
Research Article
Infinitely Many Solutions for Discrete Boundary Value
Problems with the ðp, qÞ-Laplacian Operator

Zhuomin Zhang and Zhan Zhou

School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China

Correspondence should be addressed to Zhan Zhou; zzhou0321@hotmail.com

Received 14 July 2021; Accepted 27 August 2021; Published 27 September 2021

Academic Editor: Fanglei Wang

Copyright © 2021 Zhuomin Zhang and Zhan Zhou. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

In this paper, we consider the existence and multiplicity of solutions for a discrete Dirichlet boundary value problem involving the
ðp, qÞ-Laplacian. By using the critical point theory, we obtain the existence of infinitely many solutions under some suitable
assumptions on the nonlinear term. Also, by our strong maximum principle, we can obtain the existence of infinitely many
positive solutions.

1. Introduction

Let N be a positive integer and denote with ½1,N� the discrete
set f1,⋯,Ng. In this paper, we consider the existence of infi-
nitely many solutions for the following discrete Dirichlet
boundary value problem

−Δpu j − 1ð Þ − Δqu j − 1ð Þ + α jð Þϕp u jð Þð Þ + β jð Þϕq u jð Þð Þ = λg j, u jð Þð Þ,∀j ∈ 1,N½ �,
u 0ð Þ = u N + 1ð Þ = 0,

 

ð1Þ

where ΔruðjÞ≔ ΔðϕrðΔuðjÞÞÞ is the discrete r-Laplacian,
ϕrðuÞ = jujr−2u with u ∈ℝ, ΔuðjÞ = uðj + 1Þ − uðjÞ is the for-
ward difference operator, gðj, ·Þ: ℝ⟶ℝ is continuous for
each j ∈ ½1,N�, 1 < q ≤ p < +∞, λ is a positive parameter,
and αðjÞ, βðjÞ ≥ 0 for all j ∈ ½1,N�:

In the past decades, there has been tremendous interest
in the study of difference equations, with the development
of engineering, physics, economy, and so on (see [1–4]).
Most results about the boundary value problems of differ-
ence equations are obtained by using the method of upper
and lower solutions and fixed point methods (see [5–7]).
In 2003, Guo and Yu [8] first applied the critical point the-
ory to study the existence of periodic and subharmonic solu-
tions for a second-order difference equation. Since then, the
critical point theory has been employed to study difference

equations, and many meaningful results have been obtained,
concerning periodic solutions [9, 10], homoclinic solutions
[11–13], heteroclinic solutions [14], and especially in bound-
ary value problems [15–20]. For example, Candito and Gio-
vannelli [21] established the existence of multiple solutions
of the following problem

−Δpu j − 1ð Þ = λf j, u jð Þð Þ, j ∈ 1,N½ �,
u 0ð Þ = u N + 1ð Þ = 0:

 
ð2Þ

Later, Bonanno and Candito [22] established the exis-
tence of infinitely many solutions of the following problem

−Δpu j − 1ð Þ + q kð Þϕp u jð Þð Þ = λf j, u jð Þð Þ, j ∈ 1,N½ �,
u 0ð Þ = u N + 1ð Þ = 0,

 

ð3Þ

where qðjÞ ≥ 0 for all j ∈ ½1,N�: Obviously, (2) is a special
case (qðjÞ = 0) of (3). After that, under different conditions,
D’Aguì et al. [23] established the existence of at least two
positive solutions of (3).
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In [24], Li and Zhou considered the following discrete
mixed boundary value problem

−Δpu j − 1ð Þ + s jð Þϕq u jð Þð Þ = λf k, u kð Þð Þ, j ∈ 1,N½ �,
u 0ð Þ = Δu Nð Þ = 0,

 

ð4Þ

where sðjÞ ≥ 0 for all j ∈ ½1,N�: By using the critical point
theory, the authors obtained the existence of at least two
positive solutions for (4).

The boundary value problems involving the sum of a p-
Laplacian operator and of a q-Laplacian operator is more
common, because this arises in the study of stationary solu-
tions of reaction-diffusion systems (see [25]). For example,
Mugnai and Papageorgiou [26] and Marano et al. [27] inves-
tigated the following Dirichlet problem

−Δpu − μΔqu = f x, uð Þ, in Ω,
u = 0, on ∂Ω,

 
ð5Þ

where f : Ω ×ℝ⟶ℝ satisfies Carathéodory’s condi-
tions, and they obtained the existence of multiple solutions
of (5).

In [28], Nastasi et al. proved the existence of at least two
positive solutions for problem (1). Compared with the dis-
crete boundary value problem involving p-Laplacian opera-
tor, there are few results on the discrete boundary value
problem with ðp, qÞ-Laplacian operator except [28]. Inspired
by the above results, we want to investigate the multiplicity
of solutions for problem (1).

In this paper, under suitable assumptions, we use the
critical point theory obtained in [29] to establish the exis-
tence of infinitely many solutions for discrete ðp, qÞ-Lapla-
cian equations with Dirichlet type boundary conditions.
Moreover, by our strong maximum principle, we can obtain
the existence of infinitely many positive solutions of (1).

The rest of this paper is organized as follows. In Section
2, we recall the critical point theory and show some basic
lemmas. In Section 3, our main results and proofs are pre-
sented. After that, we have two examples to explain our main
results. We conclude our results in the last section.

2. Preliminaries

Let X be a reflexive real Banach space and let Iλ : X⟶ℝ be
a function satisfying the following structure hypothesis:

(H) IλðuÞ =ΦðuÞ − λΨðuÞ for all u ∈ X, where Φ,Ψ : X
⟶ℝ are two functions of class C1 on X with Φ coercive,
i.e., lim

∥u∥⟶∞
ΦðuÞ = +∞, and λ is a real positive parameter

Provided that infXΦ < r, put

φ rð Þ = inf
u∈Φ−1ð�−∞,r½Þ

sup
v∈Φ−1ð�−∞,r½Þ

Ψ vð Þ
 !

−Ψ uð Þ

r −Φ uð Þ , ð6Þ

and

γ = liminf
r⟶+∞

φ rð Þ, δ = liminf
r⟶ inf

X
Φ

� �+
φ rð Þ: ð7Þ

There is no doubt that γ ≥ 0 and δ ≥ 0. When γ = 0 (or
δ = 0), in the sequel, we agree to regard 1/γ (or 1/δ) as +∞.

Now, we recall Theorem 2.1 of [29], which is our main
tool for investigating problem (1).

Lemma 1. Assume that the condition (H) holds. We have
ðaÞ For every r > infXΦ and every λ ∈ �0, 1/φðrÞ½, the

restriction of the functional Iλ =Φ − λΨ to Φ−1ð�−∞,r½Þ
admits a global minimum, which is a critical point (local
minimum) of Iλ in X.

ðbÞ If γ < +∞ then, for each λ ∈ �0, 1/γ½, the following
alternative holds: either

ðb1ÞIλ possesses a global minimum, or
ðb2Þ There is a sequence fung of critical points (local min-

imum) of Iλ such that lim
n⟶+∞

ΦðunÞ = +∞
ðcÞ If δ < +∞ then, for each λ ∈ �0, 1/δ½, the following

alternative holds: either
ðc1Þ There is a global minimum of Φ which is a local min-

imum of Iλ, or
ðc2Þ There is a sequence fung of pairwise distinct critical

points (local minima) of Iλ, with lim
n⟶+∞

ΦðunÞ = infXΦ,
which weakly converges to a global minimum of Φ

Here, we consider the N-dimensional Banach space

Xd = u : 0,N + 1½ �⟶ℝ such that u 0ð Þ = u N + 1ð Þ = 0f g,
ð8Þ

and define the norm

∥u∥r,h ≔ 〠
N

j=0
Δu jð Þj jr + 〠

N

j=1
h jð Þ u jð Þj jr

 !1/r

, ð9Þ

where h : ½1,N�⟶ℝ, with hðjÞ ≥ 0 for all j ∈ ½1,N�, and r
∈ �1,+∞½. Then, let Xd be endowed with the norm ∥u∥ = ∥
u∥p,α + ∥u∥q,β: We denote the usual sup-norm by ∥u∥∞ =
max
j∈½1,N�

∣ uðjÞ ∣ , and then we consider the inequality (see

([30], Lemma 2.2)):

uk k∞ ≤
N + 1ð Þ r−1ð Þ/r

2 uk kr,h for all u ∈ Xd: ð10Þ

Lemma 2. Let h =∑N
j=1 hðjÞ. The following inequalities hold

2

N + 1ð Þ r−1ð Þ/r uk k∞ ≤ uk kr,h ≤ 2rN + hð Þ1/r uk k∞: ð11Þ

Proof. The left-hand side of (11) follows by [30]. Consider
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the right-hand inequality,

∥u∥rr,h = 〠
N

j=0
Δu jð Þj jr + 〠

N

j=1
h jð Þ u jð Þj jr

= Δu 0ð Þj jr + Δu Nð Þj jr + 〠
N−1

j=1
Δu jð Þj jr + 〠

N

j=1
h jð Þ u jð Þj jr

≤ 2∥u∥r∞ + 〠
N−1

j=1
2∥u∥∞ð Þr + 〠

N

j=1
h jð Þ∥u∥r∞

≤ 2rN + hð Þ∥u∥r∞:

ð12Þ

Put

A1 uð Þ = 1
p
∥u∥pp,α, A2 uð Þ = 1

q
∥u∥qq,β and 

Ψ uð Þ = 〠
N

j=1
G j, u jð Þð Þ, for all u ∈ Xd ,

ð13Þ

where the function G : ½1,N� ×ℝ⟶ℝ is given by Gðj, tÞ
= Ð t0 gðj, sÞds, for all t ∈ℝ, j ∈ ½1,N�.

Clearly, A1, A2,Ψ ∈ C1ðXd ,ℝÞ and we have the following
Gâteaux derivatives at the point u ∈ Xd :

A1′ uð Þ, v
D E

= 〠
N

j=0
ϕp Δu jð Þð ÞΔv jð Þ + 〠

N

j=1
α jð Þϕp u jð Þð Þv jð Þ,

ð14Þ

A2′ uð Þ, v
D E

= 〠
N

j=0
ϕq Δu jð Þð ÞΔv jð Þ + 〠

N

j=1
β jð Þϕq u jð Þð Þv jð Þ,

ð15Þ

Ψ′ uð Þ, v
D E

= 〠
N

j=1
g j, u jð Þð Þv jð Þ, ð16Þ

for all v ∈ Xd: Now, for r ∈ �1,+∞½,

〠
N

j=0
ϕr Δu jð Þð ÞΔv jð Þ

= 〠
N

j=0
ϕr Δu jð Þð Þv j + 1ð Þ − ϕr Δu jð Þð Þv jð Þ½ �

= 〠
N

j=1
ϕr Δu j − 1ð Þð Þv jð Þ − 〠

N

j=1
ϕr Δu jð Þð Þv jð Þ

= −〠
N

j=1
Δϕr Δu j − 1ð Þð Þv jð Þ:

ð17Þ

If we plug this result back into the calculation of Gâteaux

derivatives above, then

A1′ uð Þ, v
D E

= 〠
N

j=1
−Δϕp Δu j − 1ð Þð Þ + α jð Þϕp u jð Þð Þ
h i

v jð Þ,

ð18Þ

A2′ uð Þ, v
D E

= 〠
N

j=1
−Δϕq Δu j − 1ð Þð Þ + β jð Þϕq u jð Þð Þ
h i

v jð Þ,

ð19Þ
for all u, v ∈ Xd: Let

Φ uð Þ = A1 uð Þ + A2 uð Þ: ð20Þ

Consider the functional Iλ : Xd ⟶ℝ given as

Iλ uð Þ =Φ uð Þ − λΨ uð Þ, for all u ∈ Xd: ð21Þ

We have

Iλ′ uð Þ, v
D E

= 〠
N

j=1
−Δpu j − 1ð Þ − Δqu j − 1ð Þ + α jð Þϕp u jð Þð Þ + β jð Þϕq u jð Þð Þ − λg j, u jð Þð Þ
h i

v jð Þ,

ð22Þ

for all u, v ∈ Xd: Thus, u ∈ Xd is a solution of problem (1) if
and only if u is a critical point of Iλ.

Lemma 3. Fix u ∈ Xd such that either

u jð Þ > 0or − Δpu j − 1ð Þ − Δqu j − 1ð Þ
+ α jð Þϕp u jð Þð Þ + β jð Þϕq u jð Þð Þ ≥ 0,

ð23Þ

for all j ∈ ½1,N�. Then, either u > 0 in ½1,N� or u ≡ 0.

Proof. Fix u ∈ Xd \ f0g and Z = fj ∈ ½1,N�: uðjÞ ≤ 0g: If Z =
∅, then, u > 0. Now, if min Z = 1, we can get

−Δpu 0ð Þ − Δqu 0ð Þ + α 1ð Þϕp u 1ð Þð Þ + β 1ð Þϕq u 1ð Þð Þ ≥ 0,
ð24Þ

which implies that

Δ ϕp Δu 0ð Þð Þ
� �

+ Δ ϕq Δu 0ð Þð Þ
� �

≤ α 1ð Þϕp u 1ð Þð Þ + β 1ð Þϕq u 1ð Þð Þ ≤ 0:
ð25Þ

Thus,

ϕp Δu 1ð Þð Þ + ϕq Δu 1ð Þð Þ ≤ ϕp Δu 0ð Þð Þ + ϕq Δu 0ð Þð Þ: ð26Þ

Since ϕp and ϕq are both strictly increasing, we have Δ

uð1Þ ≤ Δuð0Þ, which implies uð2Þ − uð1Þ ≤ uð1Þ − 0 ≤ 0. It
follows that uð2Þ ≤ 0, then ΔðϕpðΔuð1ÞÞÞ + ΔðϕqðΔuð1ÞÞÞ ≤
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αð2Þϕpðuð2ÞÞ + βð2Þϕqðuð2ÞÞ ≤ 0: An easy induction gives

0 = u N + 1ð Þ ≤ u Nð Þ ≤⋯ ≤ u 1ð Þ ≤ 0: ð27Þ

That is u ≡ 0, and this is absurd. Next, we assume that
min Z = z ∈ ½2,N�,

Δ ϕp Δu z − 1ð Þð Þ
� �

+ Δ ϕq Δu z − 1ð Þð Þ
� �

≤ α zð Þϕp u zð Þð Þ + β zð Þϕq u zð Þð Þ ≤ 0:
ð28Þ

Due to the monotonicity of ϕp and ϕq, ΔuðzÞ ≤ Δuðz − 1Þ
, which means uðz + 1Þ − uðzÞ ≤ uðzÞ − uðz − 1Þ. Because uð
z − 1Þ > 0, we have uðz + 1Þ < uðzÞ ≤ 0. By repeating this
argument, it is easy to see

0 = u N + 1ð Þ < u Nð Þ <⋯ < u zð Þ ≤ 0, ð29Þ

which leads to a contradiction.

Now, consider the function G+ : ½1,N� ×ℝ⟶ℝ given
as

G+ j, tð Þ =
ðt
0
g j, s+ð Þds, for all t ∈ℝ, j ∈ 1,N½ �, ð30Þ

where s+ = max fs, 0g. Now, we define I+λðuÞ =ΦðuÞ − λΨ+ð
uÞ, for all u ∈ Xd , where Ψ+ðuÞ =∑N

j=1 G
+ðj, uðjÞÞ: Similarly,

the critical points of I+λ are the solutions of the following

problem

−Δpu j − 1ð Þ − Δqu j − 1ð Þ + α jð Þϕp u jð Þð Þ + β jð Þϕq u jð Þð Þ = λg j, u+ jð Þð Þ,∀j ∈ 1,N½ �,
u 0ð Þ = u N + 1ð Þ = 0:

 

ð31Þ

Lemma 4. If gðj, 0Þ ≥ 0 for all j ∈ ½1,N�, then each nonzero
critical point of I+λ is a positive solution of (1).

Proof. We note that each positive solution u ∈ Xd of (31) is a
positive solution of (1). By an application of Lemma 3, we
conclude that u > 0. It follows that the nonzero solutions of
(31) are positive and hence are positive solutions of (1).

3. Main Results

Let

α = 〠
N

j=1
α jð Þ, β = 〠

N

j=1
β jð Þ, L∞ jð Þ = liminf

t⟶+∞
G j, tð Þ
tp

andL∞

= min
j∈ 1,N½ �

L∞ jð Þ:

ð32Þ

The main results are as follows.

Theorem 5. Assume that L∞ > 0, and there are two real
sequences fang and fbng, with lim

n⟶+∞
an = +∞, such that

Then for each λ ∈ �½ð2p + 2qÞN + α + β�/qL∞, 1/A∞½,
problem (1) admits an unbounded sequence of solutions.

Proof. Fixλin�½ð2p + 2qÞN + α + β�/qL∞, 1/A∞½, then, we can
take the real Banach space Xd as defined in Section 2, and
the definitions of Φ,Ψ, Iλ are the same as before. We will
prove Theorem 5 by applying Lemma 1 part (b) to function
Iλ. Since (H) is trivial to prove, it suffices to prove γ < +∞
and Iλ turns out to be unbounded from below. To this
end, let

ρn ≔
2anð Þp

p N + 1ð Þp−1  and σn ≔
2anð Þq

q N + 1ð Þq−1 , for every n ∈ℕ:

ð35Þ

Since, owing to (10), if ∥u∥p,α ≤ ðpρnÞ1/p then ∥u∥∞ ≤ an,

and if ∥u∥q,β ≤ ðqσnÞ1/q then ∥u∥∞ ≤ an. So, let rn = ρn + σn.
From ΦðuÞ ≤ rn, we have ∥u∥∞ ≤ an.

We obtain

φ rnð Þ ≤ inf
Φ uð Þ≤rn

∑N
j=1 max

∣t∣≤an
G j, tð Þ − ∑N

j=1 G j, u jð Þð Þ
rn −Φ uð Þ : ð36Þ

Then, we define wðjÞ such that wnðjÞ = bn for every j ∈
½1,N�, wnð0Þ =wnðN + 1Þ = 0: Clearly wnðjÞ ∈ Xd and Φðwn
Þ < rn owing to (33). One has

bnj j <min 2an
α + 2ð Þ1/p N + 1ð Þ p−1ð Þ/p ,

2an
β + 2ð Þ1/q N + 1ð Þ q−1ð Þ/q

( )
, for every n ∈ℕ, ð33Þ

A∞ ≔ liminf
n⟶+∞

∑N
j=1 max

∣t∣≤an
G j, tð Þ −∑N

j=1 G j, bnð Þ
2anð Þp/p N + 1ð Þp−1� �

+ 2anð Þq/q N + 1ð Þq−1� �
− 2 + αð Þ/p½ � bnj jp − 2 + βð Þ/q½ � bnj jq < qL∞

2p + 2qð ÞN + α + β
:

ð34Þ
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φ rnð Þ ≤
∑N

j=1 max
∣t∣≤an

G j, tð Þ − ∑N
j=1 G j, cð Þ

2anð Þp/p N + 1ð Þp−1� �
+ 2anð Þq/q N + 1ð Þq−1� �

− 2 + αð Þ/p½ � bnj jp − 2 + βð Þ/q½ � bnj jq :

ð37Þ

Therefore, γ ≤ liminf
n⟶+∞

φðrnÞ ≤ A∞ < +∞. It remains to

show that Iλ is unbounded from below.
Let fung ⊂ Xd be a sequence with unðjÞ ≥ 1 for j ∈ ½1,N�

such that lim
n⟶∞

∥un∥ = +∞. Because L∞ > 0, fix L such that

L∞ > L > ½ð2p + 2qÞN + α + β�/qλ, and we deduce that there
is δj > 0 such that Gðj, tÞ > Ltp for all t > δj. Moreover, since
Gðj, tÞ is a continuous function, there exists a constant Cðj
Þ ≥ 0 such that Gðj, tÞ ≥ Ltp − CðjÞ for all t ∈ ½0, δj�. Thus, G
ðj, tÞ ≥ Ltp − CðjÞ for all t ≥ 0 and j ∈ ½1,N�. It follows that

Ψ unð Þ = 〠
N

j=1
G j, un jð Þð Þ ≥ 〠

N

j=1
L un jð Þð Þp − C jð Þ� �

≥ L∥un∥
p
∞ − C, for all n ∈ℕ,

ð38Þ

where C =∑N
j=1 CðjÞ. Since ∥un∥∞ ≥ 1, one has

Iλ unð Þ = ∥un∥
p
p,α

p
+
∥un∥

q
q,β

q
− λ〠

N

j=1
G j, un jð Þð Þ

≤
2pN + α

p
∥un∥

p
∞ + 2qN + β

q
∥un∥

q
∞ − λL∥un∥

p
∞ + λC

≤
2p + 2qð ÞN + α + β

q
− λL

� 	
∥un∥

p
∞ + λC:

ð39Þ

As ½ð2p + 2qÞN + α + β�/q − λL < 0, it is obvious that
lim

n⟶+∞
IλðunÞ = −∞. Hence, Iλ is unbounded from below

and the proof is complete.

Let

B∞ = limsup
t⟶+∞

∑N
j=1 G j, tð Þ

tp
: ð40Þ

The following theorem can be obtained if we change
some of the conditions.

Theorem 6. Assume that there are two real sequences fang
and fbng, with lim

n⟶+∞
an = +∞, such that (33) holds and

A∞ ≔ liminf
n⟶+∞

∑N
j=1 max

∣t∣≤an
G j, tð Þ −∑N

j=1 G j, bnð Þ
2anð Þp/p N + 1ð Þp−1� �

+ 2anð Þq/q N + 1ð Þq−1� �
− 2 + αð Þ/p½ � bnj jp − 2 + βð Þ/q½ � bnj jq

< B∞

4 + α + β
:

ð41Þ

Then, for each λ ∈ �ð4 + α + βÞ/qB∞, 1/A∞½, problem (1)
admits an unbounded sequence of solutions.

Proof. The first half of the argument is analogous to that in
Theorem 5, and put Φ,Ψ, Iλ, rn as above. So, we have γ ≤
liminf
n⟶+∞

φðrnÞ ≤ A∞ < +∞.

Our task now is to verify that Iλ is unbounded from
below. First, we assume that B∞ = +∞: Fix M such that
B∞ >M > ð4 + α + βÞ/qλ, and let ftng be a sequence with
tn ≥ 1 and lim

n⟶+∞
tn = +∞, such that

〠
N

j=1
G j, tnð Þ >Mtpn, for all n ∈ℕ: ð42Þ

Taking the sequence xn in Xd defined by xnðjÞ = tn for
every j ∈ ½1,N�, xnð0Þ = xnðN + 1Þ = 0, we have

Iλ xnð Þ = ∥xn∥
p
p,α

p
+
∥xn∥

q
q,β

q
− λ〠

N

j=1
G j, xn jð Þð Þ

= 2 + α

p
tpn +

2 + β

q
tqn − λ〠

N

j=1
G j, tnð Þ

< 2 + α

p
tpn +

2 + β

q
tqn − λMtpn

< α + β + 4
q

− λM

 �

tpn:

ð43Þ

It is easy to see lim
n⟶+∞

IλðxnÞ = −∞.

Then, we assume that B∞ < +∞ and fix ε > 0 such that
ε < B∞ − ð4 + α + βÞ/qλ. Let ftng be a sequence with tn ≥ 1,
such that lim

n⟶+∞
tn = +∞ and

B∞ + εð Þtpn > 〠
N

j=1
G j, tnð Þ > B∞ − εð Þtpn,∀n ∈ℕ: ð44Þ

Let the sequence fxng in Xd be the same as the case
where B∞ = +∞, such that

Iλ xnð Þ < 4 + α + β

q
− λ B∞ − εð Þ

� 	
bpn, ð45Þ

which implies that lim
n⟶+∞

IλðxnÞ = −∞.

So, in both cases, Iλ is unbounded from below, which
completes the proof of Theorem 6.

Let

B0 ≔ limsup
t⟶0+

∑N
j=1 G j, tð Þ

tq
: ð46Þ

Applying part (c) of Lemma 1, we get the following the-
orem.
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Theorem 7. Assume that there exist two real sequences fcn
g and fdng, with lim

n⟶+∞
dn = 0, such that

cnj j <min 2dn
α + 2ð Þ1/p N + 1ð Þ p−1ð Þ/p ,

2dn
β + 2ð Þ1/q N + 1ð Þ q−1ð Þ/q

( )
, for every n ∈ℕ,

ð47Þ

A0 ≔ liminf
n⟶+∞

∑N
j=1 max

∣t∣≤dn
G j, tð Þ −∑N

j=1 G j, cnð Þ
2dnð Þp/p N + 1ð Þp−1� �

+ 2dnð Þq/q N + 1ð Þq−1� �
− 2 + αð Þ/p½ � cnj jp − 2 + βð Þ/q½ � cnj jq

< B0

4 + α + β
:

ð48Þ
Then, for each λ ∈ �ð4 + α + βÞ/qB0, 1/A0½, problem (1)

admits a sequence of nonzero solutions which converges to
zero.

Proof. Fix λ in �ð4 + α + βÞ/qB0, 1/A0½, and we can take the
real Banach space Xd and functional Φ,Ψ, Iλ as defined in
Section 2. Our aim is to apply Lemma 1 part (c) to function
Iλ. To this end, let

ρn ≔
2dnð Þp

p N + 1ð Þp−1  and σn ≔
2dnð Þq

q N + 1ð Þq−1 , for every n ∈ℕ:

ð49Þ

Owing to (10), if ∥u∥p,α ≤ ðpρnÞ1/p then ∥u∥∞ ≤ dn, and if

∥u∥q,β ≤ ðqσnÞ1/q then ∥u∥∞ ≤ dn. So, let rn = ρn + σn. It fol-
lows that if ΦðuÞ ≤ rn, then ∥u∥∞ ≤ dn. We obtain

φ rnð Þ ≤ inf
Φ uð Þ≤rn

∑N
j=1 max

∣t∣≤dn
G j, tð Þ −∑N

j=1 G j, u jð Þð Þ
rn−∥u∥

p
p,α/p−∥u∥

q
q,β/q

: ð50Þ

Now, for each n ∈ℕ, let vnðjÞ be defined by vnðjÞ = cn for
every j ∈ ½1,N�, vnð0Þ = vnðN + 1Þ = 0: Clearly vnðjÞ ∈ Xd ,
and ΦðvnÞ ≤ rn from (47). We have

φ rnð Þ ≤
∑N

j=1 max
tj j≤dn

G j, tð Þ −∑N
j=1 G j, cnð Þ

2dnð Þp/p N + 1ð Þp−1� �
+ 2dnð Þq/q N + 1ð Þq−1� �

− 2 + αð Þ/p½ � cnj jp − 2 + βð Þ/q½ � cnj jq :

ð51Þ

Hence, δ ≤ liminf
n⟶+∞

φðrnÞ ≤ A0 < +∞ follows.

In fact, infXd
Φ = 0, so our task now is to verify that the 0

is not a local minimum of Iλ. First, assume that B0 = +∞:
Fix M such that B0 >M > ð4 + α + βÞ/qλ, and let fsng be a
sequence of positive numbers, with sn ≤ 1 and lim

n⟶+∞
sn = 0,

such that

〠
N

j=1
G j, snð Þ >Msqn, for all n ∈ℕ: ð52Þ

Thus, taking the sequence fyng in Xd , let ynðjÞ = sn for
every j ∈ ½1,N�, ynð0Þ = ynðN + 1Þ = 0. Some tedious manipu-

lation yields

Iλ ynð Þ < 4 + α + β

q
− λM


 �
sqn, ð53Þ

which implies that IλðynÞ < 0.
Then, we assume that B0 < +∞ and fix ε > 0 such that

ε < B0 − ð4 + α + βÞ/qλ. Let fsng be a sequence of positive
numbers, with sn ≤ 1, such that lim

n⟶+∞
sn = 0 and

B0 + ε
� �

sqn > 〠
N

j=1
G j, snð Þ > B0 − ε

� �
sqn,∀n ∈ℕ: ð54Þ

Choosing the same fyng in Xd as the case B
0 = +∞, one

has

Iλ ynð Þ < 4 + α + β

q
− λ B0 − ε
� �� 	

sqn: ð55Þ

That is IλðynÞ < 0. Since 0 is the global minimum of Φ, in
both cases, u = 0 is not a local minimum of Iλ and the proof
is complete.

By setting

A∗ ≔ liminf
n⟶+∞

∑N
j=1 max

∣t∣≤an
G j, tð Þ

2anð Þp/p N + 1ð Þp−1� �
+ 2anð Þq/q N + 1ð Þq−1� � , �A∞

≔ liminf
t⟶+∞

∑N
j=1 max

∣ξ∣≤t
G j, ξð Þ

tq + tp
,

ð56Þ

we get the following consequences.

Corollary 8. Assume that

�A∞ < 2q

p N + 1ð Þp−1 4 + α + βð ÞB
∞: ð57Þ

Then, for each λ ∈ �ð4 + α + βÞ/qB∞, 2q/pðN + 1Þp−1�A∞½,
problem (1) admits an unbounded sequence of solutions.

Proof. Let fang be a sequence of positive numbers with
lim

n⟶∞
an = +∞, such that

�A∞ = liminf
n⟶+∞

∑N
j=1 max

∣ξ∣≤an
G j, ξð Þ

aqn + apn
: ð58Þ

After simple scaling and calculation, we have

A∗ ≤
p N + 1ð Þp−1

2q
�A∞: ð59Þ

Taking bn = 0 for each n ∈ℕ, from Theorem 6, the con-
clusion follows.
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If gðj, 0Þ satisfies the nonnegative condition, we have the
following conclusion.

Corollary 9. Assume that gðj, 0Þ ≥ 0 for all j ∈ ½1,N�, and

�A∞ < 2q

p N + 1ð Þp−1 4 + α + βð ÞB
∞: ð60Þ

Then, for each λ ∈ �ð4 + α + βÞ/qB∞, 2q/pðN + 1Þp−1�A∞½,
problem (1) admits an unbounded sequence of positive
solutions.

Proof. Let

g+ j, tð Þ =
g j, tð Þ, if t > 0,
g j, 0ð Þ, if t ≤ 0:

 
ð61Þ

Since gðj, 0Þ ≥ 0,

max
0≤s≤t

ðs
0
g+ j, ξð Þdξ =max

0≤s≤t

ðs
0
g j, ξð Þdξ, ð62Þ

for all t ≥ 0. From Corollary 8, we know that problem (1)
with g replaced by g+ admits an unbounded sequence of
solutions for each λ ∈ �ð4 + α + βÞ/qB∞, 2q/pðN + 1Þp−1�A∞½.
Then, all these solutions are positive solutions of problem
(1) by Lemma 4.

Let

�A0 ≔ liminf
t⟶0+

∑N
j=1 max

∣ξ∣≤t
G j, ξð Þ

tq + tp
: ð63Þ

Arguing as in the proof of Corollary 8 and taking cn = 0
for each n ∈ ½1,N�, by Theorem 7, we have the following cor-
ollary.

Corollary 10. Assume that

�A0 <
2q

p N + 1ð Þp−1 4 + α + βð ÞB
0: ð64Þ

Then, for each λ ∈ �ð4 + α + βÞ/qB0, 2q/pðN + 1Þp−1�A0½,
problem (1) admits a sequence of nonzero solutions which
converges to zero.

Arguing as in Corollary 9, we have the following result.

Corollary 11. Assume that gðj, 0Þ ≥ 0 for all j ∈ ½1,N�, and

�A0 <
2q

p N + 1ð Þp−1 4 + α + βð ÞB
0: ð65Þ

Then, for each λ ∈ �ð4 + α + βÞ/qB0, 2q/pðN + 1Þp−1�A0½,
problem (1) admits a sequence of positive solutions which
converges to zero.

Finally, we give two easy examples to illustrate our
results.

Example 1. Let α = β = 0, q = 2, p = 3,

g j, xð Þ = g xð Þ

=
3x2 sin 1

2 ln ∣ x ∣

 �

+ 1
2 x

2 cos 1
2 ln ∣ x ∣

 �

+ 25
8 x2, if x ≠ 0,

0, if x = 0:

0
B@

ð66Þ

for each j ∈ ½1,N�. Then,

liminf
t⟶+∞

max
ξj j≤t
Ð ξ
0 3x2 sin ln x/2ð Þ + x2 cos ln x/2ð Þ/2 + 25x2/8
� �

dx

t2 + t3

= liminf
t⟶+∞

t3 sin ln t/2ð Þ + 25t3/24
t2 + t3

= 1
24 ,

ð67Þ

and

lim sup
t⟶+∞

Ð t
0 3x2 sin ln x/2ð Þ + x2 cos ln x/2ð Þ/2 + 25x2/8
� �

dx

t3

= limsup
t⟶+∞

t3 sin ln t/2ð Þ + 25t3/24
t3

= 49
24 :

ð68Þ

By choosing N = 3, we have

2q
p N + 1ð Þp−1 4 + α + βð Þ = 1

48 : ð69Þ

From the above calculation, we obtain

�A∞ = lim inf
t⟶+∞

∑3
j=1 max

ξj j≤t
Ð ξ
0x

2 3 sin ln x/2ð Þ + cos ln x/2ð Þ/2 + 25/8½ �dx
t2 + t3

= 1
8 ,

ð70Þ

B∞ = lim sup
t⟶+∞

∑3
j=1
Ð t
0 x

2 3 sin ln x/2ð Þ + cos ln x/2ð Þ/2 + 25/8½ �dx
t3

= 49
8 :

ð71Þ

It is clear that �A∞ < 2qB∞/pðN + 1Þp−1ð4 + α + βÞ, by
Corollary 9, the problem

− ∣Δu jð Þ∣+1ð ÞΔu jð Þ + ∣Δu j − 1ð Þ∣+1ð ÞΔu j − 1ð Þ = 1
2g u jð Þð Þ,∀j ∈ 1, 3½ �,

u 0ð Þ = u 4ð Þ = 0,

0
@

ð72Þ

admits an unbounded sequence of positive solutions.
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Example 2. Let q = 2, p > 2 and

g j, xð Þ = g xð Þ =
x 2 + 2ε + 2 cos ε ln ∣ x ∣ð Þ − ε sin ε ln ∣ x ∣ð Þð Þ, if x ≠ 0,
0, if x = 0,

 

ð73Þ

for each j ∈ ½1,N�. Then,

G j, xð Þ =G xð Þ =
ðx
0
g sð Þds = x2 1 + ε + cos ε ln xð Þ½ �, ð74Þ

for x > 0. Since gðxÞ ≥ 0 for x ≥ 0, GðxÞ is increasing. We
have

�A0 = liminf
t⟶0+

∑N
j=1 max

0≤ξ≤t
G j, ξð Þ

tq + tp
=N liminf

t⟶0+
t2 1 + ε + cos ε ln tð Þ½ �

t2 + tp
=Nε,

ð75Þ

B0 = limsup
t⟶0+

∑N
j=1 G j, tð Þ

tq
=Nlimsup

t⟶0+

t2 1 + ε + cos ε ln tð Þ½ �
t2

=N 2 + εð Þ:

ð76Þ
Let ε be a sufficiently small constant, such that

Nε < 2q
p N + 1ð Þp−1 4 + α + βð ÞN 2 + εð Þ: ð77Þ

Then, by Corollary 11, for each λ ∈ �ð4 + α + βÞ/qB0, 2q/
pðN + 1Þp−1�A0½, problem (1) admits a sequence of positive
solutions which converges to zero.

4. Conclusions

In this paper, we consider a discrete Dirichlet boundary
value problem involving the ðp, qÞ-Laplacian. Unlike the
existing result in [28], which is the existence of at least two
positive solutions, we consider the existence of infinitely
many solutions for problem (1) for the first time. In fact,
by using Theorem 2.1 of [29], we show that problem (1)
admits a sequence of pairwise distinct solutions under some
appropriate assumptions on the nonlinear term near at
infinity and at the origin. Moreover, we prove the existence
of infinitely many positive solutions through our strong
maximum principle. It seems that we can use the method
in this paper to study other similar problems, such as the
existence and multiplicity of solutions for difference equa-
tions with different boundary value conditions. This will be
left as our future work.
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