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This paper studied the fractional-order telegraph equations via the natural transform decomposition method with nonsingular
kernel derivatives. The fractional result considered in the Caputo-Fabrizio derivative is Caputo sense. Currently, the
communication system plays a vital role in a global society. High-frequency telecommunications continuously receive significant
attention in the industry due to a slew of radiofrequency and microwave communication networks. These technologies use
transmission media to move information-carrying signals from one location to another. We used natural transformation on
fractional telegraph equations followed by inverse natural transformation to achieve the solution of the equation. To validate the
technique, we have considered a few problems and compared them with the exact solutions.

1. Introduction

The telegraph equation is usually applied in signal analysis
for electrical signal propagation and transmission reaction-
diffusion modeling in several areas of science. It is also
employed in the random one-dimensional movement of bugs
along a hedge. The communication system plays a vital part
in civilization around the world in the current modern era.
A wide range of microwave and radiofrequency communica-
tion systems continue to benefit from significant industry
attention. These technologies use media of communication
to convey the signal from one place to another [1, 2].

These media can be divided into two classes, namely,
guided and unguided. The signal is sent by the coaxial cable
or a transmission line in the controlled medium. The con-
trolled medium can carry high-frequency and current waves,
whereas electromagnetic waves in unguided media transmit a
signal via radiofrequency and microwave channels, part or
whole communication path. An antenna is used to send
and receive electromagnetic waves. The challenge of efficient
telegraphic transmission is addressed with guided transmis-
sion media, notably cable transmission media. A cable com-

munication channel is a directed transmission system that
depicts a physical system that directly transmits data between
two or more sites. To maximize the guided communication
system, power and signal losses must be determined or pro-
jected, as these losses exist in all scenarios. To quantify these
losses and eventually secure maximum output, some equa-
tions that can compute these losses must be developed. In
practice, these equations appear in the fractional order rather
than the integer order [3].

Many authors applied different analytical and numerical
methods to solve the telegraph equations, such as Laplace
transformation and the homotopy perturbation technique
[4]. The q-homotopy analysis transformation technique is
applied for the analytical result of the time-fractional tele-
graph equations. The reproducing kernel technique [5] and
variational iteration technique are used to find the solution
of the telegraph equations. The approximate solutions pro-
vided by q-HAM show convergence toward the actual result
of the models [6], and the Adomian technique [7] and differ-
ential transformation technique are utilized in the analysis of
the fractional-order hyperbolic telegraph equations, respec-
tively. The solutions of the variational iteration technique
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are precisely the same as those of the Adomian decomposi-
tion technique, but the variational iteration technique
required less computation [8]. The Haar wavelet [9], the gen-
eralized differential transform technique [10], the Legendre
spectral Galerkin technique [11], and the linear hyperbolic
telegraph equations have been solved using Sinc collocation
techniques, and these methods have an exponential rate of
convergence, making them particularly helpful for approxi-
mate partial differential equation solutions [12].

This article is aimed at applying the natural decomposi-
tion method (NDM) to solve telegraph equations. Rawash-
deh and Maitama [13], for the first time, use natural
transformation with the decomposition method for the non-
linear partial differential equations. NDM does not require
prescribed assumptions, linearization, discretization, or per-
turbation and prevents any roundoff error. Recently, NDM
is employed in the fractional-order Fisher equation [14]
and fractional-order system of Burgers’ equation [15].

2. Basic Definitions

In this section, we reproduce the definitions of Riemann-
Liouville (R-L), Caputo, and Caputo-Fabrizio (CF) fractional
derivatives for the benefit of the reader.

Definition 1. The R-L left-sided fractional integral operator of
a function f ∈ Cv , v ≥ −1, is given as

Iγ f ωð Þ = 1
Γ γð Þ

ðω
0
ω − ζð Þγ−1 f ζð Þdζ, γ > 0, ω > 0,

I0 f ωð Þ = f ωð Þ:
ð1Þ

Definition 2. The Caputo sense fractional derivative of f ðωÞ is
defined by

Dγ
ω f ωð Þ = Im−γDmf ωð Þ = 1

m − γ

ð0
ω

ω − ζð Þm−γ−1 f m ζð Þdζ,

ð2Þ

for m − 1 < γ ≤m, m ∈N , ω > 0, f ∈ Cm
v , and v ≥ −1.

Definition 3. The CF fractional derivative of f ðωÞ is given by

Dγ
ω f ωð Þ = B γð Þ

1 − γ

ðω
0
exp −γ ω − ζð Þ

1 − γ

� �
D f ζð Þð Þdζ, ð3Þ

where 0 < γ < 1 and BðγÞ is a normalization function, where
Bð0Þ = Bð1Þ = 1.

Definition 4. The natural transform of φð�tÞ is defined by

N φ �tð Þð Þ =U s, vð Þ =
ð∞
−∞

e−s�tφ v,�tð Þd�t, s, v∈ −∞,∞ð Þ:

ð4Þ

For�t ∈ ð0,∞Þ, the natural transform of φð�tÞ is defined by

N φ �tð ÞH �tð Þð Þ =N + =U+ s, vð Þ =
ð∞
−∞

e−s�tφ v,�tð Þd�t, s, v ∈ 0,∞ð Þ,

ð5Þ

where Hð�tÞ is the Heaviside function.

Definition 5. The inverse natural transformation of Uðs, vÞ is
given by

N −1 U s, vð Þ½ � = φ �tð Þ, ∀�t ≥ 0: ð6Þ

Lemma 6 (Linearity property). If the natural transform of
φ1ð�tÞ is φ1ðs, vÞ and φ2ð�tÞ is φ2ðs, vÞ, then

N c1φ1
�tð Þ + c2φ2

�tð Þ½ � = c1N φ1
�tð Þ½ � + c2N φ2

�tð Þ½ � = c1φ1 s, vð Þ + c2φ2 s, vð Þ,
ð7Þ

where c1 and c2 are constants.

Lemma 7 (Inverse property). If the inverse natural transform
of φ1ðs, vÞ and φ2ðs, vÞ is φ1ð�tÞ and φ2ð�tÞ, respectively, then

N −1 c1φ1 s, vð Þ + c2φ2 s, vð Þ½ � = c1N
−1 φ1 s, vð Þ½ � + c2N

−1 φ2 s, vð Þ½ �
= c1φ1

�tð Þ + c2φ2
�tð Þ,

ð8Þ

where c1 and c2 are constants.

Definition 8. The natural transform of Dγ
�t φð�tÞ by means of

Caputo sense is given as

N Dγ
�t

� �
= s

v

� �γ
N φ �tð Þ½ � − 1

s

� �
φ 0ð Þ

� �
: ð9Þ

Definition 9. The natural transform ofDγ
�t φð�tÞ bymeans of CF

is defined as

N Dγ
�t

� �
= 1
1 − γ + γ v/sð Þ N φ �tð Þ½ � − 1

s

� �
φ 0ð Þ

� �
: ð10Þ

3. Methodology

In this section, we present a novel approximate analytical
procedure based on the natural transform to the following
equation:

Dγ
�t φ

�ξ,�t
� �

=L φ �ξ,�t
� �� �

+N φ �ξ,�t
� �� �

+ h �ξ,�t
� �

,

ð11Þ

with the initial condition

φ �ξ, 0
� �

= ϕ �ξ
� �

, ð12Þ
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where N , L , and hð�ξ,�tÞ are nonlinear, linear, and source
terms, respectively. Now, we employ NT to equation (11)
by considering fractional derivatives using two fractional
definitions.

By taking the natural transform of equation (11) by
means of the CF fractional derivative, we obtain

1
p γ, v, sð Þ N φ �ξ,�t

� �h i
−
ϕ �ξ
� �
s

0
@

1
A =N M �ξ,�t

� �h i
, ð13Þ

where

p γ, v, sð Þ = 1 − γ + γ
v
s

� �
: ð14Þ

By taking the inverse natural transform using (6), we
rewrite (13) as

φ �ξ,�t
� �

=N −1
ϕ �ξ
� �
s

+ p γ, v, sð ÞN M �ξ,�t
� �h i0

@
1
A: ð15Þ

N ðφð�ξ,�tÞÞ can be decomposed into

N φ �ξ,�t
� �� �

= 〠
∞

i=0
A�t , ð16Þ

where A�t is the Adomian polynomial [2, 4]. We assume that
equation (11) has the analytical expansion

φ �ξ, t
� �

= 〠
∞

i=0
φi

�ξ,�t
� �

: ð17Þ

By substituting equations (16) and (17) into (15), we

obtain

〠
∞

i=0
φi

�ξ,�t
� �

=N −1
ϕ �ξ
� �
s

+ p γ, v, sð ÞN h �ξ,�t
� �h i0

@
1
A

+N −1 p γ, v, sð ÞN 〠
∞

i=0
L φi

�ξ,�t
� �� �

+ A�t

" # !
:

ð18Þ

From (18), we get

φCF
0

�ξ,�t
� �

=N −1
ϕ �ξ
� �
s

+ p γ, v, sð ÞN h �ξ,�t
� �h i0

@
1
A,

φCF
1

�ξ,�t
� �

=N −1 p γ, v, sð ÞN L φ0
�ξ,�t
� �� �

+ A0
h i� �

,

⋮

φCF
l+1

�ξ,�t
� �

=N −1 p γ, v, sð ÞN L ul �ξ,�t
� �� �

+ Al

h i� �
, l = 1, 2, 3,⋯:

ð19Þ

By substituting (19) into (17), we get theNDMCF solution
of (11) as

φCF �ξ,�t
� �

= φCF
0

�ξ,�t
� �

+ φCF
1

�ξ,�t
� �

+ φCF
2

�ξ,�t
� �

+⋯:

ð20Þ

4. Convergence Analysis

We have presented uniqueness and convergence of the ND
MCF in this section.

Theorem 10. The NTDMCF solution of (11) is unique when
0 < ðδ1 + δ2Þð1 − γ + γ�tÞ < 1.
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Figure 1: The exact and analytical solution figures of Example 1 at γ = 1.
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Proof. Let F = ðC½J�, k:kÞ be the Banach space with the norm
kϕðtÞk =maxt∈J jϕðtÞj, ∀ continuous function on J: Let G
: F ⟶ F be a nonlinear mapping, where

φC
l+1 = φC

0 +N −1 p γ, v, sð ÞN L φl �xi,�tð Þð Þ +N φl �xi,�tð Þð Þ½ �½ �, l ≥ 0:
ð21Þ

Suppose that ∣LðφÞ −Lðφ∗Þ ∣ <δ1∣φ − φ∗∣ and ∣N ðφÞ −
N ðφ∗Þ ∣ <δ2∣φ − φ∗∣, where δ1 and δ2 are Lipschitz constants
and φ≔ φðζ,�tÞ and φ∗ ≔ φ∗ðζ, tÞ are two different function
values.

Gφ − Gφ∗j jj j ≤max�t∈J N −1�� p γ, v, sð ÞN L φð Þ −L φ∗ð Þ½ �½
+ p γ, v, sð ÞN N φð Þ −N φ∗ð Þ½ �j�

≤max�t∈J δ1N
−1 p γ, v, sð ÞN φ − φ∗j j½ �½ ��

+ δ2N
−1 p γ, v, sð ÞN φ − φ∗j j½ �½ ��

≤max�t∈J δ1 + δ2ð Þ N −1 p γ, v, sð ÞN φ − φ∗j j½ �� �
≤ δ1 + δ2ð Þ N −1 p γ, v, sð ÞN φ − φ∗k k½ �� �
= δ1 + δ2ð Þ 1 − γ + γ�tð Þ φ − φ∗k k:

ð22Þ

Gis a contraction of0 < ðδ1 + δ2Þð1 − γ + γ�tÞ < 1. The
solution of (11) is unique from the Banach fixed-point theo-
rem. ☐ ☐

Theorem 11. The NTDMCF solution of (11) is convergent.

Proof. Let φm =∑m
r=0φrð�ξ,�tÞ. To prove that φm is a Cauchy

sequence in F. Consider

φm − φnj jj j =max�t∈J 〠
m

r=n+1
φr

�����
�����

≤max�t∈J N −1 p γ, v, sð ÞN 〠
m

r=n+1
L φr−1ð Þ +N φr−1ð Þð Þ

" #" #�����
�����

=max�t∈J N −1 p γ, v, sð ÞN 〠
m−1

r=n+1
L φrð Þ +N φrð Þð Þ

" #" #�����
�����

≤max�t∈J N −1 p γ, v, sð ÞN L φm−1ð Þ −L φn−1ð Þ +N φm−1ð Þ −N φn−1ð Þð Þ½ �½ ��� ��
≤ δ1max�t∈J N −1 p γ, v, sð ÞN L φm−1ð Þ −L φn−1ð Þð Þ½ �½ ��� ��

+ δ2max�t∈J N −1 p γ, v, sð ÞN N um−1ð Þ −N �tn−1ð Þð Þ½ �½ ��� ��
= δ1 + δ2ð Þ 1 − γ + γ�tð Þ φm−1 − φn−1j jj j, n = 1, 2, 3,⋯:

ð23Þ

Let m = n + 1; then,

φn+1 − φnj jj j ≤ δ φn − φn−1j jj j ≤ δ2 φn−1φn−2k k≤⋯≤δn φ1 − φ0j jj j,
ð24Þ

where δ = ðδ1 + δ2Þð1 − γ + γ�tÞ. Similarly, we have

φm − φnj jj j ≤ φn+1 − φnk k + φn+2φn+1k k+⋯+ φm − φm−1j jj j,

δn + δn+1+⋯+δm−1	 

φ1 − φ0j jj j ≤ δn

1 − δm−n

1 − δ

� �
φ1k k:

ð25Þ

As 0 < δ < 1, we get 1 − δm−n < 1. Therefore,

φm − φnj jj j ≤ δn

1 − δ
max�t∈J φ1j jj j: ð26Þ

Since kφ1k <∞,kφm − φnk⟶ 0 when n⟶∞. Hence,
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Figure 2: The different fractional-order graphs of φð�ξ,�tÞ at γ = 0:8 and γ = 0:6.

4 Journal of Function Spaces



φm is a Cauchy sequence in F; therefore, the series φm is con-
vergent. ☐ ☐

5. Results

Example 1. Consider the fractional-order telegraph equation

∂2γφ
∂�t2γ

+ 2 ∂
γφ

∂�tγ
+ φ = ∂2φ

∂�ξ2
, 0 < γ ≤ 1, t ≥ 0, ð27Þ

with the initial condition

φ �ξ, 0
� �

= e
�ξ,

φ�t
�ξ, 0
� �

= −2e�ξ:
ð28Þ

Now, applying the natural transformation to equation (27),
we get

N
∂2γφ
∂�t2γ

" #
= −N 2 ∂

γφ

∂�tγ
+ φ −

∂2φ

∂�ξ2

" #
: ð29Þ

Using the inverse natural transformation,

φ �ξ,�t
� �

=N −1
φ �ξ, 0
� �
s

+ μ

s2
φ�t

�ξ, 0
� �

−
μ/sð Þ + γ 1 − μ/sð Þð Þ

μ/sð Þ2 N 2 ∂
γφ

∂�tγ
+ φ −

∂2φ

∂�ξ2

" #2
4

3
5:

ð30Þ

Using the ADM procedure, we get

φ0
�ξ,�t
� �

=N −1
φ �ξ, 0
� �
s

+ μ

s2
φ�t

�ξ, 0
� �2

4
3
5 =N −1 e

�ξ

s
−
2μe�ξ
s2

" #
,

φ0
�ξ,�t
� �

= e
�ξ 1 − 2�tð Þ,

φj+1 = −N −1 μ/sð Þ + γ 1 − μ/sð Þð Þ
μ/sð Þ2 N 2

∂γφj

∂�tγ
+ φj −

∂2φj

∂�ξ2

" #" #
, j = 0, 1, 2,⋯:

ð31Þ

For j = 0,

φ1
�ξ,�t
� �

= −N −1 μ/sð Þ + γ 1 − μ/sð Þð Þ
μ/sð Þ2 N 2 ∂

γφ0
∂�tγ

+ φ0 −
∂2φ0

∂�ξ2

" #" #

= 2e�ξ�t 2 − 2γ + γ�tð Þ:
ð32Þ

The subsequent terms are

φ2
�ξ,�t
� �

= −N −1 μ/sð Þ + γ 1 − μ/sð Þð Þ
μ/sð Þ2 N 2 ∂

γφ1
∂�tγ

+ φ1 −
∂2φ1

∂�ξ2

" #" #

= −
4e�ξ��t2

3 3 − 3γ + γ�tð Þ,

φ3
�ξ,�t
� �

= −N −1 μ/sð Þ + γ 1 − μ/sð Þð Þ
μ/sð Þ2 N 2 ∂

γφ2
∂�tγ

+ φ2 −
∂2φ2

∂�ξ2

" #" #

= 2e�ξ��t3

3 4 − 4γ + γ�tð Þ,

⋮ ð33Þ

The NDM result for Example 1 is

φ �ξ,�t
� �

= φ0
�ξ,�t
� �

+ φ1
�ξ,�t
� �

+ φ2
�ξ,�t
� �

+ φ3
�ξ,�t
� �

+ φ4
�ξ,�t
� �

⋯,

φ �ξ,�t
� �

= e
�ξ 1 − 2�t + 2e�ξ�t 2 − 2γ + γ�tð Þ − 4e�ξ�t2

3 3 − 3γ + γ�tð Þ
"

+ 2e�ξ�t3
3 4 − 4γ + γ�tð Þ+⋯

#
:

ð34Þ

When γ = 1, then the NDM result is

φ �ξ,�t
� �

= e
�ξ 1 − 2�t + 2�tð Þ2

2! −
2�tð Þ3
3! + 2�tð Þ4

4! ⋯

" #
: ð35Þ
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Figure 3: The fractional-order graph at γ = 0:40.
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The exact result is

φ �ξ,�t
� �

= e
�ξ−2�t: ð36Þ

In Figure 1, the first and second graphs show the exact
and NDM solutions ofφð�ξ,�tÞ for Example 1 at γ = 1.
Figure 2 shows the different fractional-order graphs of φð�ξ,
�tÞ at γ = 0:8 and γ = 0:6, and Figure 3 shows the fractional-
order graph at γ = 0:40. The graphs show the close relation
between the exact and actual solutions with each other.
Figure 4 shows the two- and three-dimensional graphs of dif-
ferent fractional-order γ.

Example 2. Consider the fractional-order telegraph equation

∂2γφ

∂�ξ2γ
= ∂2φ

∂�t2
+ ∂φ

∂�t
+ φ, 0 < γ ≤ 1,�t ≥ 0, ð37Þ

with the initial condition

φ 0,�tð Þ = e−�t ,

φ�ξ 0,�tð Þ = e−�t:
ð38Þ

Now, applying the natural transformation to (37), we get

N
∂2γφ

∂�ξ2γ

" #
=N

∂2φ
∂�t2

+ ∂φ
∂�t

+ φ

" #
: ð39Þ

Using the inverse natural transformation,

φ �ξ,�t
� �

=N −1 φ 0,�tð Þ
s

+ μ

s2
φ�ξ 0,�tð Þ + μ/sð Þ + γ 1 − μ/sð Þð Þ

μ/sð Þ2 N

"

� ∂2φ
∂�t2

+ ∂φ
∂�t

+ φ

" ##
:

ð40Þ
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Figure 4: The 3D and 2D different fractional-order graphs of γ.
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Applying the Adomian decomposition method, we get

φ0
�ξ,�t
� �

=N −1 φ 0,�tð Þ
s

+
φ�ξ 0,�tð Þ

s2

� �
=N −1 e−�t

s
+ μe−�t

s2

" #
,

φ0
�ξ,�t
� �

= e−�t 1 + �ξ
� �

,

φj+1
�ξ,�t
� �

=N −1 μ/sð Þ + γ 1 − μ/sð Þð Þ
μ/sð Þ2 N

∂2φj

∂�t2
+
∂φj

∂�t
+ φj

" #" #
, j = 0, 1, 2,⋯:

ð41Þ

For j = 0,

φ1
�ξ,�t
� �

=N −1 μ/sð Þ + γ 1 − μ/sð Þð Þ
μ/sð Þ2 N

∂2φ0
∂�t2

+ ∂φ0
∂�t

+ φ0

" #" #

= e−�t 1 − γ + �ξ + γ�ξ
2

2

 !
:

ð42Þ

The subsequent terms are

φ2
�ξ,�t
� �

=N −1 μ/sð Þ + γ 1 − μ/sð Þð Þ
μ/sð Þ2 N

∂2φ1
∂�t2

+ ∂φ1
∂�t

+ φ1

" #" #

= e−�t �ξ − γ�ξ +
�ξ
2

2 + γ

6
�ξ
3

 !
,

φ3
�ξ, t
� �

=N −1 μ/sð Þ + γ 1 − μ/sð Þð Þ
μ/sð Þ2 N

∂2φ2
∂�t2

+ ∂φ2
∂�t

+ φ2

" #" #

= e−�t
�ξ
2

2 −
γ�ξ

2

2 + γ�ξ
4

24 +
�ξ
3

6

 !
,

⋮ ð43Þ

The NDM solution for Example 2 is

φ �ξ,�t
� �

= φ0
�ξ,�t
� �

+ φ1
�ξ,�t
� �

+ φ2
�ξ,�t
� �

+ φ3
�ξ,�t
� �

+ φ4
�ξ,�t
� �

⋯,
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Figure 6: The different fractional-order graphs of φð�ξ,�tÞ at γ = 0:8 and γ = 0:6.
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Figure 7: The fractional-order graph at γ = 0:40.

7Journal of Function Spaces



φ �ξ,�t
� �

= e−�t 2 + 3�ξ − γ + γ�ξ
2

2 − γ�ξ +
�ξ
2

2 + γ

6
�ξ
3 +

�ξ
2

2 −
γ�ξ

2

2

"

+ γ�ξ
4

24 +
�ξ
3

6 +⋯
#
:

ð44Þ

The exact result is

φ �ξ,�t
� �

= e
�ξ−�t: ð45Þ

In Figure 5, the first and second graphs show the exact and
NDM solutions ofφð�ξ,�tÞ for Example 2 at γ = 1. Figure 6 shows
the different fractional-order graphs of φð�ξ,�tÞ at γ = 0:8 and γ
= 0:6, and Figure 7 shows the fractional-order graph at γ =
0:40. The graphs show the close relation between the exact
and actual solutions with each other. Figure 8 shows the two-
and three-dimensional graphs of different fractional-order γ.

Example 3. Consider the fractional linear telegraph equation

∂2γφ
∂�t2γ

+ 3 ∂
γφ

∂�tγ
+ 2φ = ∂2φ

∂�ξ2
+ ∂2φ

∂�ζ2
, 0 < γ ≤ 1, t ≥ 0, ð46Þ

0.5

1.5

1

2

2.5

–1
–0.5

0
0.5

10 0.5
0.4

0.3
0.2

0.1
0

t

φ
 (

t)
Ϛ
,

Ϛ

φ
 (

t)
Ϛ
,

Ϛ

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

–1 –0.5 0 0.5 10

Figure 8: The 3D and 2D different fractional-order graphs of γ.
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Figure 9: The exact and analytical solution figures of Example 3 at γ = 1.
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with the initial condition

φ �ξ, �ζ, 0
� �

= e
�ξ+�ζ,

φ�t
�ξ, �ζ, 0
� �

= −3e�ξ+�ζ:
ð47Þ

Using the natural transformation to equation (46), we get

N
∂2γφ
∂�t2γ

" #
= −N 3 ∂

γφ

∂�tγ
+ 2φ −

∂2φ

∂�ξ2
−
∂2φ

∂�ζ2

" #
: ð48Þ

Applying the inverse natural transformation,

φ �ξ, �ζ,�t
� �

=N −1
φ �ξ, �ζ, 0
� �

s
+
φ�t

�ξ, �ζ, 0
� �
s2

−
μ/sð Þ + γ 1 − μ/sð Þð Þ

μ/sð Þ2 N

2
4

� 3 ∂
γφ

∂�tγ
+ 2φ −

∂2φ

∂�ξ2
−
∂2φ

∂�ζ2

" ##
:

ð49Þ

Implementing the Adomian decomposition method, we
get

φ0
�ξ, �ζ,�t
� �

=N −1
φ �ξ, �ζ, 0
� �

s
+ μ

s2
φ�t

�ξ, �ζ, 0
� �2

4
3
5

=N −1 e
�ξ+�ζ

s
−
3μe�ξ+�ζ
s2

" #
,

φ0
�ξ, �ζ,�t
� �

= e
�ξ+�ζ 1 − 3�tð Þ,

φj+1
�ξ, �ζ,�t
� �

= −N −1 μ/sð Þ + γ 1 − μ/sð Þð Þ
μ/sð Þ2 N

"

� 3
∂γφ j

∂�tγ
+ 2φj −

∂2φj

∂�ξ2
−
∂2φ j

∂�ζ2

" ##
, j = 0, 1, 2,⋯:

ð50Þ
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Figure 10: The different fractional-order graphs of φð�ξ,�tÞ at γ = 0:8 and γ = 0:6.
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For j = 0,

φ1
�ξ, �ζ,�t
� �

= −N −1 μ/sð Þ + γ 1 − μ/sð Þð Þ
μ/sð Þ2 N 3 ∂

γφ0
∂�tγ

+ 2φ0 −
∂2φ0

∂�ξ2
−
∂2φ0

∂�ζ2

" #" #
,

φ1
�ξ, �ζ,�t
� �

= 9e�ξ+�ζ �t − γ�t + γ�t2

2

 !
:

ð51Þ

The subsequent terms are

φ2
�ξ, �ζ,�t
� �

= −N −1 μ/sð Þ + γ 1 − μ/sð Þð Þ
μ/sð Þ2 N 3 ∂

γφ1
∂�tγ

+ 2φ1 −
∂2φ1

∂�ξ2
−
∂2φ1

∂�ζ2

" #" #

= −27e�ξ+�ζ
�t2

2 −
γ�t2

2 + γ�t3

6

 !
,

φ3
�ξ, �ζ,�t
� �

= −N −1 μ/sð Þ + γ 1 − μ/sð Þð Þ
μ/sð Þ2 N 3 ∂

γφ2
∂�tγ

+ 2φ2 −
∂2φ2

∂�ξ2
−
∂2φ2

∂�ζ2

" #" #

= 81e�ξ+�ζ
�t3

6 −
γ�t3

6 + γ�t4

24

 !
,

⋮ ð52Þ

The NDM result for Example 3 is

φ �ξ, �ζ,�t
� �

= φ0
�ξ, �ζ,�t
� �

+ φ1
�ξ, �ζ,�t
� �

+ φ2
�ξ, �ζ,�t
� �

+ φ3
�ξ, �ζ,�t
� �

+ φ4
�ξ, �ζ,�t
� �

⋯,

φ �ξ, �ζ,�t
� �

= e
�ξ+�ζ 1 − 3�t + 9 �t − γ�t + γ�t2

2

 !
− 27

�t2

2 −
γ�t2

2 + γ�t3

6

 !"

+ 81
�t3

6 −
γ�t3

6 + γ�t4

24

 !
⋯

#
:

ð53Þ

When γ = 1, then the NDM result is

φ �ξ, �ζ,�t
� �

= e
�ξ+�ζ 1 − 3�t + 3�tð Þ2

2! −
3�tð Þ3
3! + 3�tð Þ4

4! ⋯

" #
: ð54Þ

The exact result is

φ �ξ, �ζ,�t
� �

= e
�ξ+�ζ−3�t: ð55Þ

In Figure 9, the first and second graphs show the exact
and NDM solutions ofφð�ξ,�tÞ for Example 3 at γ = 1.
Figure 10 shows the different fractional-order graphs of φð�ξ
,�tÞ at γ = 0:8 and γ = 0:6, and Figure 11 shows the
fractional-order graph at γ = 0:40. The graphs show the close
relation between the exact and actual solutions with each
other. Figure 12 shows the two- and three-dimensional
graphs of different fractional-order γ.

Example 4. Consider the fractional linear telegraph equation

∂2γφ
∂�t2γ

+ 2 ∂
γφ

∂�tγ
+ 3φ = ∂2φ

∂�ξ2
+ ∂2φ

∂�ζ2
+ ∂2φ
∂χ2 , 0 < γ ≤ 1,�t ≥ 0,

ð56Þ

with the initial condition

φ �ξ, �ζ, χ, 0
� �

= sinh �ξ
� �

sinh �ζ
� �

sinh χð Þ,

φ�t
�ξ, �ζ, χ, 0
� �

= − sinh �ξ
� �

sinh �ζ
� �

sinh χð Þ:
ð57Þ
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Figure 12: The 3D and 2D different fractional-order graphs of γ.
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Taking the natural transformation of equation (56),

N
∂2γφ
∂�t2γ

" #
= −N 2 ∂

γφ

∂�tγ
+ 3φ −

∂2φ

∂�ξ2
−
∂2φ

∂�ζ2
−
∂2φ
∂χ2

" #
: ð58Þ

Using the inverse natural transformation,

φ �ξ, �ζ, χ,�t
� �

=N −1
φ �ξ, �ζ, χ, 0
� �

s
+ μ

s2
φ�t

�ξ, �ζ, χ, 0
� �2

4
3
5

−N −1 μ/sð Þ + γ 1 − μ/sð Þð Þ
μ/sð Þ2 N

"

� 2 ∂
γφ

∂�tγ
+ 3φ −

∂2φ

∂�ξ2
−
∂2φ

∂�ζ2
−
∂2φ
∂χ2

" ##
:

ð59Þ

Applying the Adomian decomposition method, we get

φ0
�ξ, �ζ, χ,�t
� �

=N −1
φ �ξ, �ζ, χ, 0
� �

s
+
φ�t

�ξ, �ζ, χ, 0
� �

s2

2
4

3
5

=N −1
sinh �ξ

� �
sinh �ζ

� �
sinh χð Þ

s

2
4

−
sinh �ξ

� �
sinh �ζ

� �
sinh χð Þ

s2

3
5,

φ0
�ξ, �ζ, χ,�t
� �

= sinh �ξ
� �

sinh �ζ
� �

sinh χð Þ 1 −�tð Þ,

φj+1
�ξ, �ζ, χ,�t
� �

= −N −1 μ/sð Þ + γ 1 − μ/sð Þð Þ
μ/sð Þ2 N

"

� 2
∂γφj

∂�tγ
+ 3φj −

∂2φj

∂�ξ2
−
∂2φj

∂�ζ2
−
∂2φj

∂χ2

" ##
, j = 0, 1, 2,⋯:

ð60Þ

For j = 0,

φ1
�ξ, �ζ, χ,�t
� �

= −N −1 μ/sð Þ + γ 1 − μ/sð Þð Þ
μ/sð Þ2 N 2 ∂

γφ0
∂�tγ

+ 3φ0

�"

−
∂2φ0

∂�ξ2
−
∂2φ0

∂�ζ2
−
∂2φ0
∂χ2

#
�,

φ1
�ξ, �ζ, χ,�t
� �

= −N −1
2 sinh �ξ

� �
sinh �ζ

� �
sinh χð Þ

sγ+2

2
4

3
5,

φ1
�ξ, �ζ, χ,�t
� �

= −2 sinh �ξ
� �

sinh �ζ
� �

sinh χð Þ �t − γ�t + γ�t2

2

 !
:

ð61Þ

The subsequent terms are

φ2
�ξ, �ζ, χ,�t
� �

= −N −1 μ/sð Þ + γ 1 − μ/sð Þð Þ
μ/sð Þ2 N 2 ∂

γφ1
∂�tγ

+ 3φ1

�"

−
∂2φ1

∂�ξ2
−
∂2φ1

∂�ζ2
−
∂2φ1
∂χ2

##
,

φ2
�ξ, �ζ, χ,�t
� �

= 4 sinh �ξ
� �

sinh �ζ
� �

sinh χð Þ
�t2

2 −
γ�t2

2 + γ�t3

6

 !
,
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Figure 13: The exact and analytical solution figures of Example 4 at γ = 1.
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Figure 14: The different fractional-order graphs of φð�ξ,�tÞ at γ = 0:8 and γ = 0:6.
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φ3
�ξ, �ζ, χ,�t
� �

= −N −1 μ/sð Þ + γ 1 − μ/sð Þð Þ
μ/sð Þ2 N 2 ∂

γφ2
∂�tγ

+ 3φ2

�"

−
∂2φ2

∂�ξ2
−
∂2φ2

∂�ζ2
−
∂2φ2
∂χ2

##
,

φ3
�ξ, �ζ, χ,�t
� �

= −8 sinh �ξ
� �

sinh �ζ
� �

sinh χð Þ
�t3

6 −
γ�t3

6 + γ�t4

24

 !
,

⋮ ð62Þ

The NDM result for Example 4 is

φ �ξ, �ζ, χ,�t
� �

= φ0
�ξ, �ζ, χ,�t
� �

+ φ1
�ξ, �ζ, χ,�t
� �

+ φ2
�ξ, �ζ, χ,�t
� �

+ φ3
�ξ, �ζ, χ,�t
� �

+⋯,

φ �ξ, �ζ, χ,�t
� �

= sinh �ξ
� �

sinh �ζ
� �

sinh χð Þ 1 +�t − 2½

� t − γ�t + γ�t2

2

 !
+ 4

�t2

2 −
γ�t2

2 + γ�t3

6

 !

− 8
�t3

6 −
γ�t3

6 + γ�t4

24

 !
+⋯
#
:

ð63Þ

The exact result is

φ �ξ, �ζ, χ,�t
� �

= e−2�t sinh �ξ
� �

sinh �ζ
� �

sinh χð Þ: ð64Þ

In Figure 13, the first and second graphs show the exact
and NDM solutions ofφð�ξ,�tÞ for Example 4 at γ = 1.
Figure 14 shows the different fractional-order graphs of φð�ξ
,�tÞ at γ = 0:8 and γ = 0:6. The graphs show the close relation
between the exact and actual solutions with each other.
Figure 15 shows the three-dimensional graphs of different
fractional-order γ.

6. Conclusions

In this article, we have investigated the telegraph equations
through natural transformation with the Caputo-Fabrizio
derivative. It is also shown that the fractional-order results
were convergent to the actual result in the examples, as the
fractional order approached the integer order. The imple-
mentation of the natural decomposition method in the illus-
trative problems has also confirmed that the fractional-order
mathematical models can analyze any experimental data in a
better manner compared to the integer-order models. Fur-
thermore, by using different fractional orders, we could find
a way to create appropriate mathematical models for any
empirical data and thus understand practical implications.
The natural decomposition method is simple in its principles;
also, the natural decomposition method effectively solves lin-
ear and nonlinear fractional differential equations. It can be
proved a promising technique for a large variety of such
equations arising in mathematical physics. In the future, the
natural transform decomposition technique modified with

the help of different fractional operators such as Atangana-
Baleanu and Yang-Abdel-Cattani operators is the most reli-
able method for solving different fractional-order linear and
nonlinear partial differential equations.
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