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In this paper, we investigate the Krasnoselskii-type fixed point results for the operator F of two variables by assuming that the
family fFðx, :Þ: xg is equiexpansive. The results may be considered as variants of the Krasnoselskii fixed point theorem in a
general setting. We use our main results to obtain the existence of solutions of a fractional evolution differential equation. An
example of a controlled system is given to illustrate the application.

1. Introduction

Fractional evolution equations give a unique way to evaluate
the well-posedness of many complicated systems. Differential
models with fractional derivatives provide a great tool for the
description of memory and hereditary properties. The
fractional-order models of real physical systems are always
more appropriate than the classical integer order systems.
Many fractional order controlled problems and fractional
evolution differential equations are recently studied. Their
existence results can be seen in [1–5]. Most of the results
involve contractive operators with more restrictive condi-
tions. This is the reason that many existence results cover a
restrictive class of physical problems.

Krasnoselskii fixed point theorem is a generalized form
of Schauder and Banach fixed point theorems. While study-
ing the solutions of delay and neutral differential/integral
equations, it has been noticed that the solution can be
expressed as a sum of contractive and compact operators.
This theorem plays an important role in the existence of
solutions of delay integral equations and neutral functional
equations. Many generalizations and modifications of the
Krasnoselskii fixed point theorem have appeared; for exam-
ple, see [6–16] and the references therein. The Krasnoselskii
fixed point theorem [17] may be stated as follows:

Theorem 1. Let V be a Banach space and Ω be a closed con-
vex nonempty subset of V . Suppose ξ and ζ map Ω into V
such that

(1) ξν + ζυ ∈Ω for all ν, υ in Ω

(2) ξ is compact and continuous

(3) ζ is contraction mapping

Then, there is a υ in Ω such that ξυ + ζυ = υ:

In Krasnoselskii fixed point theorem, there are two
operators in which ξ is compact and continuous and ζ is a
contraction mapping. It is important to note that there is a
very restrict and small class of operators that are contrac-
tions; due to this reason, many theorems involving contrac-
tive operators are less applicable. Therefore, it is required to
cover more applications with different types of operators; in
this regard, one of the suitable choices is the class of expan-
sive operators. Also, there are a number of equations in
which we cannot decompose the operator as a sum of two
or more operators. To overcome this situation, the authors
in [9–11] established Krasnoselskii-type results in a more
general setting consisting of a single map Γ depending upon
two variables. The following result may be seen in [11]:
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Theorem 2. Let Ω be a bounded closed convex subset of a
given Banach space X, and Γ be a mapping of Ω ×Ω into
Ω such that

(1) kΓðν, υ1Þ − Γðν, υ2Þk ≤ γkυ1 − υ2k for some γ ∈ ½0, 1Þ,
and for all υ ∈ X

(2) kΓðν1, υÞ − Γðν2, υÞk ≤ kξν1 − ξν2k
where ξ is completely continuous and maps Ω into Ω. Then,
there is an element υ ∈Ω such that Γðυ, υÞ = υ:

If we define Γðν, υÞ = ξν + ζυ where ξ is compact and
continuous and B is contraction then, Theorem 1 is the spe-
cial case of Theorem 2.

In most fixed point results, there is a condition such that
TðΩÞ ⊆Ω, where Ω ⊆ X, X is a metric space and T is an
operator on Ω into Ω: No much attention has been given
to the case Ω ⊆ TðΩÞ: Xiang and Yuan [15] investigated
the case Ω ⊆ TðΩÞ and obtained the following important
results in this direction.

Theorem 3 (see [15]). Let Ω be a nonempty closed subset of a
complete metric space X and ζ is an expansive mapping of Ω
into X such that Ω ⊆ ζðΩÞ: Then, there is a unique s ∈Ω such
that ζs = s:

Theorem 4 (see [15]). Let X be a Banach space and Ω be a
nonempty closed convex subset of X. Suppose ξ and ζ are
mappings of Ω into X such that

(1) ξ is continuous such that ξðΩÞ lies in a compact sub-
set of X

(2) ζ is an expansive mapping

(3) Ω ⊆ υ + ζðΩÞ for υ ∈ ξðΩÞ
Then, there is s ∈Ω with ξs + ζs = s.

Definition 5 (see [9]). Let X be a Banach space and Γ : X ×
X⟶ X: The family fΓð:,υÞ: υ ∈ Xg is called equicontractive
if there is a k ∈ ½0, 1Þ such that

Γ ν1, υð Þ − Γ ν2, υð Þk k ≤ k ν1 − ν2k k, ð1Þ

for all ðν1, υÞ,ðν2, υÞ in the domain of Γ:
In a similar way, we define the following.

Definition 6. Let X be a Banach space and Γ : X × X ⟶ X:
The family fΓðν,:Þ: ν ∈ Xg is called equiexpansive if there
is h > 1 such that

Γ ν, υ1ð Þ − Γ ν, υ2ð Þk k ≥ h υ1 − υ2k k, ð2Þ

for all ðν, υ1Þ,ðν, υ2Þ in the domain of Γ:

2. Main Results

Inspired by the above results (Theorems 1, 2, 3, and 4), we
study the Krasnoselskii-type fixed point results for the oper-
ator Γ with conditions:

(i) The family fΓðν,:Þ: ν ∈ Xg is equiexpansive

(ii) Ω ⊆ Γðν,ΩÞ for ν ∈Ω or Ω ⊆ Γðυ,ΩÞ for υ ∈ ξðΩÞ
whereΩ is a subset of a Banach space X and ξ is an oper-

ator of Ω into Ω or X.

Remark 7. In Theorem 2, the mapping Γ is equicontractive
and Γðν, υÞ ∈Ω for ν,υ in Ω while in (i) and (ii), the family
fΓðν, :Þ: νg is equiexpansive and Ω ⊆ Γðυ,ΩÞ for υ ∈ ξðΩÞ.

Theorem 8. SupposeΩ be a nonempty closed convex subset of
a Banach space X and ξ be a continuous mapping ofΩ into X
such that ξðΩÞ resides in a compact subset of X: Let Γ be a
mapping of ξðΩÞ ×Ω into X such that the family fΓðυ,:Þ: υ
∈ ξðΩÞg is equiexpansive and Ω ⊆ Γðυ,ΩÞ for υ ∈ ξðΩÞ with

Γ υ1, υð Þ − Γ υ2, υð Þk k ≤ υ1 − υ2k k: ð3Þ

Then, there is s ∈Ω such that Γðξs, sÞ = s:

Proof. For u ∈ ξðΩÞ, define a mapping H of Ω into X by H
ðυÞ = Γðu, υÞ: The mapping H is expansive because

H υ1ð Þ −H υ2ð Þk k = Γ u, υ1ð Þ − Γ u, υ2ð Þk k ≥ h υ1 − υ2k k, ð4Þ

and Ω ⊆ Γðυ,ΩÞ =HðΩÞ: By Theorem 3, there exists a
unique point in s∗ ∈Ω such that Hðs∗Þ = s∗, since for each
u ∈ ξðΩÞ, there is a unique s∗ ∈Ω, so we can define ϝ : ξðΩÞ
⟶Ω to obtain ϝ υ = s∗ for some υ ∈ ξðΩÞ); therefore,

we have ϝ υ = Γðυ, ϝυÞ. Now, for υ1, υ2 ∈ ξðΩÞ,

ϝ υ1ð Þ = ϝ υ2ð Þk k = Γ υ1, ϝυ1ð Þ − Γ υ2, ϝυ2ð Þk k
= Γ υ2, ϝυ1ð Þ − Γ υ2, ϝυ2ð Þð Þ − Γ υ2, ϝυ1ð Þ − Γ υ1, ϝυ1ð Þð Þk k
≥ Γ υ2, ϝυ1ð Þ − Γ υ2, ϝυ2ð Þk k − Γ υ2, ϝυ1ð Þ − Γ υ1, ϝυ1ð Þk k
≥ h ϝυ1 − ϝυ2k k − υ1 − υ2k k:

ð5Þ

This means that

ϝυ1 − ϝυ2k k ≤ 1
h − 1 υ1 − υ2k k, h > 1, ð6Þ

which shows that ϝ is a continuous function of ξðΩÞ into Ω.
Also, ϝ ∘ ξ is a continuous function of Ω into Ω: Since
ξðΩÞ ⊆ C, where C is any compact set; therefore, �ξðΩÞ ⊆ �C
= C and �ξðΩÞ is compact by [18] (page 37). By [19] (page
412), �ϝðξðΩÞÞ is compact because ξΩ is relatively compact,
and ϝðξðΩÞÞ resides in a compact set �ϝðξðΩÞÞ. Since
ϝðξðΩÞÞ ⊆Ω, therefore, �ϝðξðΩÞÞ ⊆ �Ω =Ω: Hence, ϝ ∘ ξðΩÞ
= ϝðξðΩÞÞ ⊆ �ϝðξðΩÞÞ = �ϝ ∘ ξðΩÞ ⊆Ω and ϝ ∘ ξ is a continu-

ous function of Ω into a compact set �ϝ ∘ ξðΩÞ ⊆Ω: By
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Schauder second theorem [17], there is s ∈Ω such that ϝ ∘
ξðsÞ = s or ϝðξsÞ = s: Since for ξs ∈ ξðΩÞ there is unique
ϝðξsÞ ∈Ω such that Γðξs, ϝðξsÞÞ = ϝðξsÞ and also ϝðξsÞ = s,
therefore, Γðξs, sÞ = s:

Corollary 9 (see [15]). Let X be a Banach space and Ω be a
nonempty closed convex subset of X. Suppose ξ and ζ are
mappings of Ω into X such that

(1) ξ is continuous such that ξðΩÞ lies in a compact sub-
set of X

(2) ζ is an expansive mapping

(3) Ω ⊆ υ + ζðΩÞ for υ ∈ ξðΩÞ
Then, there is s ∈Ω with ξs + ζs = s.

Proof. Define Γðυ, υÞ = υ + ζυ with υ = ξν ∈ ξðΩÞ (Theorem
8). Since Γðυ,ΩÞ = υ + ζðΩÞ and from (3) Ω ⊆ υ + ζðΩÞ,
therefore, Ω ⊆ Γðυ,ΩÞ: Now, since ζ is expansive mapping,
therefore,

Γ υ, υ1ð Þ − Γ υ, υ2ð Þk k = ζυ1 − ζυ2k k ≥ h υ1 − υ2k k: ð7Þ

Also,

Γ υ1, υð Þ − Γ υ2, υð Þk k = υ1 − υ2k k ≤ υ1 − υ2k k: ð8Þ

Hence, there is s ∈Ω such that s = Γðξs, sÞ = ξs + ζs:

Remark 10. The above corollary is Theorem 2.2 in [15] or
above Theorem 4. If we take ξ = 0, zero operator, then, we
obtain Theorem 3 or Theorem 2.1 in [15].

Corollary 11. Let X be a Banach space and Ω be a nonempty
closed convex subset of X. Suppose ξ and ζ are mappings of Ω
into X such that

(1) ξ nonexpansive and ξðΩÞ ⊆Ω lies in a compact subset
of X

(2) ζ is expansive mapping

(3) Ω ⊆ ξυ + ζðΩÞ for υ ∈ ξðΩÞ
Then, there is s ∈Ω with ðξ ∘ ξÞs + ζs = s.

Proof. Define Γðυ, υÞ = ξυ + ζυ with υ = ξν ∈ ξðΩÞ (Theorem
8). Since Γðυ,ΩÞ = ξυ + ζðΩÞ and from (3)Ω ⊆ ξυ + ζðΩÞ for
υ ∈ ξðΩÞ, therefore, Ω ⊆ Γðυ,ΩÞ: Now, since ζ is expansive
mapping, therefore,

Γ υ, υ1ð Þ − Γ υ, υ2ð Þk k = ζυ1 − ζυ2k k ≥ h υ1 − υ2k k: ð9Þ

Also, from (1), ξ is continuous and

Γ υ1, υð Þ − Γ υ2, υð Þk k = ξυ1 − ξυ2k k ≤ υ1 − υ2k k: ð10Þ

Hence, there is s ∈Ω such that s = Γðξs, sÞ = ðξ ∘ ξÞs + ζs:

Theorem 12. Suppose Ω be a nonempty closed convex set
such that Ω lies in a compact subset of a Banach space X. Γ
be a mapping of Ω ×Ω into X such that the family fΓðν,:Þ
: ν ∈Ωg is equiexpansive and Ω ⊆ Γðν,ΩÞ for ν ∈Ω. Let ξ
be a continuous mapping of Ω into a metric space Y with

Γ ν1, υð Þ − Γ ν2, υð Þk k ≤ dυ ξν1, ξν2ð Þ: ð11Þ

Then, there is s ∈Ω such that Γðs, sÞ = s:

Proof. For ν ∈Ω, define a mapping H of Ω into X by HðυÞ
= Γðν, υÞ: The mapping H is expansive and Ω ⊆ Γðν,ΩÞ =
HðΩÞ: By (Theorem 3), there exists a unique point in Ω
say ϝν such that ϝν = Γðν, ϝνÞ. Now,

ϝ ν1ð Þ − ϝ ν2ð Þk k = Γ ν1, ϝν1ð Þ − Γ ν2, ϝν2ð Þk k
= Γ ν2, ϝν1ð Þ − Γ ν2, ϝν2ð Þð Þ − Γ ν2, ϝν1ð Þ − Γ ν1, ϝν1ð Þð Þk k
≥ Γ ν2, ϝν1ð Þ − Γ ν2ϝð Þk k − Γ ν2, ϝν1ð Þ − Γ ν1, ϝν1ð Þk k
≥ h ϝν1 − ϝν2k k − dυ ξν1, ξν2ð Þ:

ð12Þ

This means that

ϝν1 − ϝν2k k ≤ 1
h − 1 dυ ξν1, ξν2ð Þ, h > 1: ð13Þ

In the above expression, the continuity of ξ implies the
continuity of ϝ. Since Ω lies in a compact subset of X and
ϝ is continuous, therefore, ϝðΩÞ lies in a compact subset of
Ω. So by Schauder second theorem [17], there is s ∈Ω such
that ϝs = s: Since for s ∈Ω there is unique ϝs ∈Ω such that
Γðs, ϝsÞ = ϝs and also ϝs = s, therefore, Γðs, sÞ = s.

Corollary 13. Let Ω be a nonempty closed convex set such
that Ω lies in a compact subset of a Banach space X. Γ be a
mapping of Ω ×Ω into X such that

(1) Ω ⊆ Γðν,ΩÞ for ν ∈Ω
(2) kΓðν, υ1Þ − Γðν, υ2Þk ≥ hkυ1 − υ2k, h > 1

(3) kΓðν1, υÞ − Γðν2, υÞk ≤ kξν1 − ξν2k
where ξ be a continuous mapping of Ω into X; then, there is
s ∈Ω such that Γðs, sÞ = s:

Proof. Take υ = X (where X is a Banach space) in the above
theorem.

Remark 14. The above corollary is a variant of Theorem 2 or
Theorem 8 in [11].

Corollary 15. Let X be a Banach space and Ω be a nonempty
closed convex set such that Ω lies in a compact subset of X.
Suppose ξ and ζ are mappings of Ω into X such that

(1) ξ is a continuous mapping

(2) ζ is an expansive mapping
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(3) Ω ⊆ ξν + ζðΩÞ for ν ∈Ω
Then, there is s ∈Ω such that ξs + ζs = s.

Proof. Define Γðν, υÞ = ξν + ζυ (in the above Corollary 13).
Since Γðν,ΩÞ = ξν + ζðΩÞ and from (3) Ω ⊆ ξν + ζðΩÞ,
therefore, Ω ⊆ Γðν,ΩÞ: Now, since ζ is expansive mapping,
therefore,

Γ ν, υ1ð Þ − Γ ν, υ2ð Þk k = ζυ1 − ζυ2k k ≥ h υ1 − υ2k k: ð14Þ

Also,

Γ ν1, υð Þ − Γ ν2, υð Þk k = ξν1 − ξν2k k ≤ ξν1 − ξν2k k: ð15Þ

Hence, there is s ∈Ω such that s = Γðs, sÞ = ξs + ζs:

Theorem 16. Suppose Ω be a nonempty closed convex subset
of a Banach space X and ξ be a continuous mapping of Ω
into Ω such that ξðΩÞ is contained in a compact subset of
X. Let Γ be a mapping of ξðΩÞ ×Ω into X such that the
family fΓðυ,:Þ: υ ∈ ξðΩÞg equiexpansive and Ω ⊆ Γðυ,ΩÞ
for υ ∈ ξðΩÞ with

Γ υ1, υð Þ − Γ υ2, υð Þk k ≤ ξυ1 − ξυ2k k: ð16Þ

Then, there exists s ∈Ω such that Γðξs, sÞ = s:

Proof. For u ∈ ξðΩÞ, define a mapping H of Ω into X by H
ðυÞ = Γðu, υÞ: The mapping H is expansive because

H υ1ð Þ −H υ2ð Þk k = Γ υ, υ1ð Þ − Γ υ, υ2ð Þk k ≥ h υ1 − υ2k k:
ð17Þ

Also, Ω ⊆ Γðυ,ΩÞ =HðΩÞ: By Theorem 3, there exists a
unique point say ϝυ such that ϝυ = Γðυ, ϝυÞ. Now,

ϝ υ1ð Þ − ϝ υ2ð Þk k = Γ υ1, ϝυ1ð Þ − Γ υ2, ϝυ2ð Þk k
= Γ υ2, ϝυ1ð Þ − Γ υ2, ϝυ2ð Þð Þ − Γ υ2, ϝυ1ð Þ − Γ υ1, ϝυ1ð Þð Þk k
≥ Γ υ2, ϝυ1ð Þ − Γ υ2, ϝυ2ð Þk k − Γ υ2, ϝυ1ð Þ − Γ υ1, ϝυ1ð Þk k
≥ h ϝ υ1ð Þ − ϝ υ2ð Þk k − ξυ1 − ξυ2k k:

ð18Þ

This means that

ϝυ1 − ϝυ2k k ≤ 1
h − 1 ξυ1 − ξυ2k k, h > 1: ð19Þ

Since ξ is continuous, so ϝ is a continuous function of
ξðΩÞ into Ω. Also, ϝ ∘ ξ is a continuous function of Ω into
Ω and ϝ ∘ ξðΩÞ resides in a compact subset of Ω. So by
Schauder second theorem [17], there is s ∈Ω such that
ϝ ∘ ξðsÞ = s or ϝðξsÞ = s: Since for ξs ∈ ξðΩÞ there is unique
ϝðξsÞ ∈Ω such that Γðξs, ϝðξsÞÞ = ϝðξsÞ and also ϝðξsÞ = s,
therefore, Γðξs, sÞ = s:

Remark 17. In the above theorem, ξ is a mapping of Ω into
Ω while in Theorem 8, ξ is a mapping of Ω into X.

Corollary 18. Let X be a Banach space and Ω be a nonempty
closed convex subset of X. Suppose ξ is a mapping of Ω into Ω
and ζ is mapping of Ω into X such that

(1) ξ is continuous such that ξðΩÞ lies in a compact sub-
set of X

(2) ζ is an expansive mapping

(3) υ ∈ ξðΩÞ implies Ω ⊆ ξυ + ζðΩÞ
Then, there exists s ∈Ω with ðξ ∘ ξÞs + ζs = s.

Proof. Taking Γðu, υÞ = ξu + ζυ with υ = ξu ∈ ξðΩÞ (in the
above Theorem 16), we can obtain the required result.

Theorem 19. Suppose Ω be a nonempty closed convex subset
of a Banach space X and ξ be a continuous mapping ofΩ into
Y such that ξðΩÞ is a precompact subset of a metric space Y :
Let Γ be a continuous mapping of �ξðΩÞ ×Ω into X such that
the family fΓðυ,:Þ: υ ∈ �ξðΩÞg equiexpansive and Ω ⊆ Γðυ,ΩÞ
for υ ∈ �ξðΩÞ. Then, there is s ∈Ω such that Γðξs, sÞ = s:

Proof. For u ∈ �ξðΩÞ, define a mapping H of Ω into X by H
ðυÞ = Γðu, υÞ: The mapping H is expansive because

H υ1ð Þ −H υ2ð Þk k = Γ u, υ1ð Þ − Γ u, υ2ð Þk k ≥ h υ1 − υ2k k:
ð20Þ

Also, Ω ⊆ Γðu,ΩÞ =HðΩÞ: By Theorem 3, there is a
unique point in Ω say ϝυ such that ϝυ = Γðυ, ϝυÞ: We show
that the mapping ϝ of �ξðΩÞ into Ω is continuous. Let υn be
a sequence in �ξðΩÞ such that υn converges to υ0 in �ξðΩÞ.
Then,

ϝ υnð Þ − ϝ υ0ð Þk k = Γ υn, ϝ υnð Þð Þ − Γ υ0, ϝ υ0ð Þð Þk k
= Γ υn, ϝ υnð Þð Þ − Γ υn, ϝ υ0ð Þð Þð Þk

− Γ υ0, ϝ υ0ð Þð Þ − Γ υn, ϝ υ0ð Þð Þð Þk
≥ Γ υn, ϝ υnð Þð Þ − Γ υn, ϝ υ0ð Þð Þk k

− Γ υ0, ϝ υ0ð Þð Þ − Γ υn, ϝ υ0ð Þð Þk k
≥ h ϝ υnð Þ − ϝ υ0ð ÞÞk k

− Γ υ0, ϝ υ0ð Þð Þ − Γ υn, ϝ υ0ð Þð Þk k,

ð21Þ

and therefore,

ϝ υnð Þ − ϝ υ0ð Þk k ≤ 1
h − 1 Γ υ0, ϝ υ0ð Þð Þ − Γ υn, ϝ υ0ð Þð Þk k: ð22Þ

Since Γ is continuous, therefore, ϝ is continuous. The
operator ϝ maps �ξðΩÞ into Ω and is continuous. Since
ξðΩÞ is relatively compact, therefore, by [19] (page 412),
ϝðξðΩÞÞ is relatively compact. Let coðϝðξðΩÞÞÞ be the convex
hull of ϝðξðΩÞÞ. By [20] (page 195), coðϝðξðΩÞÞÞ is relatively
compact. Since Ω is closed and convex, so �coðϝðξðΩÞÞÞ ⊆
Ω, and by [21] (page 415), �coðϝðξðΩÞÞÞ ⊆Ω. Let P = �coðϝ
ðξðΩÞÞÞ; then, P is a subset of Ω and ϝ ∘ ξðPÞ ⊆ P: Since
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P = �coðϝðξðΩÞÞÞ also, therefore, P is compact and convex.
So by first Schauder theorem [17], there is a point s ∈ P
such that ϝðξsÞ = s: Thus, s = Γðξs, sÞ by similar arguments
given in the proof of Theorem 5.

Remark 20. The above theorem is a variant of Theorem 2.2
in [9].

3. Application

Let X be a Banach space with norm k·k, for ξ > 0 denote
J = ½0, ξ� a closed interval in ℝ: Let CðJ , XÞ be the Banach
space of all continuous functions from J into X with norm
kνk = sup

ρ∈J
jνðρÞj, where ν ∈ CðJ , XÞ: Let U be a closed and

convex subset of X. Consider the following controlled system:

Dαν ϱð Þ = −ξν ϱð Þ + Γ ϱ, ν ϱð Þð Þ + C ϱð Þυ ϱð Þ, ϱ ∈ J ≔ 0, ξ½ �, υ ∈U , and α ∈ 0, 1ð Þ,
ν 0ð Þ = ν0:

(

ð23Þ

The mild solution corresponding to υ of ðξÞ is given by
[22]:

νυ ϱð Þ =ℵ ϱð Þν0 +
ðϱ
0
ρ − sð Þα−1I ϱ − sð ÞΓ s, ν sð Þð Þds

+
ðϱ
0
ρ − sð Þα−1I ρ − sð ÞC sð Þυ sð Þds,

ð24Þ

where

ℵ ϱð Þ =
ð∞
0
ξα θð ÞT ϱαθð Þdθ,

I ϱð Þ = α
ð∞
0
θξα θð ÞT ϱαθð Þdθ,

ð25Þ

ξα is the probability density function defined on ð0,∞Þ;
for more details about the notations, we refer the readers to
[22]. Also,

T ϱð Þk k ≤Ω for someΩ > 1,
ℵ ϱð Þνk k ≤Ω νk k,

I ϱð Þνk k ≤ αΩ

Γ α + 1ð Þ νk k,
ð26Þ

and ℵðϱÞ and IðϱÞ are strongly continuous for ϱ ≥ 0 and are
compact for each ϱ > 0:

We can write ðζÞ in the form

Γ ν, υð Þ ϱð Þ =ℵ ϱð Þν0 +
ðϱ
0
ϱ − sð Þα−1I ϱ − sð ÞΓ s, ν sð Þð Þds +Q υð Þ,

ð27Þ

where

Q υð Þ ϱð Þ =
ðϱ
0
ϱ − sð Þα−1I ϱ − sð ÞC sð Þυ sð Þds: ð28Þ

Assume that the following conditions hold:
ðH1ÞQ : ζδ ⟶ X is continuous and expansive, i.e., kQð

υÞ −QðvÞk ≥ ℓkυ − vk for all υ, v ∈ ζ and some ℓ > 1
ðH2ÞΓ : �QðζδÞ × ζδ ⟶ X is continuous
ðH3Þζδ ⊆ Γðυ, ζδÞ for each υ ∈ �QðζδÞ
where ζδ is a closed ball with radius δ and center at 0

in X:
We show that Γ is equiexpansive. For a fixed ν, and any

υ, u ∈ �QðζδÞ, consider

Γ ν, υð Þ − Γ ν, uð Þk k

=
ℵ ϱð Þν0 +

ðϱ
0
ϱ − sð Þα−1I ϱ − sð ÞΓ s, ν sð Þð Þds +Q υð Þ

−ℵ ϱð Þν0 −
ðϱ
0
ϱ − sð Þα−1I ϱ − sð ÞΓ s, ν sð Þð Þds −Q uð Þ

���������

���������
= Q υð Þ −Q uð Þk k ≥ ℓ υ − uk k,

ð29Þ

which shows that fΓðv, ·Þ: v ∈ �QðζδÞg is equiexpansive.
We prove compactness of Q: Continuity of I and C

implies the continuity of Q; we show that Q is uniformly
bounded on ζδ: For υ ∈ ζδ, consider

Q υð Þ ϱð Þk k =
ðϱ
0
ϱ − sð Þα−1I ϱ − sð ÞC sð Þυ sð Þds

����
����

≤
ðϱ
0
ϱ − sð Þα−1 ξqI ϱ − sð Þ�� �� C sð Þk k υ sð Þk kds

≤
Ck kΩqαΓ 2 − qð Þ
Γ 1 + α 1 − qð Þð Þ δ

ðϱ
0
ϱ − sð Þα−1ds

≤
Ck kΩqαΓ 2 − qð Þ
Γ 1 + α 1 − qð Þð Þ δ

Tα 1−qð Þ

α 1 − qð Þ ≔ ϱ,

ð30Þ

which implies that Q is uniformly bounded. To prove the
equicontinuity of Q, we consider for 0 < ϱ1 < ϱ2 < T ,

Q υð Þ ϱ2ð Þ −Q υð Þ ϱ1ð Þk k =
ðϱ2
0

ϱ2 − sð Þα−1I ϱ2 − sð ÞC sð Þυ sð Þds
����
−
ðϱ1
0

ϱ1 − sð Þα−1I ϱ1 − sð ÞC sð Þυ sð Þds
����

≤
Ck kΩqαΓ 2 − qð Þ
Γ 1 + α 1 − qð Þð Þ δ

ðϱ2
0

ϱ2 − sð Þα−1ds
����

−
ðϱ1
0

ϱ1 − sð Þα−1ds
����

≤
Ck kΩqΓ 2 − qð Þ
Γ 1 + α 1 − qð Þð Þ δ ϱα2 − ϱα1j j⟶ 0 as ϱ2 ⟶ ϱ1,

ð31Þ
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which is independent of υ, and kQðυÞðϱ2Þ −QðυÞðϱ1Þk⟶ 0
as ϱ2 ⟶ ϱ1. Therefore, Q is equicontinuous. By Arzela-
Ascoli theorem, Q is a compact operator. From ðH3Þ,
ζδ ⊆ Γðυ, ζδÞ for each υ ∈ �QðζδÞ. All conditions of Theorem
19 are satisfied to obtain the z ∈ X such that ΓðQz, zÞ = z,
which is the solution of controlled problem ðξÞ:

Finally, we summarize the above discussion in the fol-
lowing theorem.

Theorem 21. Let X be a Banach space and ζδ be a closed ball
with center at 0 and radius δ: Assume that Q : ζδ ⟶ X and
Γ : �QðζδÞ × ζδ ⟶ X satisfy ðH1Þ–ðH3Þ. Then, there exists a
mild solution of controlled problem ðξÞ:

Example 22. Consider the following controlled system:

∂αυ ϱ, νð Þ
∂ϱα

= ∂2υ ϱ, νð Þ
∂ν2

+ Γ ϱ, υ ϱ, νð Þð Þ +
ð
0

ϱ

ϝ s, υ s, νð Þð Þds,

υ ϱ, 0ð Þ = υ ϱ, πð Þ = 0, υ′ ϱ, 0ð Þ = υ′ ϱ, πð Þ = 0,
υ 0, νð Þ + Σξiυ ϱi, νð Þ = υ0 νð Þ,

8>>>>>><
>>>>>>:

ð32Þ

where ϱ ∈ J = ½0, 1�, ν ∈ ð0, πÞ,0 < α < 1, let X = L2ð½0, π�Þ
and consider the operator ξ : DðξÞ ⊆ X⟶ X defined by

ξ υð Þ = ∂2υ
∂ν2

, ð33Þ

with domain

D ξð Þ = υ, ∂υ
∂ν

, ∂
2υ

∂ν2
∈ X

( )
: ð34Þ

Clearly, ξ is densely defined in X and is the infinitesimal
generator of a resolvent family fTαðϱÞgρ≥0 on X [4] and let
υ, v ∈ CðJ , XÞ: Define the operators Γ, ϝ : J ×U ⟶ X by

Γ ϱ, υð Þ = 1 + eϱð Þ 1 + υ ϱ, νð Þj jð Þ
e−ϱ υ ϱ, νð Þj j ,

ϝ ϱ, υð Þ = 2υ ϱ, νð Þ:
ð35Þ

Clearly,

Γ ϱ, υð Þ − Γ ϱ, vð Þj j ≥ 1 + eϱð Þ v − υj j, ð36Þ

which shows that Γ is equiexpansive. Note that ξ and ϝ are
continuous and compact. All conditions of Theorem 21 are
satisfied to obtain the solution of the given controlled
problem.

4. Conclusion

Some variants of the Krasnoselskii-type fixed point theorem
are presented using the notion of newly defined equiexpan-

sive mappings. As an application, we present an existence
result for controlled problem with less conditions. This
problem is also a generalized kind of Cauchy problem for
evolution differential equations.
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