/ðm+1Þ2+1/ðn+1Þ2Þt2/2. As f ∗m ~Nð0, 1/ðm + 1Þ2Þ and

f ∗n ~Nð0, 1/ðn + 1Þ2Þ, we have ½Fð f ∗mÞ�ðt1Þ · ½Fð f ∗nÞ�ðt2Þ =
e−ðt

2
1/ðm+1Þ2+t22/ðn+1Þ2Þ/2. We obtained ½Fð f ∗mÞ�ðtÞ · ½Fð f ∗nÞ�ðtÞ

= ½Fð f ∗m + f ∗nÞ�ðtÞ. Hence, f ∗m and f ∗n are stochastically inde-
pendent by Theorem 16.13 in [10].

As f f ∗ng is an independent system, kKmk2 =∑m
k=0k f ∗kk2.

Therefore, Km = f ∗0 + f ∗1 +⋯ + f ∗m follows a normal distribu-
tion and we have Km ~Nð0,∑m

k=0k f ∗kk2Þ.

Now, we need the convergence of an infinite product for
Fernique theorem in the abstract Wiener spaceU, which will
be discussed and provided here.

Lemma 18. The infinite product
Q∞

k=0ððk + 1Þ/ðffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk + 1Þ2 − 2α

q
ÞÞ converges for all α < 1/2.

Proof. The convergence of an infinite product
Q∞

k=0zn is
defined as limm⟶∞

Qn
k=0zn. We use the theorem that

Q∞
k=0

zn converges if and only if ∑∞
k=0 ln ðznÞ converges. We take

a logarithm for the infinite product:

ln
Y∞
k=0

k + 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k + 1ð Þ2 − 2α

q
0
B@

1
CA = 〠

∞

k=0
ln k + 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k + 1ð Þ2 − 2α
q

0
B@

1
CA

= 〠
∞

k=0
−
1
2 ln 1 − 2α

k + 1ð Þ2
 !

:

ð20Þ

Therefore, it suffices to show that ∑∞
k=0 ln ð1 − ð2α/

ðk + 1Þ2ÞÞ converges for all α < 1/2. As the antilogarithm ð1
− ð2α/ðk + 1Þ2ÞÞ is less than 1, each logarithmic term of
the series is negative. For each k of the finite series ∑m

k=0 ln
ð1 − ð2α/ðk + 1Þ2ÞÞ, we use a Taylor series ln ð1 + xÞ =∑∞

i=1
ðð−1Þi+1/iÞxi, where 2α/ðk + 1Þ2 is plugged into x of the
Taylor series. Then, the finite series ∑m

k=0 is regarded as a
double series as follows:

〠
m

k=0
ln 1 − 2α

k + 1ð Þ2
 !

= 〠
m

k=0
〠
∞

i=1

−1ð Þi+1
i

−
2α

k + 1ð Þ2
 !i

= −〠
∞

i=1
〠
m

k=0

2αð Þi
i

1
k + 1ð Þ2

:

ð21Þ

We change the order of the two summations in the last
equality. The sign of each term of this double series is
ð−1Þi+1+i = −1 and it is put into the front of the series in the last
equation. We examine the double series for each i:

for i = 1, 〠
m

k=0

2αð Þ1
1

1
k + 1ð Þ2

= 2αð Þ1
1 〠

m

k=0

1
k + 1ð Þ2

< 2αð Þ1
1

π2

6 ,

for i = 2, 〠
m

k=0

2αð Þ2
2

1
k + 1ð Þ2

= 2αð Þ2
2 〠

m

k=0

1
k + 1ð Þ2

< 2αð Þ2
2

π2

6 ,

ð22Þ

and so on. For all i, the sum ∑m
k=0ð1/ðk + 1Þ2Þ is a partial

sum of a p-series (p = 2) which converges to π2/6. Then,
∑∞

i=1ðð2αÞi/iÞ∑m
k=0ð1/ðk + 1Þ2Þ ≤ ðπ2/6Þ∑∞

i=1ðð2αÞi/iÞ: Now
the series ∑∞

i=1ðð2αÞi/iÞ is of positive terms and smaller than
a geometric series which is convergent for 2α < 1. By a com-
parison test, the series ∑∞

i=1ðð2αÞi/iÞ also converges for 2α <
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1. When α ≥ 1/2, the series diverges. Therefore,Q∞
k=0ððk + 1Þ

/ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk + 1Þ2 − 2α

q
ÞÞ converges for all α < 1/2. It is obvious that

the infinite product converges for α < 0.

The function to be integrated in Fernique theorem is

eαk·k
2
for a variable c in U that is an infinite dimensional

space. When a function defined on an abstract Wiener space
assigns finite values, its integral on the abstract Wiener space
makes sense and can be expressed by a Lebesgue integral.
We use a projection Pm for a function of c = fcng in U,
where Pm : U⟶U is an (m + 1)-dimensional projection;
PmðcÞ = ðc0, c1, c2,⋯, cm, 0, 0,⋯Þ. Then, the integral of

eαkck
2
for Fernique theorem should be explained via the inte-

gral of eαkPmðcÞk
2
.

Theorem 19.
Ð
U
eαkck

2
dwðcÞ <∞ for all α < 1/2.

Proof. For a sequence c = fckg in U, PmðcÞ
= ðc0, c1, c2,⋯, cm, 0, 0,⋯Þ. As we have shown in Theorems
16 and 17, random variables f ∗j are independent and the var-

iance of each f ∗j is k f ∗j k2 = 1/ðj + 1Þ2. Therefore,

ð
U

eα Pm cð Þk k2dw cð Þ

= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þm+1

q Qm
j=0 f ∗j
��� ���

ð
ℝm+1

exp α〠
m

j=0
u2j

( )

� exp −〠
m

j=0

u2j

2 f ∗j
��� ���2

8><
>:

9>=
>;du0du1 ⋯ dum

=
Ym
j=0

1ffiffiffiffiffiffi
2π

p
f ∗j
��� ���

ð
ℝm+1

exp α −
1

2 f ∗j
��� ���2

0
B@

1
CAu2j

8><
>:

9>=
>;duj

=
Ym
j=0

j + 1ffiffiffiffiffiffi
2π

p
ð
ℝ
exp α −

j + 1ð Þ2
2

 !
u2j

( )
duj:

ð23Þ

We calculate the k-th integral in the product of the last
equality:

k + 1ffiffiffiffiffiffi
2π

p
ð
ℝ
exp α −

k + 1ð Þ2
2

 !
u2k

( )
duk

= k + 1ffiffiffiffiffiffi
2π

p
ð
ℝ
exp −

k + 1ð Þ2
2 − α

 !
u2k

( )
duk

=∗ð Þ k + 1ffiffiffiffiffiffi
2π

p
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k + 1ð Þ2 − 2α

q ffiffiffi
π

p
= k + 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k + 1ð Þ2 − 2α
q :

ð24Þ

For the equality (∗) above, we use the well-known
formula

Ð
ℝ exp f−a2u2gdu = ffiffiffi

π
p /a. Then, the integral in

Equation (23) is expressed by the following:

ð
U

eα Pm cð Þk k2dw cð Þ =
Ym
k=0

k + 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k + 1ð Þ2 − 2α

q : ð25Þ

We need to show that the limits of both sides of Equa-
tion (25) are equal. Taking the limit on its left side,

limm⟶∞
Ð
U
eαkPmðcÞk

2
dwðcÞ = Ð

U
eαkck

2
dwðcÞ by the mono-

tone convergence theorem since limm⟶∞kPmðcÞk = kck.
Also, taking the limit on its right side, the limit is

Q∞
k=0ððk

+ 1Þ/ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk + 1Þ2 − 2α

q
ÞÞ. The convergence of this infinite

product has been shown for all α < 1/2 in Lemma 18, and
we have the desired result.

5. Conclusions and Discussions

We explored the abstract Wiener space U consisting of
sequences of double Fourier coefficients for integrability.
As it is also a Hilbert space, we found its orthonormal sys-
tem and used it to define a probability measure on the
abstract Wiener space. Then, we examined integrability of

a function eαk·k
2
appeared in Fernique theorem. We verified

that the function is integrable with respect to the abstract
Wiener measure with a wider choice of a constant α than
that of Fernique. As this paper provides a specific range of
values for the constant α, the result can be applied to related
functions.
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