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The main scenario of this paper is to introduce a new sequence of Jacobsthal type having a generalized order j. Some basic
properties will be studied concerning it. Also, we will establish the generalized Binet formula.

1. Background and Introduction

The Fibonacci sequence is an integer sequence plays a vital
role for many fascinating identities. In nature, it shows its
presence, even if certain fruits are looked at, the number
of little bumps around each ring is counted or the sand
on the beach, and how waves hit it is watched out, the
Fibonacci sequence is seen there. It was studied by many
authors in the well-known systematic manner, and attrac-
tive investigations have been witnessed as can be seen in
[1–4]. Further, several recurrence sequences of natural
numbers have been object of study for many researchers.
Illustrations of these are the Fibonacci, Lucas, Pell, Pell-
Lucas, Modified Pell, Jacobsthal, and Jacobsthal-Lucas
sequences among others as can be seen in [5–12].

It is well known that the Jacobsthal numbers obey
attracting structure in many fields of science, engineering
and technology as can be seen in [13–15] and many
others. The authors in [16, 17] have defined the Jacobsthal
numbers Jn by the following recurrence relation:

J0 = 0, J1 = 1, Jn+2 = Jn+1 + 2Jn, n ≥ 0: ð1Þ

The author in [18] has shown that some interesting
properties of Fibonacci sequence can be obtained from a

matrix description. For a jth Fibonacci number vj, he
proved that for

A =
0 1
1 1

 !
ð2Þ

that

An
0
1

 !
=

vn

vn+1

 !
: ð3Þ

It is obvious that the Jacobsthal sequence is a particu-
lar demonstration of a sequence given recursively as fol-
lows:

ar+j = c0ar + c1ar+1+⋯+cj−1ar+j−1, ð4Þ

where c0, c1,⋯, cj−1 are real constants. The author in [10]
has determined a closed-form formula for the generalized
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sequence by companion matrix method as follows:

0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ 0 1
c0 c1 c2 ⋯ cj cj−1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð5Þ

Then, by an inductive argument, the generalization of
(3) will be obtained, viz.,

An

a0

a1

⋮

aj−1

0
BBBBB@

1
CCCCCA =

an

an+1

⋮

an+j−1

0
BBBBB@

1
CCCCCA, ð6Þ

where an is the nth term of the sequence.
It is well established fact that the linear recurrence rela-

tions play a vital role of number theory. They show their
appearance in almost everywhere in mathematics and com-
puter science as can be found in [17].

In [15], the authors have studied Jacobsthal F-matrix as
follows:

F =
1 2
1 0

 !
, ð7Þ

and proved for any natural numbers that

Fn =
Jn+1 2Jn
Jn 2Jn−1

 !
: ð8Þ

Quite recently, for n > 0 and 1 ≤ r ≤ j, the authors in [19]
have defined the j sequences of the generalized order j-
Jacobsthal numbers as follows:

Jrn = Jrn−1 + 2Jrn−2 + Jrn−3+⋯+Jrn−j, ð9Þ

with

Jrn =
1, if r = 1 − n,
0, otherwise,

(
ð10Þ

for 1 − j ≤ n ≤ 0 and Jrn is the nth term of the rth sequence and
was shown that the fundamental recurrence relation (9) can

be defined by the vector recurrence relation

Jrn+1

Jrn

Jrn−1

⋮

Jrn−j+2

0
BBBBBBBB@

1
CCCCCCCCA

= C

Jrn

Jrn−1

Jrn−2

⋮

Jrn−j+1

0
BBBBBBBB@

1
CCCCCCCCA
, ð11Þ

for the generalized order j-Jacobsthal sequences, where C

C = cij
� �

j×j =

1 2 1 ⋯ 1 1
1 0 0 ⋯ 0 0
0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ 1 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð12Þ

and is known as the generalized order j-Jacobsthal
matrix.

2. Main Results

In this section, we present some new generalization of
Jacobsthal numbers in the form of a matrix and prove some
basic properties.

Following the authors in [2, 5, 20–24], we define, for n > 0
, 1 ≤ r ≤ j, and s ≥ 0, the j sequences of the generalized order j
-Jacobsthal numbers as follows:

wr
n =wr

n−1 + 2swr
n−2 +wr

n−3+⋯+wr
n−j, ð13Þ

with initial conditions as

wr
n =

1, if r = 1 − n,
0, otherwise,

(
ð14Þ

for 1 − j ≤ n ≤ 0 and wr
n is the nth term of the rth generalized

Jacobsthal sequence.
For different values of s, we have following deductions:

Deduction 1. Choosing s = 0, the sequence wr
n gets reduced to

the generalized order-j Fibonacci sequence [25].

Deduction 2. Choosing s = 1, we get the results obtained in [19].
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We can redefine it by the vector recurrence relation as
follows:

wr
n+1

wr
n

wr
n−1

⋮

wr
n−j+2

0
BBBBBBBB@

1
CCCCCCCCA

=C

wr
n

wr
n−1

wr
n−2

⋮

wr
n−j+1

0
BBBBBBBB@

1
CCCCCCCCA
, ð15Þ

for the generalized order j-Jacobsthal sequences, where C

C = cij
� �

j×j =

1 2s 1 ⋯ 1 1
1 0 0 ⋯ 0 0
0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ 1 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð16Þ

and this matrix C is known as the generalized order j-
Jacobsthal matrix. We now define a j × j matrix Bn = ðμrmÞ
as follows:

Bn =

w1
n w2

n ⋯ wj
n

w1
n−1 w2

n−1 ⋯ wj
n−1

⋮ ⋮ ⋮ ⋱

w1
n−j+1 w2

n−j+1 ⋯ wj
n−j+1

0
BBBBB@

1
CCCCCA: ð17Þ

Then, clearly, we get the following matrix equation by
expanding (15) to j columns:

Bn+1 =C ·Bn: ð18Þ

In this direction, we have following result:

Theorem 3. Define j × j matrices C and Bn, respectively,
given by (16) and (17); then for every n ≥ 0, we have

Bn =Cn: ð19Þ

Proof. Using (17), we see that Bn =C ·Bn−1.
Now employing the inductive argument, we can write

Bn =Cn−1 ·B1. But by definition of generalized order j-
Jacobsthal numbers, B1 =C, and consequently, we have Bn
=Cn, as required. ☐

Theorem 4. Define j × j matrx Bn given by (17); then

det Bn =
−2s, if j = 2,
1, if j is odd,
−1, if j is evenwith k ≠ 2:

8>><
>>: ð20Þ

Proof. We know by using result Theorem 3 that Bn =Cn.
Hence, we see that

det Bn = det Cn = det Cð Þn: ð21Þ

Consequently, the result follows by using Laplace expan-
sion of determinants along any column. ☐

Lemma 5. Let wr
n be the generalized order j-Jacobsthal num-

ber; then,

w1
n+1 =w1

n +w2
n,

w2
n+1 = 2sw1

n +w3
n,

wr
n+1 =w1

n +wr+1
n ; 3 ≤ r ≤ j − 1,

w1
n+1 =wj

n:

ð22Þ

Proof. We know by using Theorem 3 that Bn =Cn. Hence,
we can write

Bn =Bn−1B1: ð23Þ

Consequently, the result follows by using Laplace expan-
sion of determinants along any column. ☐

3. Generalized Binet Formula (GBF)

This part of the article deals with the derivation of GBF for
generalized order j-Jacobsthal numbers.

In 1843, it was Binet who derived the interesting formula
using Fibonacci numbers:

Fn =
an − bn

a − b
, ð24Þ

where the values of a and b are ð1 ± ffiffiffi
5

p Þ/2. Moreover, the
attractive Binet formula for generalized Fibonacci numbers
is studied in [12].

It is well know from the concept of companion matrices
that the characteristic equation of the matrix C defined by
(16) is

ς j − ςj−1 − 2sςj−2 − ςj−3−⋯−ς − 1 = 0, ð25Þ

which is also the characteristic equation of generalized order
j-Jacobsthal numbers.

In order to prove our main result of this section, we first
define the following lemma without proof:

Lemma 6. For s ≥ 0, the equation

ςj − ςj−1 − 2sςj−2 − ςj−3−⋯−ς − 1 = 0 ð26Þ

does not have multiple roots with j ≥ 3.
Let fðηÞ be the characteristic polynomial of the generalized

order j-Jacobsthal matrix C. Let η1, η2,⋯, η j be the eigen-
values of C, which are clearly all distinct by Lemma 6. Let j
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× j Vandermonde matrix V be given by

V =

ηj−11 ηj−21 ⋯ η1 1

ηj−12 ηj−22 ⋯ η2 1

⋮ ⋮ ⋱ ⋮ ⋮

ηj−1j ηj−2j ⋯ η j 1

0
BBBBBB@

1
CCCCCCA
: ð27Þ

Also, let θrj be a j × 1 matrix as follows:

θrj =

ηn+j−r1

ηn+j−r2

⋮

ηn+j−rj

0
BBBBB@

1
CCCCCA: ð28Þ

and V ðrÞ
m be a j × j matrix obtained from V by replacing mth

column of V by θrj :

Theorem 7. For 1 ≤ r ≤ j, let wr
n be the nth term of rth

Jacobsthal sequence; then,

wk
n−r+1 =

det V r
mð Þ

det V : ð29Þ

Proof. As we know that matrix C has all distinct eigenvalues,
consequently, it is diagonalizable. Denote V T =Ω, and obvi-
ously, Ω is invertible; then, Ω−1CΩ =E, where E is given by

E = diag η1, η2,⋯,η j
� �

: ð30Þ

Consequently, C is similar to Ω and hence yields CnΩ
=ΩCn. But using Theorem 3, we know that Bn =Cn. We
thus have the following system of equations:

μr1η
j−1
1 + μr2η

j−2
1 +⋯+μr j = ηn+j−r1

μr1η
j−1
2 + μr2η

j−2
2 +⋯+μr j = ηn+j−r2

⋮

μr1η
j−1
j + μr2η

j−2
j +⋯+μr j = ηn+j−rj

, ð31Þ

where B = ðμrmÞj×j. Hence, for each m = 1, 2,⋯, j giving

μrm = det V r
mð Þ

det V , ð32Þ

by observing that μrm =wm
n−r+1 and the result follows. ☐
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