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In this article, we introduce and study a new class of operators defined on a Cartesian product of ideal spaces of measurable
functions. We use the general approach of the theory of vector lattices. We say that an operator T : E × F ⟶W defined on a
Cartesian product of vector lattices E and F and taking values in a vector lattice W is orthogonally biadditive if all partial
operators Ty : E⟶W and Tx : F ⟶W are orthogonally additive. In the first part of the article, we prove that, under some
mild conditions, a vector space of all regular orthogonally biadditive operators OBA rðE, F ;WÞ is a Dedekind complete vector
lattice. We show that the set of all horizontally-to-order continuous regular orthogonally biadditive operators is a projection
band in OBA rðE, F ;WÞ. In the last section of the paper, we investigate orthogonally biadditive operators on a Cartesian
product of ideal spaces of measurable functions. We show that an integral Uryson operator which depends on two functional
variables is orthogonally biadditive and obtain a criterion of the regularity of an orthogonally biadditive Uryson operator.

1. Introduction and Preliminaries

Orthogonally additive operators in vector lattices first were
introduced by Mazón and Segura de León in [1]. Today,
the theory of these operators is an active field of the modern
analysis (see [2–9]). We note that the study of orthogonally
additive operators has useful applications in different areas
of modern mathematics, e.g., convex geometry [10, 11],
dynamical systems [12], and nonlinear integral equations
[13, 14]. In applications, it is often necessary to study inte-
gral equations depending on several variables. Nonlinear
operators in two variables satisfying the natural condition
of the orthogonal additivity with respect to each variable
are often appear in applications ([15]). Such operators in
the literature are called orthogonally biadditive. We note
that this notion is traced back to paper [16] by Mizel and
Sundaresan. In present note, we investigate orthogonally
biadditive operators in the general setting of the theory of
vector lattices. We note that the tools of the theory of vector
lattices turned out to be useful and effective in solving a
number of problems of the theory of linear integral opera-

tors in ideal spaces [17]. The nonlinear integral operators
of Uryson and Hammerstein were investigated by methods
of the theory of ordered spaces in [14, 18].

Let us describe the content of the article. In the following
section, we briefly present a necessary information on vector
lattices and orthogonally additive operators. In the next sec-
tion, we investigate the vector space OBAðE, F ;WÞ of all
orthogonally biadditive operators defined on a Cartesian
product of vector lattices E and F and taking values in a vec-
tor lattice W. It turned out that there is a natural partial
order on OBAðE, F ;WÞ. We get the lattice calculus of
orthogonally biadditive operators and prove the first main
result of the paper stated that for a Dedekind complete vec-
tor lattice W the vector space OBA rðE, F ;WÞ of all regular
orthogonally biadditive operators defined on a Cartesian
product of vector lattices E and F and taking values in a
Dedekind complete vector lattice W is a Dedekind complete
vector lattice. Then, we explore the special type of
horizontally-to-order continuous regular orthogonally biad-
ditive operators. We prove that the vector space of these
operators is a projection band in OBA rðE, F ;WÞ.
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In the last section, we investigate orthogonally biadditive
operators defined on a Cartesian product of ideal spaces of
measurable functions. We show that a nonlinear superposi-
tion operator and a Uryson integral operator depending on
two variables are orthogonally biadditive in appropriate
function spaces. We note that in the classical theory of inte-
gral operators, all information concerning an integral opera-
tor is encoded by the properties of its kernel. In the final
section of the paper, we show that the same is true for inte-
gral orthogonally biadditive operators and obtain the second
main result of the article which is a criteria for the regularity
of an orthogonally biadditive Uryson operator. It is worth
noting that the general theory of orthogonally biadditive
operators developed below is aimed at getting an additional
information on the abovementioned particular operators.
This article is the beginning of a project devoted to the study
of analytic, algebraic, and order properties of orthogonally
biadditive operators.

Now we state our main results. All unexplained notions
are defined in next sections.

Theorem 1. Let E, F be vector lattices and W be a Dedekind
complete vector lattice. Then, OBA rðE, F ;WÞ is a Dedekind
complete vector lattice, and for all T , T1, T2 ∈ OBA rðE, F ;
WÞ and ðx, yÞ ∈ E × F, the following relations hold:

(1) ðT1∨T2Þðx, yÞ≔ sup f∑n
i=1∑

m
j=1Tkði,jÞðxi, yjÞ: x =

∐n
i=1xi ; y =∐m

j=1yj ; n,m ∈N ; k ∈
f1, 2gf1,⋯,ng×f1,⋯,mgg

(2) ðT1 ∧ T2Þðx, yÞ≔ inf f∑n
i=1∑

m
j=1Tkði,jÞðxi, yjÞ: x =

∐n
i=1xi ; y =∐m

j=1yj ; n,m ∈N ; k ∈
f1, 2gf1,⋯,ng×f1,⋯,mgg

(3) T+ðx, yÞ≔ sup f∑n
i=1∑

m
j=1Tkði,jÞðxi, yjÞ: ð∐n

i=1xiÞ⊑x ; ð
∐m

j=1yjÞ⊑y ; n,m ∈N ; k ∈ f1, 2gf1,⋯,ng×f1,⋯,mgg

(4) T−ðx, yÞ≔ −inf f∑n
i=1∑

m
j=1Tkði,jÞðxi, yjÞ: ð∐n

i=1xiÞ⊑x ;
ð∐m

j=1yjÞ⊑y ; n,m ∈N ; k ∈ f1, 2gf1,⋯,ng×f1,⋯,mgg

(5) ∣T ∣ ðx, yÞ≔ sup f∑n
i=1∑

m
j=1ð−1Þkði,jÞTðxi, yjÞ: x =

∐n
i=1xi ; y =∐m

j=1yj ; n,m ∈N ; k ∈
f1, 2gf1,⋯,ng×f1,⋯,mgg

(6) ∣Tðx, yÞ ∣ ≤∣T∣ðx, yÞ

Theorem 2. Let ðC,Θ, λÞ, ðA, Σ, μÞ, and ðB, Ξ, νÞ be finite
measure spaces; E, F, and J be ideal subspaces of L0ðμÞ, L0ð
νÞ, and L0ðλÞ, respectively; K : C × A × B × R2 be a normal-
ized Carathéodory function; and T : E × F ⟶ J be an inte-
gral Uryson operator with the kernel K . Then, the following
statements are equivalent:

(1) T is a regular operator

(2) ∣T ∣ : E × F ⟶ J is a positive integral Uryson opera-
tor with the kernel ∣K ∣

Here, we provide some necessary facts and notations
that we need in the further presentation. The standard refer-
ence book on the theory of vector lattices is [19]. All vector
lattices we consider below are supposed to be Archimedean.
The term “operator” between vector spaces E and W means
in general a nonlinear map T : E⟶W. We say that two
elements x, y of a vector lattice E are disjoint and write x⊥
y, if jxj ∧ jyj = 0. We write x =∐n

i=1xi if x =∑n
i=1xi and xi⊥

xj for all i ≠ j. In particular, for n = 2, we use the notation
x = x1⊔x2. We say that y is a fragment (a component) of x
∈ E and use the symbol y⊑x, if y⊥ðx − yÞ. The set of all frag-
ments of an element x ∈ E is denoted by Fx . We say that
x1, x2 ∈Fx are mutually complemented, if x = x1⊔x2. For
vector lattices E and F by E × F, we denote the Cartesian
product E × F ≔ fðx, yÞ: x ∈ E, y ∈ Fg of E and F. We
observe that E × F is a vector lattice with the pointwise alge-
braic and lattice operations. Namely, for all x, u ∈ E and y,
v ∈ F, we have that

x, yð Þ ≤ u, vð Þ⇔ x ≤ u and y ≤ v,
x, yð Þ∨ u, vð Þ = x∨u, y∨vð Þ ; x, yð Þ ∧ u, vð Þ = x ∧ u, y ∧ vð Þ,

∣ x, yð Þ∣ = ∣x∣,∣y ∣ð Þ:
ð1Þ

Let ðA, Σ, μÞ be a finite measure space. By L0ðA, Σ, μÞ (or
L0ðμÞ for shortness), we denote the vector space of all real
valued measurable functions on A. More precisely, L0ðμÞ
consists of equivalence classes of such functions, where two
functions f1 and f2 are said to be equivalent if f1ðsÞ = f2ðsÞ
for μ-almost all s ∈ A. We note that L0ðμÞ is equipped with
the natural partial order, that is

f ≤ h⇔ f sð Þ ≤ h sð Þμ − a:e:s ∈ A ; f , h ∈ L0 μð Þ: ð2Þ

It is worth noting that L0ðμÞ is a Dedekind complete vec-
tor lattice (see [20], page 52). We say that a vector subspace
E of L0ðμÞ is an ideal space if for every f ∈ L0ðμÞ, h ∈ E the
relation ∣f ∣ ≤∣h∣ implies that f ∈ E. In particular, the classical
LpðμÞ-spaces are typical examples of ideal spaces. For a given
f ∈ L0ðμÞ by supp f , we denote the measurable set ft ∈ A
: f ðtÞ ≠ 0g. The characteristic function of a set D is denoted
by 1D. The union H ∪D of two disjoint sets H and D we
denote by H⊔D. The set of all maps from H to D we denote
by DH .

Definition 3. Let E be a vector lattice and let X be a real vec-
tor space. An operator T : E⟶ X is said to be orthogonally
additive if Tðx + yÞ = Tx + Ty for all disjoint elements x, y
∈ E. It follows from the definition that Tð0Þ = 0.

We observe that classical operators of nonlinear analysis
such as Uryson, Hammerstein, and Nemytskii operators are
orthogonally additive in suitable function spaces (see [1]).
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2. The Vector Lattice of Regular Orthogonally
Biadditive Operators

In this section, we introduce a notion of an orthogonally
biadditive operator and prove that the vector space of all reg-
ular orthogonally biadditive operators defined on the Carte-
sian product E × F of vector lattice E and F and taking
values in a Dedekind complete vector lattice W is a Dede-
kind complete vector lattice.

Definition 4. Let E, F be vector lattices and W be a vector
space. With an operator T : E × F ⟶W is associated two
families of partial operators Tx : F ⟶W, x ∈ E, and Ty

: E⟶W, y ∈ F defined by setting:

Tx vð Þ≔ T x, vð Þ, v ∈ F ; Ty uð Þ≔ T u, yð Þ, u ∈ E: ð3Þ

We say that T : E × F ⟶W is an orthogonally biaddi-
tive operator (OBAO) if all Tx : F ⟶W, x ∈ E, and Ty : E
⟶W, y ∈ F are orthogonally additive operators from E
to W and F to W, respectively. The vector space of all
orthogonally biadditive operators from E × F to W we
denote by OBAðE, F ;WÞ.

It is clear from the definition that Tð0, yÞ = Tðx, 0Þ = 0
for all x ∈ E and y ∈ F. We note that an OBAO T : E × F
⟶W need not be orthogonally additive as an operator
defined on the vector lattice E × F. Indeed, if E = F =W =
R, then the operator T : E × F ⟶W defined by setting

T x, yð Þ≔ xy, x, yð Þ ∈ℝ2, ð4Þ

is an OBAO; however, for disjoint elements s = ð0, 1Þ and t
= ð1, 0Þ of E × F, one has

T s + tð Þ = 1 ≠ 0 = T sð Þ + T tð Þ: ð5Þ

Now we present some examples of OBAOs.

Example 5. Every bilinear operator T : E × F ⟶W is
orthogonally biadditive.

Example 6. Suppose that E = F =W = R. Then, OBAðE, F
;WÞ coincides with the vector space of all function f : R2

⟶ R such that f ð0, yÞ = f ðx, 0Þ = 0 for all x, y ∈ R.

Definition 7. Let E, F,W be vector lattices. An orthogonally
biadditive operator T : E × F ⟶W is said to be:

(i) Positive if Tðx, yÞ ≥ 0 for all ðx, yÞ ∈ E × F

(ii) C -bounded, if it maps Fðx,yÞ to order bounded sets
in W for every ðx, yÞ ∈ E × F

(iii) Regular, if T = S1 − S2, where S1, S2 are positive
orthogonally biadditive operators from E × F to W

The sets of all positive, C-bounded, and regular orthogo-
nally biadditive operators from E × F to W we denote by O

BA+ðE, F ;WÞ, OBA cbðE, F ;WÞ, and OBA rðE, F ;WÞ,
respectively. There is a natural partial order on OBA rðE,
F ;WÞ, namely, S ≤ T ⇔ ðT − SÞ ∈ OBA+ðE, F ;WÞ.

Proposition 8. Let E, F,W be vector lattices. Then, every T
∈ OBA rðE, F ;WÞ is C -bounded.

Proof. Suppose that T = S1 − S2 with S1, S2 ∈ OBA+ðE, F ;
WÞ. Fix ðx, yÞ ∈ E × F and take ðv, uÞ ∈Fðx,yÞ. Then, ðx − v,
y − uÞ⊥ðv, uÞ, and for every, i ∈ f1, 2g, we have that

Si x, yð Þ = Si vo x − vð Þ, uo y − uð Þð Þ = Si v, uð Þ + Si v, y − uð Þ
+ Si x − v, uð Þ + Si x − v, y − uð Þ:

ð6Þ

It follows that Siðv, uÞ ≤ Siðx, yÞ, and therefore

T v, uð Þ = S1 v, uð Þ − S2 v, uð Þ ≤ S1 x, yð Þ + S2 x, yð Þ, ð7Þ

for all ðv, uÞ ∈Fðx,yÞ.☐

Now we need the following auxiliary statement.

Proposition 9 (see [21], Prop. 3.11). Let E be a vector lattice
and ∐n

i=1xi =∐m
k=1yk for some ðxiÞni=1 and ðykÞmk=1 ⊂ E: Then,

there exist a family of pairwise disjoint elements ðzikÞ ⊂ E,
where i ∈ f1,⋯, ng and k ∈ f1,⋯,mg such that

(i) xi =∐m
k=1zik for any i ∈ f1,⋯, ng

(ii) yk =∐n
i=1zik for any k ∈ f1,⋯,mg

(iii) ∐n
i=1∐

m
k=1zik =∐n

i=1xi =∐m
k=1yk

Now we ready to prove the first main result of the article.

Proof of Theorem 1. First we prove (1). Put, by definition

R x, yð Þ≔ 〠
n

i=1
〠
m

j=1
Tk i,jð Þ xi, yj

� �
: x = ∐

n

i=1
xi; ;y

(

= ∐
m

j=1
yj ; n,m ∈N ; k ∈ 1, 2f g 1,⋯,nf g× 1,⋯,mf g

)
:

ð8Þ

Since T1, T2 ∈ OBA rðE, F ;WÞ, then for all decomposi-
tions x =∐n

i=1xi, y =∐m
j=1yj, and all maps k : f1,⋯, ng × f1

,⋯,mg⟶ f1, 2g, we have that

〠
n

i=1
〠
m

j=1
Tk i,jð Þ xi, yj

� �
≤ 〠

n

i=1
〠
m

j=1
S11 + S12 + S21 + S22
� �

xi, yj
� �

= S11 + S12 + S21 + S22
� �

x, yð Þ,
ð9Þ

where S11, S12, S21, S22 are positive orthogonally biadditive oper-
ators such that T1 = S11 − S12 and T2 = S21 − S22. Thus, Rðx, yÞ
is an order bounded subset of W and by the Dedekind
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completeness of W there exists Rðx, yÞ≔ sup Rðx, yÞ. We
show that R : E × F ⟶W is an orthogonally biadditive
operator. Fix y ∈ F, disjoint elements u, v ∈ E and partitions
uov =∐n

i=1xi and y =∐m
j=1yj. By Proposition 9, for every i

∈ f1,⋯, ng, there exists a decomposition xi = x1i ox2i such
that u =∐n

i=1x
1
i and v =∐n

i=1x
2
i . Take ∑n

i=1∑
m
j=1Tkði,jÞðxi, yjÞ

∈Rðuov, yÞ. Then

〠
n

i=1
〠
m

j=1
Tk i,jð Þ xi, yj

� �
= 〠

n

i=1
〠
m

j=1
Tk i,jð Þ x1i ox2i , yj

� �

= 〠
n

i=1
〠
m

j=1
Tk i,jð Þ x1i , yj

� �
+ 〠

n

i=1
〠
n

i=1
Tk i,jð Þ x2i , yj

� �
:

ð10Þ

Since ∑n
i=1∑

m
j=1Tkði,jÞðx1i , yjÞ ∈Rðu, yÞ and ∑n

i=1∑
m
j=1

Tkði,jÞðx2i , yjÞ ∈Rðv, yÞ, we have that Rðu⊔v, yÞ ⊂Rðu, yÞ
+Rðv, yÞ, and therefore, Rðu⊔v, yÞ ≤ Rðu, yÞ + Rðv, yÞ. Let
us prove that converse inequality. Pick ∑n

i=1∑
m
j=1Tkði,jÞðx1i , yj

Þ ∈Rðu, yÞ and ∑l
t=1∑

r
s=1Tkðt,sÞðx2t , ysÞ ∈Rðv, yÞ, where

u = ∐
n

i=1
x1i ; v = ∐

l

t=1
x2i ; y = ∐

m

j=1
yj ; y = ∐

r

s=1
ys: ð11Þ

Suppose that l ≤ n. Adding, if necessary zero fragments
to the sum ∐l

t=1x
2
i , we may assume that l = n and

u = ∐
n

i=1
x1i ; v = ∐

n

i=1
x2i : ð12Þ

By Proposition 9, there is a family of pairwise disjoint
elements ðwjsÞ ⊂ E, where j ∈ f1,⋯,mg and s ∈ f1,⋯, rg
such that

(i) yj =∐r
s=1wjs for every j ∈ f1,⋯,mg

(ii) ys =∐n
i=1wjs for every s ∈ f1,⋯, rg

(iii) y =∐m
j=1∐

r
s=1wjs

Then, we may write

〠
n

i=1
〠
m

j=1
Tk i, jð Þ x1i , yj

� �
= 〠

n

i=1
〠
m

j=1
Tk i,jð Þ x1i , ∐

r

s=1
wjs

� �
= 〠

n

i=1
〠
m

j=1
〠
r

s=1
Tk i, jð Þ x1i ,wjs

� �
,

〠
n

i=1
〠
r

s=1
Tk t,sð Þ x2t , ys

� �
= 〠

l

t=1
〠
r

s=1
Tk i,sð Þ x2i , ∐

m

j=1
wjs

 !
= 〠

n

i=1
〠
r

s=1
〠
m

j=1
Tk i,sð Þ x2i ,wjs

� �
:

ð13Þ

Thus

〠
n

i=1
〠
m

j=1
〠
r

s=1
Tk i,jð Þ x1i ,wjs

� �
+ 〠

n

i=1
〠
r

s=1
〠
m

j=1
Tk i,sð Þ x2t ,wjs

� �

= 〠
n

i=1
〠
r

s=1
〠
m

j=1
Tk i,sð Þ x1i ⊔x

2
i ,wjs

� �
∈R u⊔v, yð Þ:

ð14Þ

Then, Rðu, yÞ +Rðv, yÞ ⊂Rðu⊔v, yÞ, and we have that
Rðu, yÞ + Rðv, yÞ ≤ Rðu⊔v, yÞ. Hence, Rðu⊔v, yÞ = Rðu, yÞ + R
ðv, yÞ. Since T1ðx, yÞ, T2ðx, yÞ ∈Rðx, yÞ, we have that T1ðx
, yÞ ≤ Rðx, yÞ and T2ðx, yÞ ≤ Rðx, yÞ. Suppose H : E × F ⟶
W is an orthogonally biadditive operator with T1ðx, yÞ ≤H
ðx, yÞ and T2ðx, yÞ ≤Hðx, yÞ for all ðx, yÞ ∈ E × F. Then

H x, yð Þ =H ∐
n

i=1
xi, ∐

m

j=1
yj

 !
= 〠

n

i=1
〠
m

j=1
H xi, yj
� �

≥ 〠
n

i=1
〠
m

j=1
Tk i,jð Þ xi, yj

� �
,

ð15Þ

for all disjoint decompositions x =∐n
i=1xi, y =∐m

j=1yj, n,m
∈N , and all functions k : f1,⋯, ng × f1,⋯,mg⟶ f1, 2g.
Hence, H ≥ R and R = T1∨T2. Now we are in the position
to derive the other formulas of the lattice calculus.

T1 ∧ T2ð Þ x, yð Þ = − −T1ð Þ∨ −T2ð Þð Þ x, yð ÞÞ

= − sup 〠
n

i=1
〠
n

i=1
− Tk i,jð Þ xi, yj

� �
: x = ∐

n

i=1
xi ; y

(

= ∐
m

j=1
yj ; n,m ∈N ; k ∈ 1, 2f g 1,⋯,nf g× 1,⋯,mf g

)

= inf 〠
n

i=1
〠
n

i=1
Tk i,jð Þ xi, yj

� �
: x = ∐

n

i=1
xi ; y

(

= ∐
m

j=1
yj ; n,m ∈N ; k ∈ 1, 2f g 1,⋯,nf g× 1,⋯,mf g

)
:

ð16Þ

Assuming that T1 = T and T2 = 0 we get formulas for the
positive and the negative parts of T . The formula for the
modulus T is obvious. Now we prove inequality (6). Take

trivial decomposition x = x, y = y, and k, k′ ∈ f1, 2gf1g×f1g
with kð1, 1Þ = 1 and k′ð1, 1Þ = 2. Then

∣T x, yð Þ∣ = T x, yð Þ∨ −T x, yð Þð Þ = −1ð Þk′ 1,1ð ÞT x, yð Þ∨ −1ð Þk 1,1ð ÞT x, yð Þ

≤ sup 〠
n

i=1
〠
n

i=1
−1ð Þk i,jð ÞT xi, yj

� �
: x = ∐

n

i=1
xi ; y

(

= ∐
m

j=1
yj ; n,m ∈N ; k ∈ 1, 2f g 1,⋯,nf g× 1,⋯,mf g

)
= ∣T∣ x, yð Þ:

ð17Þ

It remains to show the Dedekind completeness of the
vector lattice OBA rðE, F ;WÞ. Take a family ðTαÞα∈A of
positive OBAOs with 0 ≤ Tα ≤ T ∈ OBA+ðE, F ;WÞ. With-
out a loss of generality, we may assume that ðTαÞα∈A is an
upward directed set. Define an operator G : E × F ⟶W
as Gðx, yÞ = sup

α∈A
Tαðx, yÞ. Since the vector lattice W is Dede-

kind complete, the operator G is well defined. Let us show
the orthogonal biadditivity of G. Fix y ∈ F and x, v ∈ E with
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x⊥v. Then, we have that

G x⊔v, yð Þ = sup
α
Tα x⊔v, yð Þ = sup

α
Tα x, yð Þ + sup

α
Tα v, yð Þ

= G x, yð Þ +G v, yð Þ,
ð18Þ

and we deduce that Gy is an orthogonally additive opera-
tor. Similar arguments are valid for Gx for all x ∈ E.
Clearly, G = sup

α∈A
Tα.

Definition 10. Let E be a vector lattice. A net ðeαÞα∈A in E
horizontally converges (or laterally converges in another ter-
minology) to an element e ∈ E (notation eα ⟶

h e) if the net
ðeαÞα∈A order converges to e and eα⊑eβ⊑e for all α, β ∈ A with
α ≤ β.

Definition 11. Let E and F be vector lattices. An operator T
: E⟶ F is said to be:

(i) Horizontally-to-order continuous (or laterally-to-
order continuous) if every horizontally convergent
net ðeαÞα∈A in E with eα ⟶

h eT maps to an order
convergent net ðTeαÞα∈A in F with Teα ⟶

o Te

(ii) Horizontally-to-order σ -continuous (or laterally-to-
order σ -continuous) if every horizontally convergent
sequence ðenÞn∈N in E with en⟶

h eT maps to an
order convergent sequence ðTenÞn∈N in F with Ten
⟶o Te

The vector space of all horizontally-to-order continuous
(σ-continuous) orthogonally additive operators from E to F
is denoted by OA cðE, FÞ (OAσcðE, FÞ).

We observe that this class of operators has been studied
in [22–25]. It is worth noting that the Dedekind complete-
ness of a vector lattice F implies the relation OA cðE, FÞ ⊂
OA rðE, FÞ ([24], Theorem 3.6., Lemma 3.12).

Definition 12. Let E, F, and W be vector lattices. An orthog-
onally biadditive operator T : E × F ⟶W is called sepa-
rately horizontally-to-order continuous (σ-continuous), if
partial operators Tx and Ty are horizontally-to-order con-
tinuous (σ-continuous), for all x ∈ E, y ∈ F. The sets of all
horizontally-to-order continuous (σ -continuous) and sepa-
rately horizontally-to-order continuous regular OBAOs we
denote by OBA cðE, F ;WÞ (OBAσcðE, F ;WÞ) and OB

A scðE, F ;WÞ (OBA sσcðE, F ;WÞ), respectively.

Example 13. Suppose that E = F =W = R. Then, OBA rðE,
F ;WÞ = OBA scðE, F ;WÞ = OBA scðE, F ;WÞ. Indeed,
since Fe = f0, eg, we have that every horizontally convergent
net ðeαÞα∈A in E with eα ⟶

h e is the constant one, that is
eα = e for all α ≥ α0 where α0 ∈ A is some index.

The next theorem has its own interest.

Theorem 14. Let E, F, and W be vector lattices with W
Dedekind complete. Then, OBA scðE, F ;WÞ and OBA sσcð
E, F ;WÞ are projection bands in OBA rðE, F ;WÞ.

Proof. We prove the assertion for OBA scðE, F ;WÞ; the
proof for OBA sσcðE, F ;WÞ is similar. It is clear that OB
A scðE, F ;WÞ is a vector space. We show that OBA scðE, F
;WÞ is an order ideal of OBA rðE, F ;WÞ. Suppose that T
∈ OBA scðE, F ;WÞ. We show that ∣T ∣ ∈OBA scðE, F ;WÞ
too. Indeed, take y ∈ F and a horizontally convergent net
ðxαÞα∈A in E with xα ⟶

h x. We need to prove that jTjyxα
⟶o jTjyx. Since ∣T ∣ ∈OBA+ðE, F ;WÞ, we have that jTjy
∈ OA+ðE,WÞ, and therefore

o − lim
α

Tj jyxα = sup
α

Tj jyxα ≤ Tj jyx: ð19Þ

On the other hand, by Theorem 1 we have that

Tj jyx = ∣T∣ x, yð Þ = sup 〠
n

i=1
〠
n

i=1
−1ð Þk i,jð ÞT xi, yj

� �
: x = ∐

n

i=1
xi ; y = ∐

m

j=1
yj,

(

n,m ∈N ; k ∈ 1, 2f g 1,⋯,nf g× 1,⋯,mf g
o
:

ð20Þ

Put, by definition

R≔ 〠
n

i=1
〠
m

j=1
−1ð Þk i,jð ÞT xi, yj

� �
: x = ∐

n

i=1
xi ; y = ∐

m

j=1
yj

(
,

n,m ∈N ; k ∈ 1, 2f g 1,⋯,nf g× 1,⋯,mf g
o
:

ð21Þ

Pick ∑n
i=1∑

m
j=1ð−1Þkði,jÞTðxi, yjÞ ∈R. By Proposition 9,

for every α ∈ A, there exists a decomposition xα =∐n
i=1x

i
α

such that xiα ⟶
h xi for all f1,⋯, ng. Since by assumptions

above all partial operators Tyj
: F ⟶W are horizontally-

to-order continuous, we have that

〠
n

i=1
〠
n

i=1
−1ð Þk i, jð ÞT xi, yj

� �
= 〠

n

i=1
〠
m

j=1
−1ð Þk i,jð ÞTyj

xi

= o − lim
α∈A

〠
n

i=1
〠
m

j=1
−1ð Þk i,jð ÞTyj

xiα = 〠
n

i=1
〠
m

j=1
−1ð Þk i, jð ÞTyj

h − lim
α∈A

xiα
� �

≤ 〠
n

i=1
〠
m

j=1
sup
α∈A

Tj jyj x
i
α = sup

α∈A
Tj jyxα:

ð22Þ

Passing to the supremum in the left-hand side of the
above inequality over all elements of R, we deduce that

T ∣ yx ≤ sup
α∈A

����
����T
����
y

xα = o − lim
α∈A

Tj jyxα, ð23Þ

and therefore, jTjyx = o − limα∈AjTjyxα. The horizontal-to-
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order continuity of a partial operator jTjx for x ∈ E can be
proved by the same way. Now we prove that OBA scðE, F ;
WÞ is an order ideal of OBA rðE, F ;WÞ. Suppose that 0 ≤
T ∈ OBA scðE, F ;WÞ, 0 ≤ S ∈ OBA rðE, F ;WÞ, and 0 ≤ S ≤
T . Then, 0 ≤ Sy ≤ Ty (0 ≤ Sx ≤ Tx) for every y ∈ F (x ∈ E)
and by ([24], Theorem 3.13) we have that S ∈ OBA scðE, F
;WÞ. It remains to show that OBA scðE, F ;WÞ is a band
in OBA rðE, F ;WÞ. Pick a net ðTαÞα∈A in OBA scðE, F ;W
Þ with 0 ≤ Tα↑T for some T ∈ OBA+ðE, F ;WÞ. Then, we
have that 0 ≤ Tαy↑Ty (0 ≤ Tαx↑Tx) for every y ∈ F (x ∈ E).
Now, applying ([24], Theorem 3.13), we obtain that T ∈ O
BA scðE, F ;WÞ. Finally, taking into account the Dedekind
completeness of OBA rðE, F ;WÞ, we deduce that OBA scð
E, F ;WÞ is the projection band in T ∈ OBA rðE, F ;WÞ.

Now we are ready to prove that the Dedekind complete-
ness of a vector lattice W implies the horizontal-to-order
continuity (σ-continuity) of a regular separately
horizontal-to-order continuous (σ-continuous) operator T
: E ×W.☐

Proposition 15. Let E and F be vector lattices, W be a Dede-
kind complete vector lattice, and T ∈ OBA rðE, F ;WÞ. Then,
the following statements hold:

(1) T ∈ OBA scðE, F ;WÞ⇔ T ∈ OBA cðE, F ;WÞ
(2) T ∈ OBA sσcðE, F ;WÞ⇔ T ∈ OBAσcðE, F ;WÞ

Proof. We prove statement (1). The implication T ∈ OBA c
ðE, F ;WÞ⇒ T ∈ OBA scðE, F ;WÞ is obvious. Suppose that
0 ≤ T ∈ OBA scðE, F ;WÞ. We need to show horizontal-to-
order continuity of T . Pick a horizontally convergent net
ððx, yÞαÞα∈A with ðx, yÞα ⟶hðx, yÞ. Then, xα ⟶h x and yα
⟶h y. Now we may write

∣T x, yð Þ − T xα, yαð Þ∣ = ∣T x − xαð Þ + xα, y − yαð Þ + yαð Þ
− T xα, yαð Þ∣ ≤ ∣T x − xα, yαð Þ∣ + ∣T xα, y − yαð Þ∣ + ∣T x − xα, y − yαð Þ∣

= T x − xα, yαð Þ + T xα, y − yαð Þ + T x − xα, y − yαð Þ
≤ T x − xα, yð Þ + T x, y − yαð Þ + T x, y − yαð Þ
= T x − xα, yð Þ + 2T x, y − yαð Þ:

ð24Þ

Taking into account the separate horizontal-to-order con-
tinuity of T, we have that Tðx, yÞα ⟶o Tðx, yÞ. Now, suppose
that T is an arbitrary element of OBA scðE, F ;WÞ. Then, by
Theorem 14, every T ∈ OBA scðE, F ;WÞ has the representa-
tion T = T+ − T−, where 0 ≤ T+, −T− ∈ OBA scðE, F ;WÞ.
Hence, by above, we have that T ∈ OBA cðE, F ;WÞ.☐

3. Orthogonally Biadditive Operators on a
Cartesian Product of Ideal Spaces of
Measurable Functions

In this section, we consider orthogonally biadditive opera-
tors in lattices of measurable functions and obtain a criteria
of the regularity of an integral Uryson operator.

Definition 16. Suppose that ðA, Σ, μÞ and ðB, Ξ, νÞ are finite
measure space and μ ⊗ ν is the product measure on Σ ⊗ Ξ.
We say that N : A × B ×ℝ⟶ℝ is a superpositionally mea-
surable (or sup-measurable for shortness) function, if Nð·, ·
, f ð·, · ÞÞ is μ ⊗ ν -measurable for each f ∈ L0ðμ ⊗ νÞ. A sup-
measurable function N is said to be normalized if Nðs, t, 0Þ
= 0 for μ ⊗ ν-almost all ðs, tÞ ∈ A × B.

The following proposition provides an important exam-
ple of an orthogonally biadditive operator.

Proposition 17. Let N : A × B ×ℝ⟶ℝ be a normalized
sup-measurable function and E and F be order ideals of L0ð
μÞ and L0ðμÞ, respectively. Then, the map N defined by

N f , gð Þ s, tð Þ≔N s, t, f sð Þg tð Þð Þ, f ∈ E, g ∈ F, ð25Þ

is an orthogonally biadditive operator from E × F to L0ðλÞ.

Proof. Take f ∈ E and g ∈ F. Put ~f ≔ f 1B and ~g≔ g1A. We
note that the relations f ∈ L0ðμÞ and g ∈ L0ðνÞ imply that ~f
, ~g ∈ L0ðμ ⊗ νÞ. Then, Nðs, t, f ðsÞgðtÞÞ =Nðs, t, ~f ðs, tÞ~gðs, tÞÞ
, and therefore, the operator N is well defined. Fix g ∈ F.
We show that the partial operator N g : E⟶W is orthog-

onally additive. Indeed, take disjoint f , e ∈ E. Then, ~f and ~e
are disjoint elements of L0ðμ ⊗ νÞ, and we may write

N ·, · , f⊔eð Þgð Þ =N ·, · , ~f⊔~e
� �

~g
� �

=N ·, · , ~f⊔~e
� �

1supp ~f⊔~eð Þ~g
� �

=N ·, · , ~f⊔~e
� �

~g
� �

1supp ~f⊔~eð Þ
� �

=N ·, · , ~f⊔~e
� �

~g
� �

1supp ~f +N ·, · , ~f⊔~e
� �

~g
� �

1supp ~e

=N ·, · , ~f ~g
� �

+N ·, · , ~e~gð Þ =N ·, · , f gð Þ +N ·, · , egð Þ:
ð26Þ

Noting that similar arguments are valid for a partial
operator N f : F ⟶W, for all f ∈ E, we finish the proof.☐

We observe that N is known as the nonlinear superposi-
tion operator or Nemytskii operator. The basic constructions
of the theory of Nemytskii operators are presented in [26].
Recently, nonlinear superposition operators were investi-
gated in [2, 27, 28].

Definition 18. Let ðC,Θ, λÞ, ðA, Σ, μÞ, and ðB, Ξ, νÞ be finite
measure spaces. By ðC × A × B, λ ⊗ μ ⊗ νÞ, we denote the
completion of their product measure space. A map K : C
× A × B × R2 ⟶ R is said to be a Carathéodory function if
it is satisfies the following conditions:

(C1) Kð·, · , · , r, qÞ is μ ⊗ ν ⊗ λ-measurable for all ðr, qÞ
∈ R2

(C2) Kðp, s, t, ·, · Þ is continuous on R2 for λ ⊗ μ ⊗ ν
-almost all ðp, s, tÞ ∈ C × A × B
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We say that a Carathéodory function K is normalized if
Kðp, s, t, 0, qÞ = Kðp, s, t, r, 0Þ = 0 for λ ⊗ μ ⊗ ν-almost all ðp
, s, tÞ ∈ C × A × B and all q, r ∈ R.

Proposition 19. Let K : C × A × B ×ℝ2 be a normalized
Carathéodory function, f ∈ L0ðμÞ and g ∈ L0ðνÞ. Then, Kð·,
· , · , f ð·Þ, gð·ÞÞ ∈ L0ðλ ⊗ μ ⊗ νÞ.

Proof. First we note that λ ⊗ μ ⊗ ν-measurable null sets

Dq ≔ p, s, tð Þ ∈ C × A × B : K p, s, t, 0, qð Þ ≠ 0f g, q ∈ℝ,
Dr ≔ p, s, tð Þ ∈ C × A × B : K p, s, t, r, 0ð Þ ≠ 0f g, r ∈ℝ,

ð27Þ

depend of q and r, respectively. We claim that there exists
λ ⊗ μ ⊗ ν-measurable set H ⊂ C × A × B such that

λ ⊗ μ ⊗ ν C × A × Bð Þ = λ ⊗ μ ⊗ ν Hð Þ,
K p, s, t, 0, qð Þ = K p, s, t, r, 0ð Þ = 0,

ð28Þ

for all ðp, s, tÞ ∈H and all q, r ∈ℝ. Indeed, consider two
sequences of λ ⊗ μ ⊗ ν-measurable sets ðDqÞq∈Q and ðDrÞr∈Q
and put

G≔ p, s, tð Þ ∈ C × A × B : K p, s, t, ·, ·ð Þis not continuousf g,

H = C × A × B \ G ∪
[
q∈Q

Dq ∪
[
r∈Q

Dr

 !
:

ð29Þ

Since λ ⊗ μ ⊗ νðG ∪
S

q∈ℚDq ∪
S

r∈ℚD
rÞ = 0, we have that

λ ⊗ μ ⊗ νðC × A × BÞ = λ ⊗ μ ⊗ νðHÞ. Fix ðp, s, tÞ ∈H and q
∈ℝ (r ∈ℝ). Then, there exists a sequence ðqnÞn∈N (ðrkÞk∈N
) in ℚ that converges to q (r) with Kðp, s, t, 0, qnÞ = 0
(Kðp, s, t, rk, 0Þ = 0) for all n ∈ℕ (n ∈ℕ). Then, by ðC2Þ,
we have that Kðp, s, t, 0, qÞ = 0 (Kðp, s, t, r, 0Þ = 0).

Now, we show that Kð·, · , · , r1A1
ð·Þ, q1B1

ð·ÞÞ ∈ L0ðλ ⊗ μ

⊗ νÞ for arbitrary r, q ∈ℝ, A1 ∈ Σ, and B1 ∈ Ξ. We claim that

K p, s, t, r1A1
sð Þ, q1B1

tð Þ� �
= K p, s, t, r, qð Þ1A1

sð Þ1B1
tð Þ, ð30Þ

for λ ⊗ μ ⊗ ν almost all ðp, s, tÞ ∈ C × A × B. Indeed, pick ðp
, s, tÞ ∈H. If s ∈ A1 and t ∈ B1, we have

K p, s, t, r1A1
sð Þ, q1B1

tð Þ� �
= K p, s, t, r, qð Þ = K p, s, t, r, qð Þ1A1

sð Þ1B1 tð Þ:
ð31Þ

If either s ∉ A1 or t ∉ B1, then

K p, s, t, r1A1
sð Þ, q1B1

tð Þ� �
= 0 = K p, s, t, r, qð Þ1A1

sð Þ1B1
tð Þ:
ð32Þ

Suppose that A1,⋯,An and B1,⋯, Bm are pairwise dis-
joint measurable subsets of A and B, respectively, f =∑n

i=1ri
1Ai

and g =∑m
j=1qj1Bj

are simple functions in L0ðμÞ and L0ð

νÞ, respectively. Then

K p, s, t, f sð Þ, q tð Þð Þ = K p, s, t, 〠
n

i=1
ri1Ai

sð Þ, 〠
m

j=1
qj1Bj

tð Þ
 !

= 〠
n

i=1
〠
m

j=1
K p, s, t, ri1Ai

sð Þ, qj1Bj
tð Þ

� �
,

ð33Þ

and we deduce that Kð·, · , · , f ð·Þ, qð·ÞÞ ∈ L0ðλ ⊗ μ ⊗ νÞ.
Finally, assume that f and g are arbitrary elements of L0ðμ
Þ and L0ðνÞ, ð f nÞn∈N and ðgkÞk∈N are sequences of simple
functions in L0ðμÞ and L0ðνÞ, respectively, such that
ð f nÞn∈N converges to f μ-a.e. and ðgnÞk∈N converges to gν
-a.e. Put by definition

A0 ≔ s ∈ A : f n sð Þdoes not converges to ff g,
B0 ≔ t ∈ B : gk tð Þdoes not converges togf g:

ð34Þ

Clearly,

λ ⊗ μ ⊗ ν Gð Þ = λ ⊗ μ ⊗ ν C × A0 × Bð Þ
= λ ⊗ μ ⊗ ν C × A × B0ð Þ = 0:

ð35Þ

Then, Kðp, s, t, f nðsÞ, gkðtÞÞ converges to Kðp, s, t, f ðsÞ,
gðtÞÞ for all ðp, s, tÞ ∈ C × A × B \ ðG ∪ ðC × A0 × BÞ ∪ ðC ×
A × B0ÞÞ, and therefore, Kð·, · , · , f ð·Þ, gð·ÞÞ ∈ L0ðλ ⊗ μ ⊗ νÞ
.☐

Remark 20. Using similar arguments as above, we get the fol-
lowing useful equalities:

K p, s, t, f sð Þ, qð Þ = K p, s, t, f sð Þ, qð Þ1supp f sð Þ,
K p, s, t, r, g tð Þð Þ = K p, s, t, r, g tð Þð Þ1supp g tð Þ,

ð36Þ

for λ ⊗ μ ⊗ ν almost all ðp, s, tÞ ∈ C × A × B and all q ∈ R
(r ∈ R).

The next proposition provides an important example of
an orthogonally biadditive operator.

Proposition 21. Let K : C × A × B ×ℝ2 be a normalized
Carathéodory function, E and F be order ideals of L0ðμÞ
and L0ðνÞ, respectively, and Kðp, ·, · , f ð·Þ, gð·ÞÞ ∈ L1ðμ ⊗ νÞ
for all f ∈ E, g ∈ F, and λ -almost all p ∈ C. Then, the map
T defined by setting

T f , gð Þ pð Þ≔
ð
A×B

K p, s, t, f sð Þ, g tð Þð Þ d μ ⊗ νð Þ ; f ∈ E, g ∈ F,

ð37Þ

is an orthogonally biadditive operator from E × F to L0ðλÞ.

Proof. By Proposition 19, T is a well-defined operator from
E × F to L0ðλÞ. We show the orthogonal additivity of a
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partial operator Tg, where g ∈ F. Fix disjoint f1, f2 ∈ E. Then,
taking into account considerations above, we may write

T f1⊔f2, gð Þ pð Þ =
ð
A×B

K p, s, t, f1 sð Þ⊔f2 sð Þ, g tð Þð Þd μ ⊗ νð Þ

=
ð
A×B

K p, s, t, f1 sð Þ + f2 sð Þ, g tð Þð Þ1supp f1⊔f2ð Þd μ ⊗ νð Þ

=
ð
A×B

K p, s, t, f1 sð Þ⊔f2 sð Þ, g tð Þð Þ1supp f1
d μ ⊗ νð Þ

�
+
ð
A×B

K p, s, t, f1 sð Þ⊔f2 sð Þ, g tð Þð Þ1supp f2
d μ ⊗ νð Þ

=
ð
A×B

K p, s, t, f1 sð Þ, g tð Þð Þd μ ⊗ νð Þð

+
ð
A×B

K p, s, t, f2 sð Þ, g tð Þð Þd μ ⊗ νð Þð
= T f1, gð Þ pð Þ + T f2, gð Þ pð Þ:

ð38Þ

☐

The orthogonal additivity of a partial operator T f , f ∈ E
can be proved analogously.

We observe that an operator T above can be considered
as the Uryson integral operator that depends on two vari-
ables. We say that a function K is a kernel of an operator
T . Classical integral Uryson operators were investigated by
many mathematicians (see for instance monograph [29]).

The following example of an OBAO is a Hammerstein
operator which depends on two variables.

Example 22. Let ðC,Θ, λÞ, ðA, Σ, μÞ, and ðB, Ξ, νÞ be as
above, N : A × B ×ℝ⟶ℝ be a normalized sup-
measurable function, E and F be order ideals in L0ðμÞ and
L0ðνÞ, respectively, L : C × A × B⟶ R be a λ ⊗ μ ⊗ ν-mea-
surable function, and Lðp, ·, · ÞNð·, · , f ð·Þgð·ÞÞ ∈ L1ðμ ⊗ νÞ
for all f ∈ E, g ∈ F, and λ -almost all p ∈ C. Then, the follow-
ing formula defines a OBAO T : E × F ⟶ L0ðτÞ

T f , gð Þ pð Þ≔
ð
A×B

L p, s, tð ÞN s, t, f sð Þg tð Þð Þd μ ⊗ νð Þ, f ∈ E, g ∈ F:

ð39Þ

We note that biorthogonal additivity of a superposition
operator N ð f , gÞ≔Nð·, · , f ð·Þgð·ÞÞ implies that T ∈ OBA

ðE, F ; L0ðλÞÞ. The operator T can be treated as an integral
Hammerstein operator that depends on two variables.

Now we are ready to prove the second main result of the
article.

Proof of Theorem 2. ð2Þ⇒ ð1Þ. Since S ∈ OBA+ðE, F ;WÞ
and T ≤ S, we have that T = S − ðS − TÞ, and therefore, T ∈
OBA rðE, F ;WÞ.

ð1Þ⇒ ð2Þ. By Theorem 1, the modulus ∣T ∣ exists and
can be calculated by the formula

Tj j f , gð Þ≔ sup 〠
n

i=1
〠
m

j=1
−1ð Þk i,jð ÞT f i, gj

� �(
: f = ∐

n

i=1
f i ; g

= ∐
m

j=1
gj ; n,m ∈N ,

k ∈ 1, 2f g 1,⋯,nf g× 1,⋯,mf g
o
; f ∈ E ; g ∈ F:

ð40Þ

Fix f ∈ E, g ∈ F. By Remark 20, for almost all p ∈ C, we
have that

ð
A×B

K p, s, t, f sð Þ, g tð Þð Þ d μ ⊗ νð Þ

=
ð
supp f×supp g

K p, s, t, f sð Þ, g tð Þð Þ d μ ⊗ νð Þ:
ð41Þ

We also note that

ð
supp f×supp g

K p, s, t, f sð Þ, g tð Þð Þ d μ ⊗ νð Þ

=
ð
supp f×supp g

K p, s, t, f sð Þ1supp g tð Þ1C pð Þ, g tð Þ1supp f

�
� sð Þ1C pð ÞÞ d μ ⊗ νð Þ,

ð42Þ

for λ-almost all p ∈ C. Put by definition

A≔ p, s, tð Þ ∈ C × supp f × supp g : Kf
� p, s, t, f sð Þ1supp g tð Þ1C pð Þ, g tð Þ1supp f sð Þ1C pð Þ� �

> 0
	
,

ð43Þ

B≔ p, s, tð Þ ∈ C × A × B : Kf
� p, s, t, f sð Þ1supp g tð Þ1C pð Þ, g tð Þ1supp f sð Þ1C pð Þ� �

< 0
	

= C × supp f × supp g \A:

ð44Þ

Clearly, A and B are λ ⊗ μ ⊗ ν-measurable sets and

λ ⊗ μ ⊗ ν p, s, tð Þ ∈A ∩Bf g = 0: ð45Þ

We may assume that λ ⊗ μ ⊗ νðAÞ > 0 and λ ⊗ μ ⊗ νðB
Þ > 0. Otherwise, if λ ⊗ μ ⊗ νðAÞ = 0 (λ ⊗ μ ⊗ νðBÞ = 0), then
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the following equalities

T f , gð Þ pð Þ =
ð
supp f×supp g

∣K p, s, t, f sð Þ1supp g tð Þ1C pð Þ, g�
� tð Þ1supp f sð Þ1C pð Þ�∣d μ ⊗ νð Þ

=
ð
supp f×supp g

K p, s, t, f sð Þ, g tð Þð Þj jd μ ⊗ νð Þ,

−T f , gð Þ pð Þð =
ð
supp f×supp g

K p, s, t, f sð Þ1supp g tð Þ1C pð Þ, g���
� tð Þ1supp f sð Þ1C pð Þ�jd μ ⊗ νð Þ

=
ð
supp f×supp g

∣ K p, s, t, f sð Þ, g tð Þ ∣ d μ ⊗ νð Þð Þ,

ð46Þ

hold for λ-almost all p ∈ C, and it is nothing to prove. We
observe that

K p, s, t, f sð Þ1supp g tð Þ1C pð Þ, g tð Þ1supp f sð Þ1C pð Þ� �
1A p, s, tð Þ

= K p, s, t, f sð Þ1supp g tð Þ1C pð Þ1A p, s, tð Þ, g tð Þ1supp f sð Þ1C pð Þ1A p, s, tð Þ� �
= K p, s, t, f sð Þ1A sð Þ1B tð Þ1C pð Þ, g tð Þ1A sð Þ1B tð Þ1C pð Þð Þ,

ð47Þ

where A ∈ Σ, A ⊂ supp f , B ∈ Ξ, B ⊂ supp g, and C ∈Θ.
First, we assume that μðAÞ = 0. Then, we see that

K p, s, t, f sð Þ, g tð Þð Þ < 0 for,
λ ⊗ μ ⊗ ν almost all p, s, tð Þ ∈ C × A × B:

ð48Þ

Consider the trivial decompositions f = f and g = g.
Then, for λ-almost all p ∈ C, we have that

−T f , gð ÞÞ pð Þ =
ð
supp f×supp g

− K p, s, t, f sð Þ, g tð Þð Þ d μ ⊗ νð Þ

=
ð
supp f×supp g

∣K p, s, t, f sð Þ, g tð Þð Þ∣ d μ ⊗ νð Þ:

ð49Þ

The same arguments are valid for the case νðBÞ = 0.
Now, suppose that μðAÞ > 0 and νðBÞ > 0. Then, there is
a decomposition C =CℴC1oC2, where C ×A ×B ⊂A, C1
×A ×B ⊂B, and C2 ×A ×B ⊂A ∩B. Clearly λðC2Þ = 0
. Put

f1 ≔ f 1A ; f2 ≔ f − f 1A ,
g1 ≔ g1B ; g2 ≔ g − g1B:

ð50Þ

We observe that C × ðsupp f \AÞ ×B ⊂B, C ×A × ð
supp g \BÞ ⊂B, and C × ðsupp f \AÞ × ðsupp g \BÞ ⊂

B. Now we may write

T f1, g1ð Þ pð Þ − T f1, g2ð Þ pð Þ − T f2, g1ð Þ pð Þ − T f2, g2ð Þ pð Þ
=
ð
supp f×supp g

K p, s, t, f1 sð Þ, g1 tð Þð Þd μ ⊗ νð Þ

−
ð
supp f×supp g

K p, s, t, f1 sð Þ, g2 tð Þð Þd μ ⊗ νð Þ

−
ð
supp f×supp g

K p, s, t, f2 sð Þ, g1 tð Þð Þd μ ⊗ νð Þ

−
ð
supp f×supp g

K p, s, t, f2 sð Þ, g2 tð Þð Þd μ ⊗ νð Þ

=
ð
A×B

K p, s, t, f sð Þ, g tð Þð Þ d μ ⊗ νð Þ

+
ð
A× supp g\Bð Þ

− K p, s, t, f sð Þ, g tð Þð Þ d μ ⊗ νð Þ

+
ð

supp f \Að Þ×B
− K p, s, t, f sð Þ, g tð Þð Þd μ ⊗ νð Þ

+
ð

supp f \Að Þ× supp g\Bð Þ
− K p, s, t, f sð Þ, g tð Þð Þd μ ⊗ νð Þ:

ð51Þ

Thus, for all p ∈C , we have that

T f1, g1ð Þ pð Þ − T f1, g2ð Þ pð Þ − T f2, g1ð Þ pð Þ − T f2, g2ð Þ pð Þ
=
ð
A×B

∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ

+
ð
A× supp g\Bð Þ

∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ

+
ð

supp f \Að Þ×B
∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ

+
ð

supp f \Að Þ× supp g\Bð Þ
∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ:

ð52Þ

On the other hand, for all p ∈C1, we have

T f1, g1ð Þ pð Þ − T f1, g2ð Þ pð Þ − T f2, g1ð Þ pð Þ − T f2, g2ð Þ pð Þ
=
ð
A×B

− ∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ

+
ð
A× supp g\Bð Þ

∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ

+
ð

supp f \Að Þ×B
∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ

+
ð

supp f \Að Þ× supp g\Bð Þ
∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ:

ð53Þ

Consider the second sum −Tð f1, g1Þ − Tð f1, g2Þ − Tð f2
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, g1Þ − Tð f2, g2Þ. Then, for all p ∈C , we have

−T f1, g1ð Þ pð Þ − T f1, g2ð Þ pð Þ − T f2, g1ð Þ pð Þ − T f2, g2ð Þ pð Þ
=
ð
A×B

− ∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ

+
ð
A× supp g\Bð Þ

∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ

+
ð

supp f \Að Þ×B
∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ

+
ð

supp f \Að Þ× supp g\Bð Þ
∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ,

ð54Þ

and for all p ∈C1, we have that

−T f1, g1ð Þ pð Þ − T f1, g2ð Þ pð Þ − T f2, g1ð Þ pð Þ − T f2, g2ð Þ pð Þ
=
ð
A×B

∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ

+
ð
A× supp g\Bð Þ

∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ

+
ð

supp f \Að Þ×B
∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ

+
ð

supp f \Að Þ× supp g\Bð Þ
∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ:

ð55Þ

Put by definition

R1 = T f1, g1ð Þ − T f1, g2ð Þ − T f2, g1ð Þ − T f2, g2ð Þ,
R2 = −T f1, g1ð Þ − T f1, g2ð Þ − T f2, g1ð Þ − T f2, g2ð Þ:

ð56Þ

Then, for all p ∈ C, we have that

∣T∣ f , gð Þ pð Þ ≥ R1∨R2ð Þ pð Þ =
ð
A×B

∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ

+
ð
A× supp g\Bð Þ

∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ

+
ð

supp f \Að Þ×B
∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ

+
ð

supp f \Að Þ× supp g\Bð Þ
∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ

=
ð
supp f×supp g

∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ:

ð57Þ

Thus, S ≤ ∣T ∣ and S map E × F to J . On the other hand,
since S ∈ OBA+ðE, F ;WÞ, S ≥ T , and S ≥ −T , we have that
S ≥ T∨ð−TÞ = ∣T ∣ .

Corollary 23. Let ðC,Θ, λÞ, ðA, Σ, μÞ, and ðB, Ξ, νÞ be finite
measure spaces and E and F be ideal subspaces of L0ðμÞ and
L0ðνÞ, respectively. Then, every integral Uryson operator T
: E × F ⟶ L0ðλÞ is regular.

Proof. Suppose T is an integral Uryson operator with kernel
K . Taking into account that the function

p↦
ð
A×B

∣K p, s, t, f sð Þ, g tð Þð Þ∣d μ ⊗ νð Þ, ð58Þ

is λ-measurable for each f ∈ E and g ∈ F by Theorem 2 we
deduce that T is a regular operator.☐

Proposition 24. Let ðC,Θ, λÞ, ðA, Σ, μÞ, and ðB, Ξ, νÞ be
finite measure spaces, E, F, and J be ideal subspaces of L0ðμ
Þ, L0ðνÞ, and L0ðλÞ, respectively, and T : E × F ⟶ J be a
regular integral Uryson operator T : E × F ⟶ L0ðλÞ with a
kernel K . Then, T is a horizontally-to-order continuous
operator.

Proof. By Proposition 15, it is enough to prove the separate
horizontal-to-order continuity of T . Fix g ∈ F. We show
the horizontal-to-order continuity of the partial operator
Tg : E⟶ J . It is worth noting that the countable sup prop-
erty of L0ðμÞ (see [20], page 52) implies that the concept of a
sequentially order continuity for functionals and operators
coincides with the concept of order continuity. Pick a
sequence ð f nÞn∈N which horizontally converges to f . We
need to show that the sequence ðTgð f nÞÞn∈N order converges
to Tgð f Þ. Taking into the account the regularity of T , we
may write

∣
ð
A×B

K p, s, t, f sð Þ, g tð Þð Þd μ ⊗ νð Þ

−
ð
A×B

K p, s, t, f n sð Þ, g tð Þð Þd μ ⊗ νð Þ∣

= ∣
ð
A×B

K p, s, t, f − f nð Þ⊔ f nð Þð Þ sð Þ, g tð Þð Þd μ ⊗ νð Þ

−
ð
A×B

K p, s, t, f n sð Þ, g tð Þð Þ d μ ⊗ νð Þ∣

= ∣
ð
A×B

K p, s, t, f − f nð Þ sð Þ, g tð Þð Þd μ ⊗ νð Þ∣

≤
ð
A×B

K p, s, t, f − f nð Þ sð Þ, g tð Þð Þj jd μ ⊗ νð Þ

=
ð
supp f−f nð Þ×supp g

K p, s, t, f sð Þ, g tð Þð Þj jd μ ⊗ νð Þ:

ð59Þ

☐

Since μðsupp ð f − f nÞÞ converges to 0 by ([30], Theorem
2.5.7), we have that ðTgð f − f nÞÞn∈N order converges to 0,
and therefore, Tg is a horizontally-to-order continuous
operator. Similar arguments are valid for a partial operator
T f , f ∈ E.
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