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In this paper, we propose a novel and efficient numerical technique for solving linear and nonlinear fractional differential equations
(FDEs) with the φ-Caputo fractional derivative. Our approach is based on a new operational matrix of integration, namely, the φ-
Haar-wavelet operational matrix of fractional integration. In this paper, we derived an explicit formula for the φ-fractional integral
of the Haar-wavelet by utilizing the φ-fractional integral operator. We also extended our method to nonlinear φ-FDEs. The
nonlinear problems are first linearized by applying the technique of quasilinearization, and then, the proposed method is
applied to get a numerical solution of the linearized problems. The current technique is an effective and simple mathematical
tool for solving nonlinear φ-FDEs. In the context of error analysis, an exact upper bound of the error for the suggested
technique is given, which shows convergence of the proposed method. Finally, some numerical examples that demonstrate the
efficiency of our technique are discussed.

1. Introduction

Fractional differential equations are used to describe a wide
range of phenomena in natural science, and because of its
numerous applications in physical, chemical, and biological
sciences, fractional calculus has captivated the scientific com-
munity. Several researchers have recently focused their atten-
tion on the concept of the fractional derivative. The fractional
derivative is introduced in fractional calculus through the
fractional integral. Riemann, Liouville, Caputo, Hadamard,
Grunwald, and Letinkow are the pioneers in this field, having
contributed and published extensively on the subject. The
nonlinear fractional Schrodinger equations with the Riesz
space and the Caputo time-fractional derivatives are studied
using the finite difference/spectral-Galerkin method in [1].
For the Higgs boson equation in the de Sitter spacetime, a
finite difference/Galerkin spectral scheme was introduced in

[2] which retains the discrete energy dissipation property.
For the two-dimensional fractional wave equation with the
Weyl space-fractional operators, Ref. [3] proposes a high-
order compact difference method with fourth-order preci-
sion in space and second order in time. Explicit solutions to
differential equations of complex fractional orders with
respect to functions and continuous variable coefficients are
determined in [4]. Different types of fractional derivatives
have appeared in the literature that strengthen and generalize
the classical fractional operators defined by the aforemen-
tioned authors [5, 6]. Katugampola recently discovered a
new type of fractional integral operator which encompasses
the Riemann-Liouville and Hadamard operators in a single
form [7, 8]. Moreover, several other fractional operators are
being introduced to date. Due to a wide range of definitions
for fractional-order integrals and derivatives [9–11], the idea
of a fractional derivative of one function with respect to
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another function emerged. This class of fractional operators
depends on a kernel function and unifies many definitions
of fractional operators. Almeida used the idea of fractional
derivatives in the Caputo sense and introduced the φ-Caputo
fractional derivative of one function with respect to some other
function [12]. The proper choice of a trial function helps in the
modeling of physical phenomenon and makes the approach
more suitable from the application point of view [13, 14].

Wavelet analysis is a well-known and widely used math-
ematical method in engineering and other sciences [15, 16].
Wavelets are made up of function expressions that have been
extended into a sum of basic functions. A mother wavelet
function is translated and compressed to obtain these basic
functions. As a result, it inherits properties of locality and
smoothness, making it simple to research the properties of
integer and locality during the process of expressing func-
tions. Wavelets have sparked a lot of interest in using them
to solve classical ordinary and partial differential equations
numerically. Researchers have recently succeeded in extend-
ing several standard wavelet methods to numerical solutions
for fractional differential equations. Numerical integration
and numerical solutions of fractional ordinary and fractional
partial differential equations are some of the other applica-
tions of wavelet methods in applied mathematics. So, for
now, wavelets such as the Haar-wavelet, B-spline, Daube-
chies, and Legendre wavelet are used [17–21]. In Ref. [22],
the Genocchi wavelet-like operational matrix was used
together with the collocation method to solve nonlinear
FDEs. For solving fractional integrodifferential equations,
the Jacobi wavelet operational matrix of fractional integra-
tion is constructed and utilized in [23]. The Haar-wavelet is
a simple form of orthonormal wavelets with compact support
and has been used by many researchers. The Haar-wavelet
family consisted of rectangular functions. It also includes
the lower member of the Daubechies wavelet family, which
is suitable for computer implementation. The Haar-
wavelets are used to transform a fractional differential equa-
tion into an algebraic structure of finite variables [24–27].

For modeling different physical problems, it is difficult to
pick the right operator. Therefore, generalized operators of
fractional order should be developed for which classical oper-
ators are special cases. An effective way to deal with such a
variety is to merge these definitions into one by considering
fractional derivatives of function f with respect to another
function φ. The Riemann-Liouville operators of fractional
order are generalized by introducing the fractional-order dif-
ferentiation and integration of a function by another function
[28, 29]. In [12, 30], Almeida defined the φ-Caputo fractional
differential and integral operators and discussed its charac-
teristics. The contribution made by Almeida et al. plays a piv-
otal role in putting together a wide range of fractional
operators. Moreover, recent work on the φ-Caputo derivative
indicates that φ-Caputo fractional differential-based mathe-
matical models are more flexible and provide felicitous
results in many situations. In order to evaluate the growth
of the world population, Almeida [12] implemented the φ-
Caputo derivative and illustrated that the appropriate selec-
tion of a fractional operator determines the model’s preci-
sion. Using fixed-point theorems, Almeida et al. in [13]

investigated the existence and uniqueness of a solution for
nonlinear FDEs involving a φ-Caputo derivative. Almeida
et al. in [31] introduced the φ-shifted Legendre polynomials
for solving fractional oscillation equations containing the φ-
Caputo derivative of fractional order. We therefore see the
theory of φ-FDEs as a promising field for further study. In
this paper, taking motivation by the work cited above, we
developed a new numerical method for solving linear and
nonlinear boundary value problems in φ-FDEs.

The rest of the paper is organized as follows: We start
Section 2 with an overview of the fractional calculus followed
by a discussion of the classical Haar-wavelet and an approx-
imation of the functions by the Haar-wavelet. In Section 3,
we developed the φ-Haar operational matrix of fractional-
order integration of the Haar-wavelet and then utilize it for
a numerical solution of the φ-FDEs. In Section 3.1, the error
estimate of the developed technique is discussed in depth.
Section 4 is devoted to some numerical results and figures
that show the precision and effectuality of the developed
technique. Finally, a conclusion is given in the last section.

2. Preliminaries

Here, we present some vital definitions of φ-fractional oper-
ators and their basic properties which will be used in the sub-
sequent sections of the paper.

Let the function f : ½α, β�⟶ℝ be integrable, ρ a posi-
tive real number, n a natural number, and φ ∈ C1ð½α, β�Þ an
increasing function such that φ′ðζÞ ≠ 0∀ζ ∈ ½α, β�.

Definition 1. The Caputo fractional derivative of a function f
is defined by

CD
ρ
α f ζð Þ = 1

Γ n − ρð Þ
ðζ
α

ζ −I½ �n−ρ−1 d
dI

� �n

f Ið ÞdI, ð1Þ

where ζ ∈ ½α, β�, ρ ∈ℝ+, and n = dρe.

Definition 2 (see [9, 30, 32]). The φ-Riemann-Liouvile (φ-RL)
integration operator of fractional-order ρ of a function f ðζÞ
is defined as follows:

I ρ,φ
α f ζð Þ = 1

Γ ρð Þ
ðζ
α

φ′ Ið Þ φ ζð Þ − φ Ið Þ½ �ρ−1 f Ið ÞdI: ð2Þ

The φ-RL derivative operator of fractional-order ρ of the
function f ðζÞ is defined as follows:

Dρ,φ
α f ζð Þ = 1

φ′ ζð Þ
d
dζ

 !n

I n−ρ,φ
α f ζð Þ

= 1
Γ n − ρð Þ

1
φ′ ζð Þ

d
dζ

 !n

�
ðζ
α

φ′ Ið Þ φ ζð Þ − φ Ið Þ½ �n−ρ−1 f Ið ÞdI,

ð3Þ

where n = bρc + 1.
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Definition 3 (see [12]). Let ρ be a positive real number, n a
natural number, and f , φ ∈ Cnð½α, β�Þ such that φ is increas-
ing and φ′ðζÞ ≠ 0∀ζ ∈ ½α, β�. The φ-Caputo differential oper-
ator of fractional-order ρ is defined by

CDρ,φ
α f ζð Þ = 1

Γ n − ρð Þ
ðζ
α

φ′ Ið Þ φ ζð Þ − φ Ið Þ½ �n−ρ−1Dn,φ f Ið ÞdI,

ð4Þ

where f ½n�φ ðζÞ = ðð1/φ′ðζÞÞðd/dζÞÞn f ðζÞ, n = bρc + 1 if ρ ∉ℕ,
whereas n = ρ if ρ ∈ℕ.

Remark 4. For particular choices of φðζÞ, these operators are
reduced to the following given operators of the fractional
order:

(i) φðζÞ = ζ refer to the classical RL and Caputo frac-
tional operators

(ii) φðζÞ = ln ðζÞ refer to the classical Hadamard and
Caputo-Hadamard fractional operators

2.1. Characteristics of the φ-Fractional Operators. Some fun-
damental characteristics of the φ-fractional operators are
listed below [12, 30].

Let f ðζÞ = ðφðζÞ − φðαÞÞγ, where γ > n and ρ > 0. Then,

Iρ,φα f ζð Þ = Γ γ + 1ð Þ
Γ ρ + γ + 1ð Þ φ ζð Þ − φ αð Þð Þρ+γ,

Dρ,φ
α f ζð Þ = Γ γ + 1ð Þ

Γ γ + 1 − ρð Þ φ ζð Þ − φ αð Þð Þγ−ρ,

Iρ,φα Dρ,φ
α f ζð Þ = f ζð Þ − 〠

n−1

k=0

Dk,φ f ζð Þ
k!

φ ζð Þ − φ αð Þð Þk:

ð5Þ

Example 5. Let f ðζÞ = ðζ − αÞγ, with γ > n and ρ > 0. Then,
the Caputo fractional derivative is given by

CDρ
α f ζð Þ = Γ γ + 1ð Þ

Γ γ + 1 − ρð Þ ζ − αð Þγ−ρ: ð6Þ

The Caputo fractional derivatives of sin ðζÞ and cos ðζÞ
are given by

CDρ
α sin ζð Þ = ζð Þ 1−ρð ÞE2,2−ρ −ζ2

� �
,

CDρ
α cos ζð Þ = ζð Þ−ρE2,1−ρ −ζ2

� �
,

ð7Þ

where Eα,β is the two-parameter Mittag-Leffler function
defined by

Eα,β = 〠
∞

ℓ=0

ζℓ

Γ αℓ + βð Þ : ð8Þ

2.2. Existence and Uniqueness of Solution for Nonlinear φ-
FDEs. In this section, we provide existence and uniqueness
theorems for nonlinear φ-FDEs.

Consider the nonlinear φ-FDE:

Dρ,φ
α y ζð Þ = f ζ, y ζð Þð Þ,

t ∈ α, β½ �:
ð9Þ

We have the initial conditions, namely, yðαÞ = yα and

y½ℓ�φ ðαÞ = yℓα, ℓ = 1,⋯, n − 1, where

(1) 0 < ρ ∉N and n = ½ρ� + 1
(2) yα and yℓα, where ℓ = 1,⋯, n − 1, are fixed reals

(3) y ∈ Cn−1½α, β�, such that Dρ,φ
α exists and is continuous

in ½α, β�
(4) f : ½α, β� ×ℝ⟶ℝ is continuous

Theorem 6. A function y ∈ Cn−1½α, β� is a solution to problem
(9) if and only if y satisfies the following fractional integral
equation:

y ζð Þ = f ζ, y ζð Þð Þ − 〠
n−1

ℓ=0

yℓα
ℓ!

φ ζð Þ − φ αð Þð Þℓ: ð10Þ

Theorem 7. Let f be a Lipschitz continuous function with
respect to the second variable, that is, ∃ is a positive constant
L such that

f ζ, x1ð Þ − f ζ, x2ð Þj j ≤ L x1 − x2j j, ∀ζ ∈ α, β½ �,∀x1, x2 ∈ℝ:

ð11Þ

Then, there is a constant h ∈ℝ+, such that there exists a
unique solution to problem (9) on the interval ½α, α + h� ⊆ ½α
, β�.

Proof of Theorems 6 and 7 can be seen in [13].

2.3. Approximation of Function by the Haar-Wavelet. The ith
Haar-wavelet defined on the interval ½α, β� is given by

hi ζð Þ =
1, for ζ ∈ ϰ1 ið Þ, ϰ2 ið Þ½ Þ,
−1, for ζ ∈ ϰ2 ið Þ, ϰ3 ið Þ½ Þ,
0, elsewhere,

8>><
>>: ð12Þ

where ϰ1ðiÞ = α + ðβ − αÞðk/mÞ, ϰ2ðiÞ = α + ðβ − αÞð2k + 1/
mÞ, ϰ3ðiÞ = α + ðβ − αÞðk + 1/mÞ, and m = 2j, where j = 0,
1, 2, 3,⋯, J and k = 0, 1, 2, 3,⋯,m − 1. Here, j and k are
the wavelet’s dilation and translation parameters, whereas
J is the maximum level of resolution. The relationship i
=m + k + 1 identifies the wavelet number i. For i ≥ 3,
equation (12) holds true.
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The corresponding scaling functions of the Haar-wavelet
family for i = 1 and i = 2 are

h1 ζð Þ =
1, for ζ ∈ α, β½ �,
0, elsewhere,

(

h2 ζð Þ =

1, if ζ ∈ α, α + β

2

� �
,

−1, if ζ ∈ α + β

2 , β
� �

,

0, elsewhere:

8>>>>>><
>>>>>>:

ð13Þ

Any function yðζÞ defined and square integrable over the
interval ½0, 1Þ can be expressed in terms of the Haar-wavelet
as follows:

y ζð Þ = 〠
∞

i=0
cihi ζð Þ, ð14Þ

where the coefficients ci of the Haar-wavelet are defined by

ci = y ζð Þ, hi ζð Þh i =
ð1
0
y ζð Þhi ζð Þdζ: ð15Þ

In practice, only the firstm terms of the series in equation
(14) are considered, where m is a power of 2, that is,

y ζð Þ ≅ ym ζð Þ = 〠
m−1

i=0
cihi ζð Þ, ð16Þ

with vector form as

y ζð Þ ≅ ym ζð Þ = CT
mHm ζð Þ, ð17Þ

where CT
m = ½c0, c1, c2,⋯,cm−1� and HmðζÞ =

½h0ðζÞ, h1ðζÞ, h2ðζÞ,⋯,hm−1ðζÞ�T .

3. The φ-Haar-Wavelet Operational Matrix

In this section, our endeavor is to construct the φ-Haar-
wavelet operational matrix Pρ,φ of fractional-order ρ and
use it to solve φ-FDEs numerically. The φ-fractional integra-
tion of the Haar-wavelet is performed using equation (2).
Mathematically, the generalized fractional-order integration
of the Haar-wavelet, Hm = ½h0, h1, h2,⋯,hm−1�, is given by

Pρ,φ
i ζð Þ = 1

Γ ρð Þ
ðζ
α

φ′ Ið Þ φ ζð Þ − φ Ið Þ½ �ρ−1hi Ið ÞdI: ð18Þ

Analytically, these generalized φ-fractional integrals can
be approximated as follows:

Pρ,φ
i ζð Þ =

0, if ζ < ϰ1 ið Þ,
Φ1, if ζ ∈ ϰ1 ið Þ, ϰ2 ið Þ½ Þ,
Φ2, if ζ ∈ ϰ2 ið Þ, ϰ3 ið Þð �,
Φ3, if ζ > ϰ3 ið Þ,

8>>>>><
>>>>>:

ð19Þ

where

Φ1 =
1

Γ ρ + 1ð Þ φ ζð Þ − φ ϰ1 ið Þð Þ½ �ρ,

Φ2 =
1

Γ ρ + 1ð Þ φ ζð Þ − φ ϰ1 ið Þð Þð Þρ − 2 φ ζð Þ − φ ϰ2 ið Þð Þð Þρ� �
,

Φ3 =
1

Γ ρ + 1ð Þ φ ζð Þ − φ ϰ1 ið Þð Þð Þρ − 2 φ ζð Þð�
− φ ϰ2 ið Þð ÞÞρ + big φ ζð Þ − φ ϰ3 ið Þð Þð Þρ�: ð20Þ

Equation (19) holds for i > 1; for i = 1, we have

Pρ,φ
1 ζð Þ = 1

Γ ρ + 1ð Þ φ ζð Þ − φ αð Þ½ �ρ: ð21Þ

The fractional-order φ-Haar-wavelet operational matrix
Pρ,φ for the function φðζÞ = ζ2 and ρ = 0:75 is given by

Pρ,φ
m×m =

0:4342 −0:2816 −0:0998 −0:1763 −0:0356 −0:0623 −0:0806 −0:0953
−0:0210 0:1735 −0:0998 0:2392 −0:0356 −0:0623 0:1297 0:1153
−0:0739 0:0653 0:0613 −0:0204 −0:0356 0:0833 −0:0173 −0:0058
0:0653 −0:0653 0 0:1167 0 0 −0:1051 0:1635
−0:0285 0:0022 0:0221 −0:00291 0:0211 −0:0066 −0:0019 −0:0010
−0:0094 0:0318 −0:0224 −0:00901 0 0:0435 −0:0088 −0:0020
0:0064 −0:0064 0 0:06786 0 0 0:0616 −0:0113
0:0280 −0:0280 0 −0:05604 0 0 0 0:0779

2
666666666666666664

3
777777777777777775

: ð22Þ
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Also, the approximate and exact φ-RL fractional integra-
tion of φðζÞ = sin ð5ζÞ for J = 6 and various choices of ρ is
plotted in Figure 1.

3.1. Convergence Analysis of the φ-Haar-Wavelet Method. In
[33], the Caputo-type FDEs were recently analyzed for error.
Furthermore, utilizing the Haar wavelet, [34] proves conver-
gence for the solution of the nonlinear Fredholm integral
equations. In the present work, the upper limit for the error
estimate is calculated using the φ-Caputo fractional differen-
tial operator. The φ-Haar-wavelet method for FDEs is shown
to be convergent.

Theorem 8. Let ynðζÞ be continuous on interval ½α, β�, and
suppose ∃K > 0, such that jy½n�φ ðζÞj ≤ K∀ζ ∈ ½α, β�, where α, β
∈ℝ+, y½n�φ ðζÞ = ðð1/φ′ðζÞÞðd/dζÞÞnyðζÞ, and Dρ,φ

α ymðζÞ is the
approximation of Dρ,φ

α yðζÞ. Then, we have

Dρ,φ
α y ζð Þ −Dρ,φ

α ym ζð Þk kE ≤
β − αð ÞK φ′ βð Þ

� �m−ρ

Γ m − ρ + 1ð Þ
1

k m−ρð Þ
1

1 − 22 ρ−mð Þ� � 1/2ð Þ :

ð23Þ

Proof. Dρ,φ
α y can be approximated as follows:

Dρ,φ
α y ζð Þ = 〠

∞

i=α
cihi ζð Þ, ð24Þ

where

ci = Dρ,φ
α y ζð Þ, hi ζð Þh i =

ðβ
α

Dρ,φ
α y ζð Þð Þhi ζð Þdζ: ð25Þ

Suppose that Dρ,φ
α ym is the following approximation of

Dρ,φ
α y:

Dρ,φ
α ym ζð Þ = 〠

m−1

i=0
cihi ζð Þ, ð26Þ

where m = 2κ+1, κ = 1, 2, 3,⋯. Then,

Dρ,φ
α y ζð Þ −Dρ,φ

α ym ζð Þ = 〠
∞

i=m
cihi ζð Þ = 〠

∞

i=2κ+1
cihi ζð Þ, ð27Þ

which implies that

Dρ,φ
α y ζð Þ −Dρ,φ

α ym ζð Þk k2E =
ðζ
α

Dρ,φ
α y ζð Þ −Dρ,φ

α ym ζð Þð Þ2dζ

= 〠
∞

i=2κ+1
〠
∞

i′=2κ+1
cici′

ðζ
α

hi ζð Þhi′ ζð Þdζ:

ð28Þ

By orthogonality of the sequence fhmðζÞg, we have
Ð β
α

hmðζÞhmðζÞdζ = Im, where Im is the identity matrix of order
m. Therefore,

Dρ,φ
α y ζð Þ −Dρ,φ

α ym ζð Þk k2E = 〠
∞

i′=2κ+1
c2i : ð29Þ

From equation (25), we have

ci =
ðβ
α

Dρ,φ
α y ζð Þð Þhi ζð Þdζ

= 2 j/2ð Þ
ðα+ β−αð Þ k+ 1/2ð Þð Þ2− j

α+ β−αð Þk2− j
Dρ,φ
α y ζð Þdζ

(

−
ðα+ β−αð Þ k+1ð Þ2− j

α+ β−αð Þ k+ 1/2ð Þð Þ2− j
Dρ,φ
α y ζð Þdζ

)
:

ð30Þ

By the mean value theorem for integration, we have ∃ζ1,
ζ2 ∈ ðα, βÞ, such that

α + β − αð Þk2−j < ζ1 < α + β − αð Þ k + 1
2

� �
2−j,

α + β − αð Þ k + 1
2

� �
2−j < ζ2 < α + β − αð Þ k + 1ð Þ2−j,

ci = 2 j/2ð Þ β − αð Þ α + k + 1
2

� �
2−j − α + k2−j

	 
� �
Dρ,φ
α y ζ1ð Þ

�

− α + k + 1ð Þ2−j	 
	
− α + k + 1

2

� �
2−j

� �
Dρ,φ
α y ζ2ð Þ

�
= 2 j/2ð Þ β − αð Þ 2−j−1 Dρ,φ

α y ζ1ð Þ −Dρ,φ
α y ζ2ð Þð Þ �

:

ð31Þ

Hence,

c2i = 2−j−2 β − αð Þ2 Dρ,φ
α y ζ1ð Þ −Dρ,φ

α y ζ2ð Þð Þ2: ð32Þ
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Employing the definition of the φ-Caputo fractional

derivative, the fact that φ is increasing and the condition j
y½n�φ ðζÞj ≤ K , we arrive at

Dρ,φ
α y ζ1ð Þ −Dρ,φ

α y ζ2ð Þj j

= 1
Γ m − ρð Þ

ðζ1
α

φ′ ζð Þ φ ζ1ð Þ − φ ζð Þð Þm−ρ−1y n½ �
φ ζð Þdζ

�����
−
ðζ2
α

φ′ ζð Þ φ ζ2ð Þ − φ ζð Þð Þm−ρ−1y n½ �
φ ζð Þdζ

�����
≤

1
Γ m − ρð Þ

ðζ1
α

φ′ ζð Þ φ ζ1ð Þ − φ ζð Þð Þm−ρ−1y n½ �
φ ζð Þdζ

�����
−
ðζ1
α

φ′ ζð Þ φ ζ2ð Þ − φ ζð Þð Þm−ρ−1y n½ �
φ ζð Þdζ

�����
+
ðζ2
ζ1

φ′ ζð Þ φ ζ2ð Þ − φ ζð Þð Þm−ρ−1y n½ �
φ ζð Þdζ

�����
�����

≤
1

Γ m − ρð Þ
ðζ1
α

φ′ ζð Þ φ ζ1ð Þ − φ ζð Þð Þm−ρ−1
h 

− φ ζ2ð Þ − φ ζð Þð Þm−ρ−1
i
y n½ �
φ ζð Þ

��� ���dζ
+
ðζ2
ζ1

φ′ ζð Þ φ ζ2ð Þ − φ ζð Þð Þm−ρ−1 y n½ �
φ ζð Þ
��� ���dζ

!
,

ð33Þ

where

m − ρ − 1 > 0 = K
Γ m − ρ + 1ð Þ φ ζ1ð Þ − φ αð Þð Þm−ρ − φ ζ2ð Þð	
− φ αð ÞÞm−ρ + 2 φ ζ2ð Þ − φ ζ1ð Þð Þm−ρ
:

ð34Þ

Since ζ1 > α, ζ2 > α, and ζ2 > ζ1 and φðζÞ is an increasing
function, so

φ ζ1ð Þ − φ αð Þð Þm−ρ − φ ζ2ð Þ − φ αð Þð Þm−ρ < 0: ð35Þ

Therefore,

Dρ,φ
α y ζ1ð Þ −Dρ,φ

α y ζ2ð Þj j ≤ 2K
Γ m − ρ + 1ð Þ φ ζ2ð Þ − φ ζ1ð Þð Þm−ρ:

ð36Þ

By mean value theorem, ∃ϰ ∈ ½ζ, ζ2� ⊆ ½α, β�, such that φ
ðζ2Þ − φðζ1Þ ≤ ðζ2 − ζ1Þφ′ðϰÞ, we get

Dρ,φ
α y ζ1ð Þ −Dρ,φ

α y ζ2ð Þj j ≤ 2K
Γ m − ρ + 1ð Þ ζ2 − ζ1ð Þφ′ ϰð Þ

� �m−ρ

≤
2K

Γ m − ρ + 1ð Þ2j m−ρð Þ φ′ βð Þ
� �m−ρ

,

ð37Þ
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Figure 1: Exact and approximate φ-RL integration of the function f ðζÞ = sin ð5ζÞ for J = 6 and various choices of ρ and their maximum
absolute error.

Table 1: Optimal value of the upper bound of error at different J
and α = 0:25.

J yexact − yapprox xð Þ
��� ���

E
Optimality of the upper bound of error

4 3:5102 × 10−4 0.0714

5 2:8937 × 10−5 0.0216

6 6:8632 × 10−6 0.0542

7 3:2381 × 10−6 0.0139

Table 2: Maximum absolute error for various choices of ρ and J .

J ρ = 0:50 ρ = 0:70 ρ = 0:90 ρ = 1
0.5 3:2914 × 10−4 2:4211 × 10−4 2:3518 × 10−4 2:4036 × 10−4

0.6 1:1220 × 10−4 6:9659 × 10−5 5:9464 × 10−5 6:0560 × 10−5

0.7 3:8646 × 10−5 2:0316 × 10−5 1:5089 × 10−5 1:5199 × 10−5

0.8 1:3413 × 10−5 5:9901 × 10−6 3:8355 × 10−6 3:8072 × 10−6
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which gives

Dρ,φ
α y ζ1ð Þ −Dρ,φ

α y ζ2ð Þð Þ2 ≤ 4K2

Γ2 m − ρ + 1ð Þ22j m−ρð Þ φ′ βð Þ
� �2 m−ρð Þ

:

ð38Þ

Putting equation (38) into equation (32), we get

c2i ≤ 2−j−2 β − αð Þ2 4K2

Γ2 m − ρ + 1ð Þ22j m−ρð Þ φ′ βð Þ
� �2 m−ρð Þ

:

ð39Þ

Equations (29) and (39) give

Dρ,φ
α y ζð Þ −Dρ,φ

α ym ζð Þk k2E

= 〠
∞

i=2κ+1
c2i = 〠

∞

j=κ+1
〠

2 j+1−1

i=2 j
c2i

 !

≤ 〠
∞

j=κ+1
β − αð Þ2 K2

Γ2 m − ρ + 1ð Þ22j m−ρð Þ+j

· φ′ βð Þ
� �2 m−ρð Þ

2j+1 − 1 − 2 j + 1
	 


=
β − αð Þ2K2 φ′ βð Þ

� �2 m−ρð Þ

Γ2 m − ρ + 1ð Þ 〠
∞

j=κ+1

1
22j m−ρð Þ

=
β − αð Þ2K2 φ′ βð Þ

� �2 m−ρð Þ

Γ2 m − ρ + 1ð Þ
1

22 κ+1ð Þ m−ρð Þ
1

1 − 22 ρ−mð Þ ,

ð40Þ

which implies that

Dρ,φ
α y ζð Þ −Dρ,φ

α ym ζð Þk kE

≤
β − αð ÞK φ′ βð Þ

� �m−ρ

Γ m − ρ + 1ð Þ
1

2 κ+1ð Þ m−ρð Þ
1

1 − 22 ρ−mð Þ� � 1/2ð Þ :

ð41Þ

Let k = 2κ+1; (41) can also be written as

Dρ,φ
α y ζð Þ −Dρ,φ

α ym ζð Þk kE

≤
β − αð ÞK φ′ βð Þ

� �m−ρ

Γ m − ρ + 1ð Þ
1

k m−ρð Þ
1

1 − 22 ρ−mð Þ� � 1/2ð Þ :
ð42Þ

From the value of K , we can get an upper bound for the
error.

We first estimate the value of K . Since ynðζÞ is continuous
and bounded on ½α, β�, so y½n�φ ðζÞ is also continuous and
bounded on ½α, β� and is given by

y n½ �
φ ζð Þ ≅ 〠

m−1

i=0
cihi ζð Þ = CT

mHm ζð Þ, ð43Þ

where Cm = ½c0, c1, c2,⋯,cm−1�T and HmðζÞ =
½h0ðζÞ, h1ðζÞ, h2ðζÞ,⋯,hm−1ðζÞ�T .

0.7

Exact

0.6
0.5

y (
ζ) 0.4

0.3
0.2

0.1
0

0 0.1 0.2 0.3 0.4 0.5
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Figure 2: For J = 5, ρ = 0:6, and φðζÞ = sin ðζÞ: (a) approximate and exact solutions; (b) maximum absolute error.
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Integrating equation (43), we have

y n−1½ �
φ ζð Þ =

ðζ
α

y n½ �
φ ζð Þdζ + y n−1½ �

φ αð Þ

=
ðζ
α

y n½ �
φ ζð Þdζ ≅ CT

mP
1,φ
m×mHm ζð Þ:

ð44Þ

Similarly,

y n−2½ �
φ ζð Þ =

ðζ
α

y n−1½ �
φ ζð Þdζ + y n−2½ �

φ αð Þ

=
ðζ
α

y n−1½ �
φ ζð Þdζ ≅ CT

mP
2,φ
m×mHm ζð Þ:

ð45Þ
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Figure 3: (a) Approximate and exact solutions of equation (57) for ρ = 0:6 and φðζÞ = ζ2 − ζ: (b) Maximum absolute error. (c) Approximate
solutions of equation (57) for φðζÞ = ζ2 and various choices of ρ.
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Proceeding in the same way, we get

yφ ζð Þ ≅ CT
mP

m,φ
m×mHm ζð Þ: ð46Þ

By defining the points ζj = ððj − 1/2Þ/mÞ, j = 0, 1, 2,⋯,m.
Substituting ζj in equation (46), we have

yφ ζj
	 


≅ CT
mP

m,φ
m×mHm ζj

	 

: ð47Þ

The matrix form of equation (47) is as follows:

yφ ≅ CT
mP

m,φ
m×mHm ζj

	 

, ð48Þ

where yφ = ½yφðζ1Þ, yφðζ2Þ, yφðζ3Þ,⋯,yφðζmÞ�.
By using equation (48), we can investigate CT

m. From
equation (43), we may know the value of Dm,φðζÞ for each ζ
∈ ½α, β�.

Suppose ti ∈ ½α, β�, for i = 1, 2, 3,⋯, l, ti = ðti = ði − 1/lÞ/lÞ
, and we calculatey½n�φ ðtiÞ for i = 1, 2, 3,⋯, l; then, ε +max j
ynφðtiÞj may be measured as the approximation for K .

Obviously, this approximation would have additional
precision if l increases and ε is selected as β. ☐ ☐

Theorem 9. Let Dρ,φ
α ym, achieved by applying the φ-Haar-

wavelet, be the estimation of Dρ,φ
α y; then, the actual upper-

bound of error is given as follows:

y ζð Þ − ym ζð Þk kE ≤
KN

Γ ρ + 1ð ÞΓ m − ρ + 1ð Þ
1

k m−ρð Þ
1

1 − 22 ρ−mð Þ� � 1/2ð Þ ,

ð49Þ

where N =max jðβ − αÞðφðβÞÞm−ρðφðζÞ − φð0ÞÞρj.

Theorem 9 can be proven simply via Theorem 8. From
equation (49), we can understand that kyðζÞ − ymðζÞkE tends
to 0 as m tends to ∞, which shows that the φ-Haar-wavelet
technique converges.

Example 10. To demonstrate optimality of the upper bound
in equation (49), we consider the following φ-FDE:

Dρ,φ
0 y ζð Þ + y ζð Þ = φ ζð Þð Þ2ρ + Γ 2ρ + 1ð Þ

Γ ρ + 1ð Þ φ ζð Þð Þρ, 0 < ρ ≤ 1, ζ ∈ 0, 1½ �,

ð50Þ

with initial condition yð0Þ = 0, having the exact solution yðζ
Þ = ðφðζÞÞ2ρ.

Table 1 shows the optimal values of the upper bound of
error obtained for various options J and ρ = 0:25.

4. Numerical Solutions of φ-FDEs

In this section, we provide the solution to some problems in
linear and nonlinear φ-FDEs by employing the φ-Haar-
wavelet operational matrix technique.

4.1. Linear Case.Here, we consider two examples of linear φ-
FDEs for the numerical solution by the proposed method.

Example 11. Consider the composite oscillation equation of a
fractional order with the φ-Caputo fractional derivative:

Dρ,φ
0 y ζð Þ + y ζð Þ = φ ζð Þð Þ2 + 2

Γ 3 − ρð Þ φ ζð Þð Þ2−ρ, 0 < ρ ≤ 1, ζ ∈ 0, 1½ �,

ð51Þ

with the initial condition yð0Þ = 0. The exact solution of
equation (51) is given by yðζÞ = ðφðζÞÞ2. For numerical solu-
tions, we approximate Dρ,φ

0 yðζÞ as

Dρ,φ
0 y ζð Þ = CT

mHm ζð Þ: ð52Þ

Integrating equation (52) with the φ-Caputo integral
operator, we have

y ζð Þ =I
ρ,φ
0 CT

mHm ζð Þ + c1 = CT
mP

ρ,φ
m×mHm ζð Þ + c1: ð53Þ

Substituting the initial conditions in equation (51), we get

y ζð Þ = CT
mP

ρ,φ
m×mHm ζð Þ + φ 0ð Þð Þ2: ð54Þ

Substituting equations (52) and (54) for equation (51), we
have

CT
m Hm ζð Þ + Pρ,φ

m×mHm ζð Þð Þ = f ζð Þ, ð55Þ

where f ðζÞ = ðφðζÞÞ2 + ð2/Γð3 − ρÞÞðφðζÞÞ2−ρ − ðφð0ÞÞ2.
Equation (55) can be expressed in the matrix form as fol-

lows:

CT
m Hm ζð Þ + APρ,φ

m×mHm ζð Þð Þ = F, ð56Þ

where F = f ðζÞ: The value of CT
m can be obtained from equa-

tion (56). By using CT
m in equation (54), we can obtain the

numerical solutions. Table 2 represents approximate solu-
tions obtained for various choices of ρ and J . The exact and
numerical solutions of equation (51) and the maximum
absolute error are plotted in Figures 2(a) and 2(b), respec-
tively, for J = 5, ρ = 0:6, and φðζÞ = sin ðζÞ.

Table 3: Maximum absolute error for various choices of ρ and J .

J ρ = 0:60 ρ = 0:70 ρ = 0:80 ρ = 0:90
0.5 4:7700 × 10−5 4:4509 × 10−5 3:833 × 10−5 3:4673 × 10−5

0.6 1:4816 × 10−5 1:2922 × 10−5 1:0871 × 10−5 9:0534 × 10−6

0.7 4:6410 × 10−6 3:7700 × 10−6 2:9758 × 10−6 2:3511 × 10−6

0.8 1:4674 × 10−6 1:1071 × 10−6 8:1696 × 10−7 6:1074 × 10−7
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Example 12. In this example, consider the FDE involving the
φ-Caputo derivative:

Dρ,φ
0 y ζð Þ + y ζð Þ = φ ζð Þð Þ4 − 1

2 φ ζð Þð Þ3 − 3
Γ 4 − ρð Þ φ ζð Þð Þ3−ρ

+ 24
Γ 5 − ρð Þ φ ζð Þð Þ4−ρ,

ð57Þ

where 0 < ρ ≤ 1, ζ ∈ ½0, 1�, and the initial condition

y 0ð Þ = 0: ð58Þ

The exact solution of the problem (57) is given as follows:
yðζÞ = ðφðζÞÞ4 − ð1/2ÞðφðζÞÞ3. To get numerical solutions,
the φ-Haar-wavelet method is employed as follows. Let

Dρ,φ
0 y ζð Þ = CT

mHm ζð Þ: ð59Þ

Integrating equation (59) with the φ-Caputo integral
operator, we have

y ζð Þ =I
ρ,φ
0 CT

mHm ζð Þ + c1: ð60Þ

Substituting initial conditions in equation (60), we get
c1 = y0. Equation (60) becomes

y ζð Þ = CT
mP

ρ,φHm ζð Þ + y0: ð61Þ

Table 4: Maximum absolute error for φðζÞ = ζ3 and various choices of J and ρ.

J ρ = 0:60 ρ = 0:70 ρ = 0:80 ρ = 0:90 ρ = 1
0.5 2:9805 × 10−4 2:6189 × 10−4 9:0556 × 10−5 8:4937 × 10−5 4:0843 × 10−5

0.6 9:3858 × 10−5 8:2375 × 10−5 7:5629 × 10−5 4:5815 × 10−5 3:0209 × 10−5

0.7 8:0570 × 10−5 7:5617 × 10−5 6:8581 × 10−5 4:2393 × 10−6 2:5527 × 10−6

0.8 4:6741 × 10−5 3:3469 × 10−5 5:6175 × 10−6 3:0351 × 10−6 6:3818 × 10−7

0.9 3:2109 × 10−5 2:3126 × 10−5 7:8318 × 10−6 2:6165 × 10−7 1:5954 × 10−7
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Figure 4: Approximate solutions for ρ = 1, J = 5, and different choices of φðζÞ.

Table 5: Maximum absolute error for various choices of ρ and J .

ρ J = 0:5 J = 0:6 J = 0:7 J = 0:8
0.60 3:9081 × 10−4 2:1491 × 10−4 1:6723 × 10−4 3:0569 × 10−5

0.70 3:6472 × 10−4 1:7153 × 10−4 3:2854 × 10−5 3:7074 × 10−5

0.80 3:2019 × 10−4 1:3570 × 10−4 2:8061 × 10−5 5:8283 × 10−6

0.90 2:6195 × 10−4 9:0689 × 10−5 1:8584 × 10−5 4:1523 × 10−6

0.1 2:2700 × 10−4 5:8851 × 10−5 1:4983 × 10−5 3:7800 × 10−6
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Substituting equations (59) and (60) for equation (57), we
get

CT
m Hm ζð Þ + a ζð ÞPρ−κ,φHm ζð Þ + b ζð ÞPρ,φHm ζð Þð Þ = F ζð Þ,

ð62Þ

where FðζÞ = ðφðζÞÞ4 − ð1/2ÞðφðζÞÞ3 − ð3/Γð4 − ρÞÞ
ðφðζÞÞ3−ρ + ð24/Γð5 − ρÞÞðφðζÞÞ4−ρ. Approximate solutions
are obtained by solving equations (61) and (62). The exact
solution, approximate solutions, and the maximum absolute
error are plotted in Figure 3 for J = 6 and ρ = 0:6. Also, the
maximum absolute errors obtained for various choices of ρ
and J are given in Table 3. We noticed that the maximum
absolute error decreases with an increase in J .

4.2. Nonlinear Case

Example 13. Consider the fractional-order Riccati differential
equation with the φ-Caputo fractional derivative:

Dρ,φ
0 y ζð Þ = −y2 ζð Þ + 1, 0 < ρ ≤ 1, ζ ∈ 0, 1½ �, ð63Þ

subject to the initial condition yð0Þ = 0. For ρ = 1, the exact
solution of equation (63) is given by yðζÞ = ðeφð2ζÞ − 1/eφð2ζÞ
+ 1Þ. For numerical solutions, we first utilize the quasilinear-
ization techniques to make the nonlinear terms of equation
(63) linear and then solve the linearized problem with the φ
-Haar-wavelet method. The linearized form of (63) is

Dρ,φ
0 yr+1 ζð Þ + 2yr ζð Þyr+1 ζð Þ = y2r ζð Þ + 1, ζ > 0, 0 < ρ ≤ 1,

ð64Þ

with the initial condition yr+1ð0Þ = 0:

Now, we apply the φ-Haar-wavelet method to equation
(64). Let

Dρ,φ
0 yr+1 ζð Þ = CT

mHm ζð Þ: ð65Þ

Operating the φ-Caputo integral on equation (65), we get

yr+1 ζð Þ =I ρ,φCT
mHm ζð Þ + c1 = CT

mP
ρ,φ
m×mHm ζð Þ + c1: ð66Þ

Putting the initial conditions in equation (66) gives

yr+1 ζð Þ = CT
mP

ρ,φ
m×mHm ζð Þ: ð67Þ

0 0.1 0.2 0.3 0.4
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0.5
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Figure 5: Exact solution for ρ = 1 and numerical solutions for various choices of ρ.

Table 6: Comparison of results obtained in [31] and by our method
for φðζÞ = ðζ2/2Þ + ðζ/2Þ.

ζ
y-

Exact
y-Approximate by

[31]
Error by
[31]

Error by our
method

0.0 0.0000 0.00060 60 × 10−4 60 × 10−4

0.1 0.0031 0.0037 70 × 10−4 60 × 10−4

0.2 0.0144 0.0151 80 × 10−4 70 × 10−4

0.3 0.0380 0.0388 90 × 10−4 80 × 10−4

0.4 0.0783 0.0793 10 × 10−4 10 × 10−4

0.5 0.1416 0.1427 11 × 10−4 12 × 10−3

0.6 0.2313 0.2324 11 × 10−3 11 × 10−3

0.7 0.3542 0.3553 12 × 10−4 11 × 10−4

0.8 0.5274 0.5284 10 × 10−3 10 × 10−3

0.9 0.7411 0.7421 10 × 10−4 10 × 10−4

1.0 1.0000 1.0007 70 × 10−4 70 × 10−4
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Substituting equations (65) and (66) for equation (64), we
have

CT
m Hm ζð Þ + 2yr ζð ÞPρ,φ

m×mHm ζð Þð Þ = 1 + y2r ζð Þ: ð68Þ

The matrix form of equation (68) is given by

CT
m Hm ζð Þ + 2yrPρ,φ

m×mHm ζð Þð Þ = F, ð69Þ

where F = 1 + y2r : By solving the algebraic system given by
equation (69) for CT

m and substituting this value into equa-
tion (67), we will have the required numerical solution. In
Table 4, the maximum absolute error is given for φðζÞ = ζ3.
Also, approximate solutions for different choices of the func-
tion φ are plotted in Figure 4.

Example 14. Finally, consider the Riccati differential equation
of fractional order having the φ-Caputo fractional derivative:

Dρ,φ
0 y ζð Þ = 2y ζð Þ − y ζð Þ2 + 1, ð70Þ

where 0 < ρ ≤ 1 and ζ ∈ ½0, 1�.
Then, we subject this to the initial condition:

y 0ð Þ = 0: ð71Þ

When ρ = 1, yðζÞ = 1 +
ffiffiffi
2

p
tanh ð ffiffiffi

2
p

φðζÞ + ð1/2Þ log ððffiffiffi
2

p
− 1Þ/ð ffiffiffi

2
p

+ 1ÞÞÞ is the actual solution of problem (70).
For numerical solutions, we first utilize the quasilinearization
technique to linearize the nonlinear terms in equation (70)
and then solve the linearized FDE by the φ-Haar-wavelet
method.

Equation (70) in the linearized form is given by

Dρ,φ
0 yr+1 − 2 − 2yr ζð Þð Þyr+1 ζð Þ = y2r ζð Þ + 1, ζ > 0 and 0 < ρ ≤ 1,

ð72Þ

with the initial condition yr+1ð0Þ = 0.
Consider

Dρ,φ
0 yr+1 = CT

mHm ζð Þ: ð73Þ

Taking the φ-Caputo integral of (73),

yr+1 =I
ρ,φ
0 CT

mHm ζð Þ + c1: ð74Þ

Substituting the initial condition in equation (74), we have
c1 = 0:

Using c1 = 0 in equation (74), we get

yr+1 = CT
mP

ρ,φ
m×mHm: ð75Þ

Substituting equations (73) and (75) for equation (70), we get

CT
m Hm ζð Þ − 2 − 2yr ζð Þð Þð ÞPρ,φ

m×mHm ζð Þ = F ζð Þ: ð76Þ

Required approximate solutions can be obtained by using

the value of CT
m from equation (76) in equation (75). Table 5

shows that the maximum absolute error decreases by increas-
ing the values of J . Also, the approximate solutions are dis-
played in Figure 5 for various values of ρ.

Example 15. For comparison with another method, we con-
sider the following problem:

D 3/2ð Þ,φ
0 y ζð Þ + 2

Γ 3/2ð Þ y ζð Þ = 2
Γ 3/2ð Þ 1 + φ ζð Þð Þ 3/2ð Þ

� �
, ζ ∈ 0, 1½ �,

ð77Þ

with the initial condition yð0Þ = 0. The exact solution of
equation (77) is given by yðζÞ = ðφðζÞÞ2. This problem is
studied in [31] by using the operational matrix of the φ
-shifted Legendre polynomials.
For φðζÞ = ðζ2/2Þ + ðζ/2Þ, a comparison of the results obtained
in [31] and by the proposed method is given in Table 6.

5. Conclusion

In this article, the φ-FDEs are solved numerically by introduc-
ing the φ-Haar-wavelet operational matrix of integration of
fractional order. This operational matrix has been used to solve
both linear and nonlinear problems with success. In compari-
son to the other methods, this approach is simple and more
convergent. The developed method is used to solve a number
of linear and nonlinear problems, demonstrating its efficiency
and accuracy. Furthermore, the method’s error analysis is thor-
oughly examined. As a future work, the proposed method may
be applied to different wavelets as well as other operators.
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