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In this paper, we establish some results concerning the convolutions of harmonic mappings convex in the horizontal direction with
harmonic vertical strip mappings. Furthermore, we provide examples illustrated graphically with the help of Maple to illuminate
the results.

1. Introduction

For real-valued harmonic functions u and v in the open unit
disk E = fz ∈ℂ : jzj < 1g, the complex-valued continuous
function f = u + iv is said to be harmonic and can be
expressed as f = h + �g, where h and g are analytic in E. Let
H be the class of harmonic mappings f = h + �g normalized
by hð0Þ = gð0Þ = h′ð0Þ − 1 = 0 and have the following power
series representations:

h zð Þ = z + 〠
∞

m=2
amz

m,

g zð Þ = 〠
∞

m=1
bmz

m:

ð1Þ

We call h the analytic part and g the coanalytic part of f ,

respectively. The Jacobian of f = h + �g is given by J f = jh′j2

− jg′j2. Lewy’s theorem [1] implies that f ∈H is locally uni-
valent and sense-preserving if and only if J f > 0 in E. The

condition J f > 0 is equivalent to that dilatation ωðzÞ = g′ðzÞ
/h′ðzÞ satisfying jωðzÞj < 1 for all z ∈ E (see [2, 3]).

We denote by SH the class of all harmonic, sense-pre-
serving, and univalent mappings f = h + �g in E, which are
normalized by the condition hð0Þ = gð0Þ = 0 and h′ð0Þ = 1.

Let S0
H be the subset of all f ∈ SH in which g′ð0Þ = 0: Further,

let KH ,ℂH (resp., K0
H ,ℂ0

H) be the subset of SH (resp., S0
H)

whose images are convex and close-to-convex domains. A
domain Ω is said to be convex in the horizontal direction
(CHD) if the intersection of Ω with each horizontal line is
connected (or empty). A function f = h + �g ∈ SH is said to
be a CHD mapping if f maps E onto a CHD domain. Let
SCHD be the subset of ℂH which consist of CHD mappings.
The following basic theorem of Clunie and Sheil-Small [2]
is known as shear construction that constructs harmonic
mappings with prescribed dilatations onto a domain convex
in one direction.

Theorem 1 (see [2]). A locally univalent harmonic mapping
f = h + �g in E is a univalent mapping of E onto a domain con-
vex in a direction ϕ if and only if h − e2iϕg is a conformal
univalent mapping of E onto a domain convex in the direction
of ϕ:

Let f ∗ F = h ∗H + g ∗ G be the convolution of two har-
monic functions f = h + �g and F =H + �G where the operator
∗ is convolution (or Hadamard product) of two power series.

There are several research papers in recent years which
investigate the convolution of harmonic univalent functions.
In particular, Dorff [4] and Dorff et al. [5] studied the convo-
lution of harmonic univalent mappings in the right half-
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plane. For some recent investigations involving convolution
of harmonic mappings, we refer the reader to [6–13].

Let Fa =Ha + Ga sheared byHa −Ga = z/ð1 − zÞ with the
dilatation ωa = ða + zÞ/ð1 + azÞ, where a ∈ ð−1, 1Þ. Using
shear construction of Clunie and Sheil-Small [2], we have

Ha zð Þ = 1/ 1 − að Þz − 1/2z2
1 − zð Þ2 = 1

2
z

1 − z
+ 1 + a

1 − a

z

1 − zð Þ2
" #

,

ð2Þ

Ga zð Þ = a/ 1 − að Þz + 1/2z2
1 − zð Þ2 = 1

2
−z
1 − z

+ 1 + a

1 − a

z

1 − zð Þ2
" #

:

ð3Þ
It is clear that by setting a = 0 in (2) and (3), we obtain

F0 =H0 +G0 which satisfy the conditions H0 − G0 = z/ð1 −
zÞ and ωðzÞ = z, studied by Liu and Li [8]. Wang et al. [14]
also studied convolutions of this mapping. Note that Fa is a
CHD mapping.

Recently, Liu and Li [8] introduced the following general-
ized harmonic univalent mappings:

Pδ zð Þ =Hδ zð Þ + Gδ zð Þ = 1
1 + δ

δz

1 − zð Þ2 + z
1 − z

" #

+ 1
1 + δ

δz

1zð Þ2
z
1z

" #
,

ð4Þ

where δ > 0 and z ∈ E. Obviously, P1ðzÞ = F0ðzÞ. If f = h + �g
∈ SH , then

Pδ ∗ f = δzh′ + h
1 + δ

+ δzg′g
1 + δ

: ð5Þ

Also, PδðzÞ maps E onto the domain fu + iv : v2>−½ð2δ
Þ/ð1 + δÞu + ð1/ð1 + δÞ2Þ�, δ > 0g which is a CHD domain.
Very recently, Yasar and Ozdemir [15] studied convolutions
of these generalized harmonic mappings.

Let f γ = hγ + gγ ∈ S
0
CHD with

hγ − gγ =
1

2i sin γ
log 1 + zeiγ

1 + ze−iγ

� �
, ð6Þ

where π/2 ≤ γ < π.
In this paper, we investigate the conditions under which

the convolutions of harmonic mappings Pδ, f γ, and Fa with
prescribed dilatations are univalent and CHD provided that
the convolutions are locally univalent and sense-preserving.

Furthermore, we provide two examples illustrated graphi-
cally with the help of Maple to illuminate our results.

2. Preliminary Results

Lemma 2 (see [16]). Let f be an analytic fuction in E with f
ð0Þ = 0 and f ′ð0Þ ≠ 0 and let

φ zð Þ = z

1 + zeiθ1
� �

1 + zeiθ2
� � , ð7Þ

where θ1, θ2 ∈ℝ. If

Re zf ′ zð Þ
φ zð Þ

 !
> 0, ð8Þ

then f is convex in the horizontal direction.

Lemma 3 (see [17]). Let φ and G be analytic in E with φ′ð0Þ
=Gð0Þ = 0: If φ is convex and G is starlike, then for each func-
tion F analytic in E and satisying Re ðFðzÞÞ > 0, we have

Re φ ∗ FGð Þ zð Þ
φ ∗Gð Þ zð Þ

� �
> 0 z ∈ Eð Þ: ð9Þ

Lemma 4 ([18], Cohn’s rule). Given a polynomial

p zð Þ = p0 zð Þ = ak,0z
k + ak−1,0z

k−1+⋯+a1,0z + a0,0 ak,0 ≠ 0ð Þ
ð10Þ

of degree k, let

p∗ zð Þ = p∗0 zð Þ = zkp
1
�z

� �
= ak,0 + ak1,0z+⋯+a1,0zk−1

+ a0,0z
k ak,0 ≠ 0ð Þ:

ð11Þ

Denote by r and s the number of zeros of pðzÞ inside the
unit circle and on it, respectively. If ja0,0j < jak,0j, then

p1 zð Þ = ak,0p zð Þ − a0,0p
∗ zð Þ

z
ð12Þ

is of degree k − 1 with r1 = r − 1 and s1 = s the number of zeros
of p1ðzÞ inside the unit circle and on it, respectively.

Lemma 5. Let Pδ =Hδ + Gδ be defined by (4) and f γ = hγ + gγ
be defined by (6) with dilatationω = gγ′/hγ′. Then the dilatation
of Pδ ∗ f γ is given by

~ω zð Þ = ω 1 − ωð Þ δ − 1ð Þ − 2z cos γ − δ + 1ð Þz2� �
+ δzω′ 1 + 2z cos γ + z2

� �
1 − ωð Þ δ + 1ð Þ + 2z cos γ − δ − 1ð Þz2½ � + δzω′ 1 + 2z cos γ + z2ð Þ

: ð13Þ
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Proof. Since hγ − gγ = 1/ð2i sin γÞ log ðð1 + zeiγÞ/ð1 + ze−iγÞÞ
ðπ/2 ≤ γ < πÞ and gγ

′ = ωhγ′ , then gγ′′ = ω′hγ′ + ωhγ′′: We imme-
diately get

hγ′ =
1

1 − ωð Þ 1 + zeiγð Þ 1 + ze−iγð Þ , ð14Þ

hγ′′ = −
2 cos γ + zð Þ 1 − ωð Þ − ω′ 1 + 2z cos γ + z2

� �
1 − ωð Þ2 1 + zeiγð Þ2 1 + ze−iγð Þ2

: ð15Þ

From (4), we have

☐

Lemma 6. Let Pδ =Hδ +Gδ be defined by (4) and f γ = hγ + gγ
be defined by (6). If Pδ ∗ f γ is locally univalent and sense-pre-
serving, then Pδ ∗ f γ is univalent and convex in the horizontal
direction.

Proof. Let

F1 = Hδ −Gδð Þ ∗ hγ + gγ
� 	

=Hδ ∗ hγ +Hδ ∗ gγ − Gδ ∗ hγ −Gδ ∗ gγ,

F2 = Hδ + Gδð Þ ∗ hγ − gγ
� 	

=Hδ ∗ hγ −Hδ ∗ gγ +Gδ ∗ hγ −Gδ ∗ gγ:

ð17Þ

Thus,

Hδ ∗ hγ − Gδ ∗ gγ =
1
2 F1 + F2ð Þ: ð18Þ

By Theorem 1, we need to prove that 1/2ðF1 + F2Þ is
convex in the horizontal direction. Since

hγ − gγ =
1

2i sin γ
log 1 + zeiγ

1 + ze−iγ

� �
π

2 ≤ γ < π
� 	

, ð19Þ

we have

zF1′ = Hδ −Gδð Þ ∗ z hγ′ + gγ
′

� 	h i

= Hδ −Gδð Þ ∗ z hγ′ − gγ′
� 	 hγ′ + gγ

′
hγ′ − gγ

′

 !" #

= 2z
1 + δð Þ 1 − zð Þ ∗

z
1 + zeiγð Þ 1 + ze−iγð Þ

1 + ωγ

1 − ωγ

 !

= 2zp1 zð Þ
1 + δð Þ 1 + zeiγð Þ 1 + ze−iγð Þ ,

ð20Þ

where p1ðzÞ = ð1 + ωγÞ/ð1 − ωγÞ satisfies the condition Re
ðp1ðzÞÞ > 0: Thus, we have

Re zF1′
2z/ 1 + δð Þ 1 + zeiγð Þ 1 + ze−iγð Þ½ �

( )
= Re p1 zð Þf g > 0:

ð21Þ

Now, we consider

zF2′ = z Hδ
′ +Gδ

′
� 	

∗ hγ − gγ
� 	h i

= z Hδ
′ −Gδ

′
� 	Hδ

′ + Gδ
′

Hδ
′ − Gδ

′

" #
∗ hγ − gγ
� 	

= z Hδ
′ −Gδ

′
� 	 1 + ωδ

1 − ωδ

� �
 �
∗ hγ − gγ
� 	

= 2zp2 zð Þ
1 + δð Þ 1 − zð Þ2 ∗ hγ − gγ

� 	
,

ð22Þ

where p2ðzÞ = ð1 + ωδÞ/ð1 − ωδÞ satisfies the condition Re
fp2ðzÞg > 0: Using the fact that

ψ zð Þ ∗ z

1 − zð Þ2 = zψ′ zð Þ ð23Þ

and hγ − gγ is convex, by Lemma 3, we have

Re zF2′
z/ 1 + zeiγð Þ 1 + ze−iγð Þ½ �

( )

= Re
hγ − gγ
� 	

∗ p2 zð Þ 2z/ 1 + δð Þ 1 − zð Þ2� �� �
z hγ′ − gγ′
� 	

8<
:

9=
;

= Re
hγ − gγ
� 	

∗ p2 zð Þ 2z/ 1 + δð Þ 1 − zð Þ2� �� �
hγ − gγ
� 	

∗ z/ 1 − zð Þ2

8<
:

9=
; > 0:

ð24Þ

☐

~ω zð Þ =
Gδ ∗ gγ

� 	
′

Hδ ∗ hγ
� �′ =

δzgγ
′ − gγ

� 	
′

δzhγ′ + hγ
� 	

′
=

δ − 1ð Þgγ
′ + δzgγ

′′
δ + 1ð Þhγ′ + δzhγ′′

=
δ − 1ð Þωhγ′ + δz ω′hγ′ + ωhγ′′

� 	
δ + 1ð Þhγ′ + δzhγ′′

= ω 1 − ωð Þ δ − 1ð Þ − 2z cos γ − δ + 1ð Þz2� �
+ δzω′ 1 + 2z cos γ + z2

� �
1 − ωð Þ δ + 1ð Þ + 2z cos γ − δ − 1ð Þz2½ � + δzω′ 1 + 2z cos γ + z2ð Þ

:

ð16Þ
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Finally, using Lemma 2, we obtain that F1 + F2 is convex in
the horizontal direction.

Lemma 7. Let f γ = hγ + gγ ∈ S
0
CHD be given by (6) with dilata-

tion ω = gγ′/hγ′ and Fa =Ha +Ga be a mapping defined by (2)
and (3). Then the dilatation of Fa ∗ f γ is given by

Proof. From (2) and (3), we have

~W zð Þ =
Ga ∗ gγ
� 	

′

Ha ∗ hγ
� �′ =

1 + að Þzgγ′ − 1 − að Þgγ
� 	

′

1 + að Þzhγ′ + 1 − að Þhγ
� 	

′

=
2agγ′ + 1 + að Þzgγ′′
2hγ′ + 1 + að Þzhγ′′

=
2aωhγ′ + 1 + að Þz ω′hγ′ + ωhγ′′

� 	
2hγ′ + 1 + að Þzhγ′′

:

ð26Þ

Using (14) and (15), then we obtain the dilatation of Fa

∗ f γ as follows:

☐

Lemma 8 ([14], Lemma 2.4). Let Fa =Ha +Ga be a mapping
defined by (2), (3) and f γ = hγ + gγ ∈ S

0
CHD be defined by (6). If

Fa ∗ f γ is locally univalent and sense-preserving, then Fa ∗ f γ
is univalent and convex in the horizontal direction.

Lemma 9 ([19], Gauss-Lucas theorem). Let TðzÞ be a non-
constant polynomial with complex coefficients. Then, the zeros
of the derivative T ′ðzÞ are contained in the convex hull of the
set of the zeros of TðzÞ:

Lemma 10. Let

q zð Þ = zk+1 + 2 k + 1ð Þ cos γ
k + 2

zk + k
k + 2

zk−1

−
2

k + 2
e−iθz −

2 cos γ
k + 2

e−iθ
ð28Þ

be a complex polynomial of degree k + 1, where θ ∈ℝ, k ∈ℕ+,
and π/2 ≤ γ < π: Then, all zeros of qðzÞ lie in the closed unit
disk jzj ≤ 1:

Proof. Note that qðzÞ = 1/ðk + 2ÞT ′ðzÞ, where

T zð Þ = zk − e−iθ
� 	

1 + 2z cos γ + z2
� �

: ð29Þ

It is obvious that the roots of ðzk − e−iθÞ lie on the unit cir-
cle. Also, −cos γ ± i sin γ which are the roots of ð1 + 2z cos
γ + z2Þ lie on the unit circle as well. Hence, the result follows
from Lemma 9. ☐

3. Main Results

Theorem 11. Let Pδ =Hδ + Gδ ∈ SCHD be a mapping given by
(4) and f γ = hγ + gγ ∈ S

0
CHD be given by (6) with the dilatation

ωk = gγ′/hγ′ = eiθzkðθ ∈ℝ, k ∈ℕ+Þ: Then Pδ ∗ f γ is univalent
and convex in the horizontal direction.

Proof. By Lemma 6, we need to prove that the dilatation ~ω of
Pδ ∗ f γ satisfies j~ωj < 1 for all z ∈ E. Substituting ω = eiθzk in
(13), we yield

~W zð Þ = 2ω 1 − ωð Þ a − 1 − að Þz cos γ − z2
� �

+ 1 + að Þzω′ 1 + 2z cos γ + z2
� �

2 1 − ωð Þ 1 + 1 − að Þz cos γ − az2½ � + 1 + að Þzω′ 1 + 2z cos γ + z2ð Þ
: ð25Þ

~W zð Þ = 2ω 1 − ωð Þ a − 1 − að Þz cos γ − z2
� �

+ 1 + að Þzω′ 1 + 2z cos γ + z2
� �

2 1 − ωð Þ 1 + 1 − að Þz cos γ − az2½ � + 1 + að Þzω′ 1 + 2z cos γ + z2ð Þ
: ð27Þ

~ω zð Þ = eiθzk 1 − eiθzk
� �

δ − 1ð Þ − 2z cos γ − δ + 1ð Þz2� �
+ δkeiθzk 1 + 2z cos γ + z2

� �
1 − eiθzk
� �

δ + 1ð Þ + 2z cos γ − δ − 1ð Þz2½ � + δkeiθzk 1 + 2z cos γ + z2ð Þ
= e2iθzk

t zð Þ
t∗ zð Þ , ð30Þ
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where

t zð Þ = zk+2 + 2 cos γ
1 + δ

zk+1 + 1 − δ

1 + δ
zk

+ δ k − 1ð Þ − 1
1 + δ

e−iθz2 + 2 kδ − 1ð Þ cos γ
1 + δ

e−iθz

+ δ 1 + kð Þ − 1
1 + δ

e−iθ,

ð31Þ

t∗ zð Þ = 1 + 2 cos γ
1 + δ

z + 1 − δ

1 + δ
z2 + δ k − 1ð Þ − 1

1 + δ
eiθzk

+ 2 kδ − 1ð Þ cos γ
1 + δ

eiθzk+1 + δ 1 + kð Þ − 1
1 + δ

eiθzk+2:

ð32Þ

If we substitute δ = 2/k into (30), then tðzÞ/t∗ðzÞ = e−iθ,
and it is clear that j~ωj < 1 for all z ∈ E: Now, we need to show
that j~ωj < 1 for 0 < δ < 2/k:Obviously, if z0 is a zero tðzÞ, then
1/z0 is zero of t∗ðzÞ: Then, we may write

~ω zð Þ = e2iθzk
z + A1ð Þ z + A2ð Þ⋯ z + Ak+2ð Þ

1 + A1z
� �

1 + A2z
� �

⋯ 1 + Ak+2z
� � : ð33Þ

Using Lemma 4, we only need to show that all zeros of
(31) lie in the closed unit disk for 0 < δ < 2/k: Since ja0,0j = j
ðδð1 + kÞ − 1Þ/ð1 + δÞe−iθj = jðδð1 + kÞ − 1Þ/ð1 + δÞj < jak+2,0j
= 1 for 0 < δ < 2/k, thus we have

t1 zð Þ = ak+2,0t zð Þ − a0,0t
∗ zð Þ

z
= δ k + 2ð Þ 2 − kδð Þ

1 + δð Þ2

�
�
zk+1 + 2 k + 1ð Þ cos γ

k + 2 zk + k
k + 2 z

k−1

−
2

k + 2 e
−iθz −

2 cos γ
k + 2 e−iθ

�
:

ð34Þ

By Lemma 10, we know that all zeros of

q zð Þ = zk+1 + 2 k + 1ð Þ cos γ
k + 2 zk + k

k + 2 z
k−1

−
2

k + 2 e
−iθz −

2 cos γ
k + 2 e−iθ

ð35Þ

lie inside the closed disk. Then, by Cohn’s rule, tðzÞ given by
(31) has all its zeros in the closed unit disk. The proof is com-
plete. ☐

Theorem 12. Let Fa be a mapping given by (2) and f γ = hγ
+ gγ ∈ S

0
CHD be a mapping given by (6) with the dilatation

ωk = gγ′/hγ′ = eiθzkðθ ∈ℝ, k ∈ℕ+Þ: Then, Fa ∗ f γ is univalent
and convex in the horizontal direction for −1 < a ≤ ð2 − kÞ/
ð2 + kÞ:

Proof. By Lemma 8, we need to prove that Fa ∗ f γ is locally

univalent and sense-preserving, i.e., the dilatation ~W of Fa

∗ f γ satisfies ∣ ~WðzÞ ∣ <1 for all z ∈ E. Substituting ω = eiθzk

in (25),

where

u zð Þ = zk+2 + 1 − að Þ cos γzk+1 − azk + 1 + að Þk − 2ð Þ/2e−iθz2
+ k − 1ð Þ + a k + 1ð Þ½ � cos γe−iθz + k + 2ð Þa + kð Þ/2e−iθ,

u∗ zð Þ = 1 + 1 − að Þ cos γz − az2 + 1 + að Þk − 2ð Þ/2eiθzk
+ k − 1ð Þ + a k + 1ð Þ½ � cos γeiθzk+1
+ k + 2ð Þa + kð Þ/2eiθzk+2:

ð37Þ

If we substitute a = ð2 − kÞ/ð2 + kÞ into (36), we yield

~W zð Þ = e2iθzk × zk+2 + 1 − að Þ cos γzk+1 − azk + 1 + að Þk − 2ð Þ/2e−iθz2 + k − 1ð Þ + a k + 1ð Þ½ � cos γe−iθz + k + 2ð Þa + kð Þ/2e−iθ
1 + 1 − að Þ cos γz − az2 + 1 + að Þk − 2ð Þ/2eiθzk + k − 1ð Þ + a k + 1ð Þ½ � cos γeiθzk+1 + k + 2ð Þa + kð Þ/2eiθzk+2

= e2iθzk
u zð Þ
u∗ zð Þ ,

ð36Þ

~W zð Þ = e2iθzk
zk+2 + 2k/ k + 2ð Þ cos γzk+1 − 2 − kð Þ/ k + 2ð Þzk − 2 − kð Þ/ k + 2ð Þe−iθz2 + 2k/ k + 2ð Þ cos γe−iθz + e−iθ

1 + 2k/ k + 2ð Þ cos γz − 2 − kð Þ/ k + 2ð Þz2 − 2 − kð Þ/ k + 2ð Þeiθzk + 2k/ k + 2ð Þ cos γeiθzk+1 + eiθzk+2
= eiθzk: ð38Þ
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Hence, ∣ ~WðzÞ ∣ = jeiθzkj < 1:
Next, we will show that ∣ ~WðzÞ ∣ <1 for all −1 < a < ð2 −

kÞ/ð2 + kÞ: If z0 is a zero of uðzÞ, then 1/z0 is zero of u∗ðzÞ;
hence,

~W zð Þ = e2iθzk
u zð Þ
u∗ zð Þ = e2iθzk

� z + A1ð Þ z + A2ð Þ⋯ z + Ak+2ð Þ
1 + A1z
� �

1 + A2z
� �

⋯ 1 + Ak+2z
� � : ð39Þ

By Lemma 4, we need to show that all zeros of uðzÞ lie
inside or on the unit disk for −1 < a < ð2 − kÞ/ð2 + kÞ: Since

a0,0
�� �� = k + 2ð Þa + k

2 e−iθ
����

���� < 1 = ak+2,0
�� �� for − 1 < a < 2 − k

2 + k
,

ð40Þ

from (12), we have

u1 zð Þ = ak+2,0u zð Þ − a0,0u
∗ zð Þ

z

= −
k + 2ð Þ 1 + að Þ k + 2ð Þa + k − 2½ �

4
�
�
zk+1 + 2 k + 1ð Þ cos γ

k + 2 zk + k
k + 2 z

k−1

−
2

k + 2 e
−iθzk −

2 cos γ
k + 2 e−iθ

�

= −
k + 2ð Þ 1 + að Þ k + 2ð Þa + k − 2½ �

4 q zð Þ,

ð41Þ

where

q zð Þ = zk+1 + 2 k + 1ð Þ cos γ
k + 2 zk + k

k + 2 z
k−1

−
2

k + 2 e
−iθz −

2 cos γ
k + 2 e−iθ:

ð42Þ

Because ðk + 2Þð1 + aÞ½ðk + 2Þa + k − 2�/4 ≠ 0 for −1 < a

< ð2 − kÞ/ð2 + kÞ, it follows that both u1ðzÞ and qðzÞ have
the same zeros. By Lemma 10, we know that all zeros of qðzÞ
lie inside the closed unit disk. Then, by Cohn’s rule, we know
that all zeros uðzÞ lie inside or on the boundary of the unit
disk. The proof is completed. ☐

Theorem 13. Let F0 =H0 +G0 ∈ S
0
CHD be a harmonic map-

ping with H0 −G0 = z/ð1 − zÞ and dilatation G0′ðzÞ/H0′ðzÞ =
z. Let f π/2 = hπ/2 + gπ/2 ∈ SCHD be a mapping defined by (6)

4

3

2

1

1 2 3 40

−1

−1

−2

−2

−3

−3

−4

−4

Figure 1: Image of fΠ/2.
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Figure 3: Image of P2/3 ∗ fΠ/2.
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with γ = π/2 and dilatation ωμðzÞ = ðμ + z2Þ/ð1 + μz2Þ,
−1 < μ < 1: Then the mapping F0 ∗ f π/2 is univalent and con-
vex in the horizontal direction.

Proof. Since f π/2 = hπ/2 + gπ/2 ∈ SCHD is a mapping defined by
(6) with γ = π/2, we have

hπ/2 zð Þ − gπ/2 zð Þ = 1
2i log

1 + iz
1 − iz

� �
: ð43Þ

Therefore, we know that

~W zð Þ = G0 ∗ gπ/2ð Þ′
H0 ∗ hπ/2ð Þ′

=
zgπ/2′ − gπ/2
� 	

′

zhπ/2′ + hπ/2
� 	

′

= zgπ/2′′
2hπ/2′ + zhπ/2′′

= z
ωμhπ/2′′ + ωμ

′hπ/2′
2hπ/2′ + zhπ/2′′

:

ð44Þ

Substituting

hπ/2′ zð Þ = 1
ωμ 1 + z2ð Þ ,

hπ/2′′ zð Þ = ωμ
′ 1 + z2
� �

− 2zωμ

1 − ωμ

� �2 1 + z2ð Þ2
,

ð45Þ

into (44) yields

~W zð Þ = z
ω2
μ − ωμ − 1/2ωμ

′z
� 	

+ 1/2ωμ
′1/z

1/z − ωμ − 1/2ωμ
′z

� 	
1/z + 1/2ωμ

′z2
: ð46Þ

Setting ωμðzÞ = ðμ + z2Þ/ð1 + μz2Þ in the above equation,

we get ~WðzÞ = z2, and hence, ∣ ~WðzÞ ∣ <1 for all z ∈ E. ☐

Example 14. Suppose f γ = hγ + gγ ∈ S
0
CHD be given by ((6)). If

we set γ = π/2 and ω1 = −z3 then by shear construction of Clu-
nie and Sheil-Small [2], we have

hγ zð Þ = 1
6 log 1 + zð Þ − i

4 log 1 + iz
1 − iz

� �

+ 1
4 log 1 + z2

� �
−
1
3 log 1 − z + z2

� �
,

gγ zð Þ = 1
6 log 1 + zð Þ + i

4 log 1 + iz
1 − iz

� �

+ 1
4 log 1 + z2

� �
−
1
3 log 1 − z + z2

� �
:

ð47Þ

Recall that, if f = h + �g ∈ SH , then

Pδ ∗ f = δzh′ + h
1 + δ

+ δzg′g
1 + δ

: ð48Þ
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Figure 4: Image of P3/4 ∗ fΠ/2.
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So, we have

Pδ ∗ f γ =
1

1 + δ
δzhγ′ zð Þ + hγ zð Þ
h i

+ 1
1 + δ

δzgγ
′ zð Þgγ zð Þ

h i
= 1
1 + δ



δz

1 + z3ð Þ 1 + z2ð Þ +
1
6 log 1 + zð Þ − i

4 log

� 1 + iz
1 − iz

� �
+ 1
4 log 1 + z2

� �
−
1
3 log 1 − z + z2

� ��

+ 1
1 + δ

"
δz4

1 + z3ð Þ 1 + z2ð Þ
1
6 log 1 + zð Þ i4 log 1 + iz

1iz

� �

� 14 log 1 + z2ð Þ + 1
3 log 1z + z2ð Þ

#

= Re 1
1 + δ

δz 1 − z3
� �

1 + z3ð Þ 1 + z2ð Þ −
i
2 log 1 + iz

1 − iz

� �
 � �

+ i Im
 1
1 + δ



δz

1 + z2
+ 1
3 log 1 + zð Þ

+ 1
2 log 1 + z2

� �
−
2
3 log 1 − z + z2

� ���
:

ð49Þ

Now, in view of Theorem 11, if we set the parameter δ = 2/3,
then Pδ ∗ f γ is univalent and CHD. Also, if we choose δ = 3
/4, then Pδ ∗ f γ is not guaranteed to be univalent. The images
of ∣z ∣ = r < 1 under fΠ/2, P2/3, P2/3 ∗ fΠ/2 and P3/4 ∗ fΠ/2 are
shown in Figures 1–4.

Example 15. Suppose f γ = hγ + gγ ∈ S
0
CHD be given by (6). If

we set γ = 2π/3 and ω2 = z4, then calculations lead to

hγ zð Þ = 1
12 log 1 + zð Þ + 1

4 log 1 + z2

1 − z

� �

−
1
6 log 1 − z + z2

� �
−
i
ffiffiffi
3

p

6 log 1 + ze 2π/3ð Þi

1 + ze −2π/3ð Þi

� �
,

gγ zð Þ = 1
12 log 1 + zð Þ + 1

4 log 1 + z2

1 − z

� �

−
1
6 log 1 − z + z2

� �
+ i

ffiffiffi
3

p

6 log 1 + ze 2π/3ð Þi

1 + ze −2π/3ð Þi

� �
:

ð50Þ

If f = h + �g ∈ SH , then

Fa ∗ f = 1
2

1 + að Þzh′
1 − a

+ h

" #
+ 1
2

1 + að Þzg′
1a g

" #
: ð51Þ

So, we have

Fa ∗ f γ =
1
2

1 + að Þzhγ′
1 − a

+ hγ

" #
+ 1
2

1 + að Þzgγ′
1a gγ

" #

= 1
2

"
1 + að Þz

1 − að Þ 1 − z + z2ð Þ 1 − z4ð Þ + 1
12 log 1 + zð Þ

+ 1
4 log 1 + z2

1 − z

� �
−
1
6 log 1 − z + z2

� �

−
i
ffiffiffi
3

p

6 log 1 + ze 2π/3ð Þi

1 + ze −2π/3ð Þi

� �#

+ 1
2

"
1 + að Þz5

1að Þ 1z + z2ð Þ 1z4ð Þ
1
12 log 1 + zð Þ 14 log 1 + z2

1z

� �

+ 1
6 log 1z + z2ð Þ i

ffiffiffi
3

p

6 log 1 + ze 2π/3ð Þi

1 + ze 2π/3ð Þi

� �#

= Re
(
1
2

"
1 + að Þz 1 + z4

� �
1 − að Þ 1 − z + z2ð Þ 1 − z4ð Þ

−
i
ffiffiffi
3

p

3 log 1 + ze 2π/3ð Þi

1 + ze −2π/3ð Þi

� �#)

+ i Im
 1
2


 1 + að Þz
1 − að Þ 1 − z + z2ð Þ + 1

6 log 1 + zð Þ

+ 1
2 log 1 + z2

1 − z

� �
−
1
3 log 1 − z + z2

� ���
:

ð52Þ
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Figure 7: Image of F−1/3 ∗ f2Π/3.
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Figure 8: Image of F−1/4 ∗ f2Π/3.
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Now, if we set the parameter a = −1/3, in view of Theorem
11, Fa ∗ f γ is univalent and CHD. If we choose a = −1/4, then
Fa ∗ f γ is not guaranteed to be univalent (see Figures 5–8).
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