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In this paper, we find the second variational formula for a generalized Sasakian space form admitting a semisymmetric metric
connection. Inequalities regarding the stability criteria of a compact generalized Sasakian space form admitting a
semisymmetric metric connection are established.

1. Introduction

The harmonic maps have aspects from both Riemannian’s
geometry and analysis. Harmonic mappings are considered
a vast field, and because of the minimization of energy due
to its dual nature, it has many applications in the field of
mathematics, physics, relativity, engineering, geometry, crys-
tal liquid, surface matching, and animation. Some particular
examples of harmonic maps are geodesics, immersion, and
solution of the Laplace equation. In physics, p-harmonic
maps were studied in image processing. Exponential har-
monic maps were discussed in the field of gravity. Due to
generalized properties, F-harmonic maps have many applica-
tions in cosmology. Harmonic maps have played a significant
role in Finsler’s geometry. On complex manifolds, we have
interesting and useful outcomes of harmonic maps (for
details, see [1, 2]).

During the past years, harmonicity on almost contact
metric manifolds has been considered a parallel to complex
manifolds ([3–5]). The identity map on a Riemannian man-
ifold with a compact domain becomes a trivial case of the
harmonicity. However, the stability and second variation
theory are complex and remarkable here. In [6], a Laplacian
upon functions with its first eigenvalue is used to explain sta-
bility on Einstein’s manifolds. From [7, 8], we know about
the stability-based classification of a Riemannian that simply
connected irreducible spaces with a compact domain.

From [6], we know a well-known result about the stabil-
ity of S2n+1. Further in [5], identity map stability upon a
compact domain of the Sasakian space form was explained
by Gherge et al. (see also [9]). Considering the generalization
of Sasakian space forms, Alegre et al. presented the general-
ized Sasakian space forms [10]. Therefore, we naturally
study the identity map stability upon a compact domain of
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generalized Sasakian space forms, as discussed in some
results in [11]. One of the most important terms in differen-
tial geometry is connection. Research on manifolds is
incomplete without the notion of connection. In manifold
theory, from the relation of metric and connection, we have
a very important notion known as curvature tensor. The
concept of a semisymmetric metric connection was initiated
by Friedmann and Schouten in 1932 [12, 13]. Semisym-
metric metric connections have many applications in the
field of Riemannian manifolds and are useful to study many
physical problems. In the current paper, we compute the sta-
bility criteria of a generalized Sasakian space form admitting
a semisymmetric metric connection.

After recollecting the essential facts about harmonic
maps between Riemannian manifolds in Section 2, we
explain generalized Sasakian space forms throughout Sec-
tion 3. In Section 4, we give the main results for a second
variational formula and establish the inequalities for the
identity map stability criteria upon a compact domain gen-
eralized Sasakian space form admitting a semisymmetric
metric connection.

2. Harmonic Maps on Riemannian Manifolds

We can view harmonic maps on Riemannian manifolds as
the generalization of geodesics that is the case of a one-
dimensional domain and range as Euclidean space. In com-
mon, a map is known as harmonic if its Laplacian becomes
zero and is known as totally geodesic if its Hessian becomes
zero. In this present section, the basic facts of the harmonic
maps theory [14, 15] are provided. Consider a smooth map
ψ : ðS, gÞ⟶ ðQ, hÞ. Let the dimension of the Riemannian
manifold ðS, gÞ be s and the dimension of ðQ, hÞ be q. The
function eðψÞ: S⟶ ½0,∞Þ that is smooth can be considered
as the energy density of ψ and is expressed as

e ψð Þp =
1
2Trg ψ∗hð Þ pð Þ = 1

2〠
s

i=1
h ψ∗pui, ψ∗pui
� �

, ð1Þ

at a point p ∈ S and for any orthonormal basis fu1,⋯, usg of
TpS. Considering the compact domain of a Riemannian
manifold S, we take the energy density integral as the energy
EðψÞ of ψ; that is, we have

E ψð Þ =
ð
S
e ψð Þυg, ð2Þ

where the volume measure is represented by υg that is
related to the metric g on manifold S. In the set C∞ðS,QÞ
of all smooth maps from ðS, gÞ to ðQ, hÞ, a critical point of
the energy E is named as a harmonic map. That is, for any
smooth variation ψt ∈ C

∞ðS,QÞ of ψðt ∈ ð−ε, εÞÞ with ψ0 =
ψ, we can take

d
dt

E ψtð Þ
����
t=0

= 0: ð3Þ

Now, we consider ðS, gÞ as a compact Riemannian man-

ifold and take a map ψ : ðS, gÞ⟶ ðQ, hÞ that is harmonic.
We consider smooth variation ψr,t through constraints r, t
∈ ð−ε, εÞ satisfying ψ0,0 = ψ. Respective variational vector
fields are represented through W and Z. Therefore, we can
define Hessian Hψ for a harmonic map ψ through the fol-
lowing relation:

Hψ W, Zð Þ = ∂2

∂r∂t
E ψr,t
� �� ������

r,tð Þ= 0,0ð Þ
: ð4Þ

The expression regarding the second variation of E is as
follows ([6, 16]):

Hψ W, Zð Þ =
ð
P
h Jψ Wð Þ, Z� �

υg, ð5Þ

where Jψ is the second order operator that is self-adjoint
upon the space Γðψ−1ðTQÞÞ of variation vector fields and is
represented as

Jψ Uð Þ = −〠
s

i=1
∇~

ui
∇~

ui
−∇~

∇ui
ui
ÞU − 〠

s

i=1
RQ U , dψ uið Þð Þdψ uið Þ,

 

ð6Þ

for U ∈ Γðψ−1ðTQÞÞ and any local orthonormal frame fu1,
⋯, usg on S. Here, RQ shows the curvature tensor of ðQ, hÞ
, and ~∇ illustrates the pull-back connection of ψ along with
the Levi-Civita connection of Q.

We compute the dimension of the biggest subspace of
Γðψ−1ðTQÞÞ where the Hessian Hψ has values that are neg-
ative definite known as the index of a harmonic map ψ : ðS
, gÞ⟶ ðQ, hÞ. Therefore, if the index of harmonic map ψ
is zero, then it is stable; otherwise, it is unstable.

An operator �Δψ is represented by

�ΔψU = −〠
s

i=1
∇~

ui
∇~

ui
−∇~

∇ui
ui
ÞU , V ∈ Γ ϕ−1 TQð Þ� �

:
�

ð7Þ

It is named the rough Laplacian. We consider the spectra of
Jψ; because of the Hodge de Rham Kodaira theory, this spec-
tra is constructed as a discrete set of infinite number of
eigenvalues with finite multiplicities with no accumulation
points.

3. Generalized Sasakian Space Forms

Generalized Sasakian space forms have the generalized cur-
vature expression that combines the curvature expessions
of Sasakian, Kenmotsu, and Cosymplectic space forms.
Due to a generalized curvature expression, generalized Sasa-
kian space forms have very useful and interesting properties.
The current unit presents basics of almost contact metric
manifolds particularly of generalized Sasakian space
forms [17].
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A Riemannian manifold P2n+1 with odd dimensions is
known as an almost contact manifold if a ð1, 1Þ-tensor field
φ exists on P and ξ and a vector field η and a 1-form exist so
that

φ2 = −I + η ⊗ ξ, η ξð Þ = 1: ð8Þ

Further, φ and η satisfy φðξÞ = 0 and ηoφ = 0. A compat-
ible metric g on any almost contact manifold is defined as

g φW1, φW2ð Þ = g W1,W2ð Þ − η W1ð Þη W2ð Þ, ð9Þ

for any vector fields W1, W2 on manifold P known as an
almost contact metric manifold. An almost contact metric
manifold becomes a contact metric manifold if for a funda-
mental 2-form Ω, we have dη =Ω, and ΩðW1,W2Þ = gð
W1, φW2Þ for W1, W2 ∈ ΓðTPÞ. Like the parallel condition
of integrability for almost complex manifolds, the almost
contact metric structure on P becomes normal when

φ, φ½ � + 2dη ⊗ ξ = 0: ð10Þ

The Nijenhuis torsion of φ is represented by ½φ, φ� and is
defined as

φ, φ½ � Y1, Y2ð Þ = φ2 Y1, Y2½ � + φY1, φY2½ �
− φ φY1, Y2½ � − φ Y1, φY2½ �: ð11Þ

A Sasakian manifold is a normal contact metric mani-
fold, and if dη = 0, a normal almost contact metric manifold
is known as the Kenmotsu manifold with

dΩ Y1, Y2, Y3ð Þ = 2
3σ Y1,Y2,Y3ð Þ η Y1ð Þϕ Y2, Y3ð Þf g, Y1, Y2, Y3 ∈ Γ TPð Þ,

ð12Þ

where the cyclic sum is represented by σ. A real space form
is a Riemannian manifold with a constant sectional curva-
ture c, and its curvature tensor is represented by the follow-
ing relation:

R Y1, Y2ð ÞY3 = c g Y2, Y3ð ÞY1 − g Y1, Y3ð ÞY2f g, ð13Þ

where Y1, Y2, and Y3 are vector fields on P. An almost con-
tact metric manifold Pðφ, ξ, η, gÞ can be identified as a gen-
eralized Sasakian space form provided that there are three
functions f1, f2, f3 upon P so as the curvature tensor on P
is represented with the following relation:

R V1, V2ð ÞV3 = f1 g V2, V3ð ÞV1 − g V1, V3ð ÞV2f g
+ f2 g V1, ϕV3ð ÞϕV2 − g V2, ϕV3ð ÞϕV1f
+ 2g V1, ϕV2ð ÞϕV3g + f3 η V1ð Þη V3ð ÞV2f
− η V2ð Þη V3ð ÞV1 + g V1, V3ð Þη V2ð Þξ
− g V2, V3ð Þη V1ð Þξg,

ð14Þ

provided that vector fields V1, V2, and V3 are on P, see [10].

In particular, if f1 = ðc + 3Þ/4 and f2 = f3 = ðc − 1Þ/4, then
P can be identified as a Sasakian space form. f1 = ðc − 3
Þ/4 and f2 = f3 = ðc + 1Þ/4 can lead to a Kenmotsu-space
form [10, 18].

The semisymmetric metric connection ∇′ and the Levi
Civita connection ∇ defined on contact metric manifold ð
P2m+1, gÞ are related by the following expression that is
obtained by Yano [19] and is represented as

∇W1
′ W2 = ∇W1

W2 + η W2ð ÞW1 − g W1,W2ð Þξ, ð15Þ

where W1 and W2 are vector fields on P. As mentioned in
[20], we have the following relation of the curvature tensor
R with respect to the Levi-Civita connection ∇ and the cur-
vature tensor R′ regarding the semisymmetric metric con-
nection ∇′ of the generalized Sasakian space form.

R′ V1, V2ð ÞV3 = R V1, V2ð ÞV3
+ g ϕV2,V3ð ÞV1 − g ϕV1, V3ð ÞV2f
+ g V2, V3ð ÞϕV1 − g V1, V3ð ÞϕV2g
+ η V2ð ÞV1 − η V1ð ÞV2f gη V3ð Þ
+ g V2, V3ð Þη V1ð Þ − g V1, V3ð Þη V2ð Þf gξ,

ð16Þ

taking vector fields V1, V2, V3, on P.

4. Stability on Generalized Sasakian Space
Forms with Semisymmetric
Metric Connection

Identity maps are always harmonic maps, but here, the sec-
ond variational formula is not a trivial case. In this section,
with the help of the second variational formula, we derive
the inequalities for the stability criteria on the generalized
Sasakian space forms with a semisymmetric metric connec-
tion. Consider the identity map on a compact generalized
Sasakian space form Mðφ, ξ, η, gÞ that is ðϕ = 1MÞ. Then,
the second variation formula is ([2]) as follows:

H1M V , Vð Þ =
ð
M
h �ΔV , V
� �

υg − 〠
2n+1

i=1

ð
M
h R V , uið Þui,Vð Þυg,

ð17Þ

where V ∈ ΓðTMÞ and fu1,⋯, u2n+1g represents the local
orthonormal frame on TM.

The rough Laplacian defined by (7) upon a generalized
Sasakian manifold M2n+1 admitting a semisymmetric metric
connection can be computed by the following lemma.

Lemma 1. For a generalized Sasakian space form admitting
semisymmetric metric connection, the rough Laplacian in
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the adopted frame field fe1,⋯, en, ϕe1,⋯, ϕen, ξg is given by

�́ΔY = �ΔY + 2trBY − g tr∇,Yð Þξ − 2 div Yð Þξ + 2η Yð Þξ − 2Y

+ ϕY+〠g ei, Yð Þϕei+〠g ei, ϕYð Þei,
ð18Þ

where BYðV ,WÞ = ηð∇VYÞW.

Proof. Let ∇ and ∇ represent the semisymmetric connection
and the Levi Civita connection on the generalized Sasakian
space form, respectively. Therefore, it can be computed as

∇́V ∇́VY = ∇V ∇́VY + η ∇́VYÞV − g V , ∇́VYÞξ = ∇V∇VY + ∇V η Yð ÞVð Þ
��

− ∇V g V , Yð Þξð Þ + η ∇VYð ÞV + η Vð Þη Yð ÞV − g V , Yð ÞV
− g Y , ∇VVð Þξ − g V , ∇VYð Þξ − g V , Yð Þ∇Vξ:

ð19Þ

We have ∇VðηðYÞVÞ = ∇Vðgðξ, YÞVÞ. Then, from equa-
tion (19), we have

∇́V ∇́VY = ∇V∇VY + g ∇Vξ, Yð ÞV − ∇V g V , Yð Þξð Þ + η Yð Þ∇VV

+ 2η ∇VYð ÞV + η Vð Þη Yð ÞV − g V , Yð ÞV − g ∇VV , Yð Þξ
− g V , ∇VYð Þξ − g V , Yð Þ∇Vξ = ∇V∇VY + g ∇Vξ, Yð ÞV
+ η Yð Þ∇VV + 2η ∇VYð ÞV + η Vð Þη Yð ÞV − g V , Yð ÞV
− 2g ∇VV , Yð Þξ − 2g V , ∇VYð Þξ − 2g V , Yð Þ∇Vξ

= ∇V∇VY + g V , ϕYð ÞV + η Yð Þ∇VV + 2η ∇VYð ÞV
− 2g ∇VV , Yð Þξ − 2g V , ∇VYð Þξ − 2g V , Yð Þ∇Vξ

= ∇V∇VY + g V , ϕYð ÞV + η Yð Þ∇VV + 2η ∇VYð ÞV
− 2g ∇VV , Yð Þξ − 2g V , ∇VYð Þξ − 2g V , Yð Þ∇Vξ

= ∇V∇VY + g V , ϕYð ÞV + η Yð Þ∇VV + 2η ∇VYð ÞV
− 2g ∇VV , Yð Þξ − 2g V , ∇VYð Þξ + 2g V , Yð ÞϕV
− 2g V , Yð ÞV + 2η Vð Þg V , Yð Þξ:

ð20Þ

Also, we have

∇́V ∇́VY − ∇́∇VV
Y = ∇V∇VY − ∇∇VV

Y + g V , ϕYð ÞV
+ 2η ∇VYð ÞV − g ∇VV , Yð Þξ − 2g V , ∇VYð Þξ
+ 2g V , Yð ÞϕV − 2g V , Yð ÞV + 2η Vð Þg V , Yð Þξ:

ð21Þ

Take into account that BYðV ,WÞ = ηð∇VYÞW. Then, in
an adopted frame field fe1,⋯, en, ϕe1,⋯, ϕen, ξg, we arrived
at

�́ΔY = �ΔY + 2trBY − g tr∇,Yð Þξ − 2divYð Þξ + 2η Yð Þξ − 2Y
+ ϕY+〠g ei, Yð Þϕei+〠g ei, ϕYð Þei:

ð22Þ

Theorem 2. The second variation formula for the identity
map on the generalized Sasakian space form admitting a
semisymmetric connection is expressed as

H1M
Y , Yð Þ =

ð
M
h �ΔY , Y
� �

υg − 3f2 + 2nf1 − f3 − 2n + 3ð Þ
ð
M
h Y , Yð Þυg

+ 3f2 + 2n − 1ð Þf3 − 2n + 3ð Þ
ð
M
η Yð Þη Yð Þυg:

ð23Þ

Proof.

H1M Y , Yð Þ =
ð
M
h �Δ′Y , Y
� �

υg − 〠
2n+1

i=1

ð
M
h R′ Y , uið Þui, Y
� �

υg,

h �Δ́Y , YÞ = h �ΔY , Y
� �

+ 2h trBY , Yð Þ − h tr∇,Yð Þh ξ, Yð Þ
�

− 2divYð Þh ξ, Yð Þ + 2η Yð Þh ξ, Yð Þ − 2h Y , Yð Þ + h ϕY , Yð Þ
+〠h ei, Yð Þh ϕei, Yð Þ+〠h ei, ϕYð Þh ei, Yð Þ, �Δ′Y , Y

� �

= h �ΔY , Y
� �

+ 2h trBY , Yð Þ − h tr∇,Yð Þh ξ, Yð Þ
− 2divYð Þh ξ, Yð Þ + 2η Yð Þh ξ, Yð Þ − 2h Y , Yð Þ + h ϕY , Yð Þ
+〠h ei, Yð Þh ϕei, Yð Þ+〠h ei, ϕYð Þh ei, Yð Þ,

ð24Þ

since
Ð
M div ðYÞ = 0, over a compact domain M, by Green’s

formula and ηð∇ei
YÞ = hð∇ei

Y , ξÞ = eihðY , ξÞ − hðY , ∇ei
ξÞ = 0

, similarly, hðtr∇,YÞhðξ, YÞ = 0. Therefore, we have

ð
M
h �Δ′Y , Y
� �

υg =
ð
M
h �ΔY , Y
� �

υg + 2
ð
M
η2 Yð Þυg − 2

ð
M
h Y , Yð Þυg:

ð25Þ

Now, we consider a φ-adapted orthonormal local frame
fei, φei, ξg. After that, we have

〠
2n+1

i=1
h R ei, Yð Þei, Yð Þ = f1 − 3f2ð Þ〠

n

i=1
h Y , eið Þ2 + h Y , φeið Þ2� �

− 2n + 1ð Þf1 − f3½ �h Y , Yð Þ
+ 2n − 1ð Þf3 + f1½ �h Y , ξð Þ2,

ð26Þ

and thus, we have

〠
2n+1

i=1
h R ei, Yð Þei, Yð Þ = − 3f2 + 2nf1 − f3½ �h Y , Yð Þ

+ 3f2 + 2n − 1ð Þf3½ �h Y , ξð Þ2,
ð27Þ

and with semisymmetric metric connection, it can be written
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as

〠
2n+1

i=1
h R′ Y , eið Þei, Y
� �

= 〠
2n+1

i=1
h R Y , eið Þei, Yð Þ − 2n − 1ð Þh Y , Yð Þ

+ 2n − 1ð Þη2 Yð Þ = 3f2 + 2nf1 − f3½ �h Y , Yð Þ
− 3f2 + 2n − 1ð Þf3½ �h Y , ξð Þ2
− 2n − 1ð Þh Y , Yð Þ + 2n − 1ð Þη2 Yð Þ:

ð28Þ

From (24) and (28), we have acquired the result of
((24)).

Proposition 3. Consider a compact generalized Sasakian
space form M admitting a semisymmetric metric connection.
The identity map 1M is weakly stable, if ð3f2 + 2nf1 − f3 − 2
n + 3Þ ≤ 0 and ð3f2 + ð2n − 1Þf3 − 2n + 3Þ ≥ 0.

Proof. We can easily prove that

ð
M
h �ΔV , V
� �

υg =
ð
M
h ∇~V ,∇~VÞυg, V ∈ Γ TMð Þ:� ð29Þ

☐

Now, the second variation formula with respect to a
semisymmetric connection becomes

H1M Y , Yð Þ =
ð
M
h ∇~Y ,∇~YÞ − 3f2 + 2nf1 − f3 − 2n + 3ð Þ

ð
M
h Y , Yð Þυg

	

+ 3f2 + 2n − 1ð Þf3 − 2n + 3ð Þ
ð
M
η Yð Þη Yð Þυg:

ð30Þ

Therefore, for the inequalities ð3f2 + 2nf1 − f3 − 2n + 3Þ
≤ 0 and ð3f2 + ð2n − 1Þf3 − 2n + 3Þ ≥ 0, the identity map is
weakly stable.

Corollary 4. Let M be the Kenmotsu space form admitting a
semisymmetric metric connection; then, the identity map on
its compact domain is stable if ð3n − 7/n + 1Þ ≤ c ≤ ðð7ðn − 1
ÞÞ/ðn + 1ÞÞ.

On the Kenmotsu space form M, f1 = ððc − 3Þ/4Þ, f2 = f3
= ððc + 1Þ/4Þ [10]. And ð3f2 + 2nf1 − f3 − 2n + 3Þ ≤ 0 implies
c ≤ ðð7ðn − 1ÞÞ/ðn + 1ÞÞ, and ð3f2 + ð2n − 1Þf3 − 2n + 3Þ ≥ 0
implies c ≥ ðð3n − 7Þ/ðn + 1ÞÞ. Then, by the above results,
the identity of the 1M map becomes stable for the values of c
∈ ½ðð3n − 7Þ/ðn + 1ÞÞ, ðð7ðn − 1ÞÞ/ðn + 1ÞÞ�.

5. Conclusion

The 2nd variational formula for a generalized Sasakian space
form admitting a semisymmetric metric connection has
been successfully obtained in this work. All results in this
work are novel where inequalities concerning the stability
criteria of a compact generalized Sasakian space form admit-
ting a semisymmetric metric connection have been estab-

lished. Further research works can be conducted depending
on all our obtained results in this paper.
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