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In this paper, we will apply some fixed-point theorems to discuss the existence of solutions for fractional m-point boundary value
problems Dq

0+ðu″ðtÞÞ = hðtÞf ðuðtÞÞ, t ∈ ½0, 1�, 1 < q ≤ 2, u′ð0Þ = u″ð0Þ = uð1Þ = 0, u″ð1Þ −∑m−2
i=1 αiu

‴ðξiÞ = 0: In addition, we also
present Lyapunov’s inequality and Ulam-Hyers stability results for the given m-point boundary value problems.

1. Introduction

Mathematical models due to fractional differential equations
can describe the natural phenomenon in physics, population
dynamics, chemical technology, biotechnology, aerodynam-
ics, electrodynamics of complex medium, polymer rheology,
and control of dynamical systems (see [1–4]). Due to the
nonlocal characteristics and the rapid development of the
theory of fractional operators, some authors have investi-
gated different aspects of fractional differential equations
including existence of solutions, Lyapunov’s inequality, and
Hyers-Ulam stability for fractional differential equations by
different mathematical techniques. For example, first, many
authors have discussed the existence of nontrivial solutions
of fractional differential equations in nonsingular case as well
as singular case. Usually, the proof is based on either the
method of upper and lower solutions, fixed-point theorems,
alternative principle of Leray-Schauder, topological degree
theory, or critical point theory. We refer the readers to [5–
20]. Second, Lyapunov, during his study of general theory
of stability of motion in 1892, introduced the stability crite-
rion for second-order differential equations, which yielded
a counter inequality be called Lyapunov inequality (see [21,
22]). Since then, we can find considerable modifications of
Lyapunov-type inequality of differential equations, such as
linear differential-algebraic equations, fractional differential

equations, extreme Pucci equations, and dynamic equations,
which are applied to study the stability and disconjugacy or
oscillatory criterion for the mentioned problems, and we
refer the readers to [23–32]. Finally, the stability of functional
equations was originally raised by Hyers in 1941 (see [33,
34]). Thereafter, the stability properties of all kinds of
equations have attracted the attention of many mathema-
ticians. To see more details on the Ulam-Hyers stability
and Ulam-Hyers-Rassias of differential equations, we refer
the readers to [35–38].

Inspired by the references, this paper is mainly concerned
with the existence, Lyapunov’s inequality, and Ulam-Hyers
stability results for the m-point boundary value problems.

Dq
0+ u″ tð Þ
� �

= h tð Þf u tð Þð Þ, t ∈ 0, 1½ �, 1 < q ≤ 2,

u′ 0ð Þ = u″ 0ð Þ = u 1ð Þ = 0, u″ 1ð Þ − 〠
m−2

i=1
αiu

‴ ξið Þ = 0,

8>>><
>>>:

ð1Þ

where αi, ξi, h, and f satisfy the following assumptions:
(H1) ∑m−2

i=1 αiξ
q−2
i > 1/q − 1 and ∑m−2

i=2 αi ≤ ð1 − ξm−2Þq−1/
ðq − 1Þξq−2m−2ðð1 − ξm−2Þq−1/ðq − 1Þξq−2m−2Þ

(H2) h : ½0, 1�⟶ℝ is Lebesgue integral
(H3) f : ℝ⟶ℝ is continuous
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For these goals, we first convert problem (1) into an inte-
gral equation via Green function. Furthermore, we study the
properties and estimates of the Green function. Then, on the
basis of these properties, we apply some fixed-point theorems
to establish some existence results of problem (1) under some
suitable conditions. In addition, the Lyapunov inequality and
Hyers-Ulam stability of the proposed problem are also
considered.

2. Preliminaries

Before beginning the main results, we state some classic and
modified definitions and lemmas from fractional calculus.

Definition 1 [4]. The fractional integral of order q > 0 of a
function u : ð0,+∞Þ⟶ R is given by

Iq0+u tð Þ = 1
Γ qð Þ

ðt
0
t − sð Þq−1u sð Þds, ð2Þ

provided the right-hand side is pointwise defined on ð0, +∞Þ
.

Definition 2 [4]. The fractional derivative of order q > 0 of a
continuous function u : ð0,+∞Þ⟶ R is given by

Dq
0+u tð Þ = 1

Γ n − qð Þ
d
dt

� �nðt
0

u sð Þ
t − sð Þq−n−1 ds, ð3Þ

where n = ½q� + 1, provided that the right-hand side is point-
wise defined on ð0, +∞Þ.

Definition 3 [21]. Assume that q > 0, then

Iq0+D
q
0+u tð Þ = u tð Þ + 〠

n

i=1
Cit

q−i, ð4Þ

for some Ci ∈ R, i = 1, 2,⋯, n, where n is the smallest integer
greater than or equal to q.

Lemma 4. Assume that (H1) holds. Then, for any yðtÞ ∈
L1½0, 1�, the boundary value problem

Dq
0+ u″ tð Þ
� �

= y tð Þ, t ∈ 0, 1½ �, 1 < q ≤ 2,

u′ 0ð Þ = u″ 0ð Þ = u 1ð Þ = 0, u″ 1ð Þ − 〠
m−2

i=1
αiu

‴ ξið Þ = 0,

8>>><
>>>:

ð5Þ

has a unique solution uðtÞ = Ð 10Gðt, sÞyðsÞds. Let p = 1 − ðq
− 1Þ∑m−2

i=1 αiξ
q−2
i < 0,, and we have

(i) for s ≤ t, s ≤ ξ1

G t, sð Þ = 1
Γ q + 2ð Þ

"
t − sð Þq+1 − 1 − sð Þq+1

+ 1 − tq+1 −
1 − tq+1
� �

1 − 1 − sð Þq−1� 	
p

# ð6Þ

(ii) for t ≤ s ≤ ξ1

G t, sð Þ = 1
Γ q + 2ð Þ

"
− 1 − sð Þq+1 + 1 − tq+1

−
1 − tq+1
� �

1 − 1 − sð Þq−1� 	
p

# ð7Þ

(iii) for s ≤ t, ξj ≤ s ≤ ξj+1, j = 1, 2,⋯,m − 3

G t, sð Þ = 1
Γ q + 2ð Þ

"
1 − tq+1

p

"
1 − sð Þq−1 − q − 1ð Þ

� 〠
m−2

i=j+1
αi ξi − sð Þq−2

#
+ t − sð Þq+1 − 1 − sð Þq+1

# ð8Þ

(iv) for t ≤ s, ξj ≤ s ≤ ξj+1, j = 1, 2,⋯,m − 3

G t, sð Þ = 1
Γ q + 2ð Þ

"
1 + tq+1

p

"
1 − sð Þq−1 − q − 1ð Þ

� 〠
m−2

i=j+1
αi ξi − sð Þq−2

#
− 1 − sð Þq+1

#
ð9Þ

(v) for ξm−2 ≤ s ≤ t

G t, sð Þ = 1
Γ q + 2ð Þ t − sð Þq+1 − 1 − sð Þq+1 + 1 − tq+1

p
1 − sð Þq−1


 �
ð10Þ

(vi) for ξm−2 ≤ s, t ≤ s

G t, sð Þ = 1
Γ q + 2ð Þ − 1 − sð Þq+1 + 1 − tq+1

p
1 − sð Þq−1


 �
ð11Þ

Proof. From Definition 3, it follows that

u″ tð Þ = Iq0+y tð Þ − C1t
q−1 − C2t

q−2: ð12Þ
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Since u″ð0Þ = 0, it is clear that C2 = 0. Then,

u″ tð Þ = Iq0+y tð Þ − C1t
q−1 = 1

Γ qð Þ
ðt
0
t − sð Þq−1y sð Þds − C1t

q−1:

ð13Þ

On one hand, taking the derivative of u′′ðtÞ, we can get

u‴ tð Þ = q − 1
Γ qð Þ

ðt
0
t − sð Þq−2y sð Þds − q − 1ð ÞC1t

q−2: ð14Þ

On the other hand, combining the boundary conditions
uð1Þ = u′ð0Þ = 0, we have

u′ tð Þ = 1
Γ qð Þ

ðt
0

ðτ
0
τ − sð Þq−1y sð Þdτ − C1

q
tq

= 1
Γ q + 1ð Þ

ðt
0
t − sð Þqy sð Þds − C1

q
tq:

ð15Þ

Furthermore, we have

u tð Þ = −
1

Γ q + 1ð Þ
ð1
t

ðτ
0
τ − sð Þqy sð Þdsdτ + C1

q

ð1
t
τqdτ

= −
1

Γ q + 2ð Þ
ðt
0
1 − sð Þq+1y sð Þds −

ðt
0
t − sð Þq+1y sð Þds


 �

+ C1 1 − tq+1
� �
q q + 1ð Þ :

ð16Þ

According to these above expressions, we have

u″ 1ð Þ = 1
Γ qð Þ

ð1
0
1 − sð Þq−1y sð Þds − C1,

〠
m−2

i=1
αiu

‴ ξið Þ = q − 1
Γ qð Þ 〠

m−2

i=1
αi

ðξi
0
ξi − sð Þq−2y sð Þds

− q − 1ð ÞC1 〠
m−2

i=1
αiξ

q−2
i :

ð17Þ

Then, from u″ð1Þ −∑m−2
i=1 αiu

‴ðξ1Þ = 0, it follows that

C1 =
1

pΓ qð Þ

"ð1
0
1 − sð Þq−1y sð Þds

− q − 1ð Þ 〠
m−2

i=1
αi

ðξi
0
ξi − sð Þq−2y sð Þds

#
,

ð18Þ

which yields

u tð Þ = 1
Γ q + 2ð Þ

"ðt
0
t − sð Þq+1y sð Þds −

ð1
0
1 − sð Þq+1y sð Þds

+ 1 − tq+1

p

 ð1
0
1 − sð Þq−1y sð Þds

− q − 1ð Þ 〠
m−2

i=1
αi

ðξi
0
ξi − sð Þq−2y sð Þds

!#
:

ð19Þ

If s ≤ t, s ≤ ξ1, we have

G t, sð Þ = 1
Γ q + 2ð Þ

"
t − sð Þq+1 − 1 − sð Þq+1 + 1 − tq+1

p

� 1 − sð Þq−1�
− q − 1ð Þ 〠

m−2

i=1
αi ξi − sð Þq−2

#

= 1
Γ q + 2ð Þ



t − sð Þq+1 − 1 − sð Þq+1 + 1

− tq+1 −
1 − tq+1

p
1 − 1 − sð Þq−1� �#

:

ð20Þ

☐

In the similar way, we also can get the expression of
Gðt, sÞ on other intervals.

Lemma 5. Assume that (H1) holds. Then, Gðt, sÞ satisfies the
following properties:

(I) Sign of Gðt, sÞ

(i) Gðt, sÞ ≥ 0, for 0 ≤ s ≤ ξ1

(ii) Gðt, sÞ ≤ 0, for ξ1 < s ≤ 1

(II) The range of Gðt, sÞ

(1) For 0 ≤ s ≤ ξ1

0 ≤ G t, sð Þ < 1
Γ q + 2ð Þ 1 − 1 − sð Þq+1 − 1 − 1 − sð Þq−1

p

" #
ð21Þ

(2) For ξj ≤ s ≤ ξj+1, j = 1, 2,⋯,m − 3

1
Γ q + 2ð Þ

"
1
p

1 − sð Þq−1 − q − 1ð Þ 〠
m−2

i=j+1
αi ξi − sð Þq−2

 !

− 1 − sð Þq+1
#
≤G t, sð Þ ≤ 0

ð22Þ
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(3) For ξm−2 ≤ s ≤ 1

1
Γ q + 2ð Þ

1 − sð Þq−1
p

− 1 − sð Þq+1
" #

≤G t, sð Þ ≤ 0 ð23Þ

Proof. For 0 ≤ s ≤ ξ1, by the definition ofGðt, sÞ, it is clear that
Gðt, sÞ is continuous and derivativable with respect to t at
½0, 1�. On one hand, if s ≤ t ≤ 1, we have

∂G
∂t

= 1
Γ q + 1ð Þ t − sð Þq − tq + tq 1 − 1 − sð Þq−1� 	

p

 !
≤ 0:

ð24Þ

On the other hand, if 0 ≤ t < s, we have

∂G
∂t

= tq

Γ q + 1ð Þ −1 + 1 − 1 − sð Þq−1
p

 !
≤ 0: ð25Þ

Then, Gðt, sÞ is nonincreasing on t, which yields that

min G t, sð Þ: t ∈ 0, 1½ �f g =G 1, sð Þ = 0,
max G t, sð Þ: t ∈ 0, 1½ �f g

=G 0, sð Þ = 1
Γ q + 2ð Þ 1 − 1 − sð Þq+1 − 1 − 1 − sð Þq−1

p

" #
:

ð26Þ

So for 0 ≤ s < ξ1, 0 ≤ t ≤ 1, it concludes that

0 ≤ G t, sð Þ < 1
Γ q + 2ð Þ 1 − 1 − sð Þq+1 − 1 − 1 − sð Þq−1

p

" #
: ð27Þ

For ξj ≤ s ≤ ξj+1ðj = 1, 2,⋯,m − 3Þ, we have

min G t, sð Þ: t ∈ 0, 1½ �f g

=G 0, sð Þ = 1
Γ q + 2ð Þ

"
1
p

 
1 − sð Þq−1

− q − 1ð Þ 〠
m−2

i=j+1
αi ξi − sð Þq−2

!
− 1 − sð Þq+1

#
,

max G t, sð Þ: t ∈ 0, 1½ �f g = G 1, sð Þ = 0:

ð28Þ

For ξm−2 ≤ s ≤ 1, we have

min G t, sð Þ: t ∈ 0, 1½ �f g

=G 0, sð Þ = 1
Γ q + 2ð Þ

1 − sð Þq−1
p

− 1 − sð Þq+1
" #

,

max G t, sð Þ: t ∈ 0, 1½ �f g =G 1, sð Þ = 0:

ð29Þ

☐

Let

G1 = max
s∈ 0,ξ1½ �

1
Γ q + 2ð Þ 1 − 1 − sð Þq+1 − 1 − 1 − sð Þq−1

p

" #( )

= 1
Γ q + 2ð Þ 1 − 1 − ξ1ð Þq+1 − 1 − 1 − ξ1ð Þq−1

p

" #
,

G2 = max
s∈ ξm−2,1½ �

1
Γ q + 2ð Þ

1 − sð Þq−1
p

− 1 − sð Þq+1
����

����
( )

= 1
Γ q + 2ð Þ 1 − ξm−2ð Þq+1 − 1 − ξm−2ð Þq−1

p

" #
,

G3 = max
1≤j≤m−3

G3
j

n o
,

ð30Þ

where

G3
j = max

s∈ ξ j,ξ j+1½ �

(
1

Γ q + 2ð Þ
1
p

"
1 − sð Þq−1

�����
− q − 1ð Þ 〠

m−2

i=j+1
αi ξi − sð Þq−2

#
− 1 − sð Þq+1

�����
)
:

ð31Þ

From Lemma 5, it is clear that jGðt, sÞj ≤ �G, where �G =
max fG1,G2,G3g.

Lemma 6. Assume that (H1) holds and ξ1 > 1 − ð1/2Þ1/q−1.
Then, �G =G1.

Proof. Let

Gj sð Þ =
1

Γ q + 2ð Þ
1
p

1 − sð Þq−1 − q − 1ð Þ 〠
m−2

i=j+1
αi ξi − sð Þq−2

" #�����
− 1 − sð Þq+1

�����, s ∈ ξj, ξj+1
� 	

, j = 1, 2,⋯,m − 3:

ð32Þ

From (H1) and ξ1 > 1 − ð1/2Þ1/q−1, we can verify that

G1 − Gj sð Þ
�� ��

= 1
Γ q + 2ð Þ

"
1 − 1 − ξ1ð Þq+1 − 1

p
1 − 1 − ξ1ð Þq−1
� �

− 1 − sð Þq+1 + 1
p

 
1 − sð Þq−1

− q − 1ð Þ 〠
m−2

i=j+1
αi ξi − sð Þq−2

!#
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≥
1

Γ q + 2ð Þ

"
1 − 1 − ξ1ð Þq+1 − 1 − ξj

� �q+1
−
1
p

�
1 − 1 − ξ1ð Þq−1 − 1 − ξ1ð Þq−1

�

−
q − 1
p

〠
m−2

i=j+1
αi ξi − ξj
� �q−2#

≥
1

Γ q + 2ð Þ

"
1 − 2 1 − ξ1ð Þq+1 − 1

p
1 − 2 1 − ξ1ð Þq−1
� �

−
q − 1
p

〠
m−2

i=j+1
αi ξi − ξj
� �q−2#

≥
1

Γ q + 2ð Þ 1 − 1
22/q−1 −

q − 1
p

〠
m−2

i=j+1
αi ξi − ξj
� �" #

> 0:

ð33Þ

Also, we can verify that

G1 −G2 = 1
Γ q + 2ð Þ



1 − 1 − ξ1ð Þq+1 − 1

p
1 − 1 − ξ1ð Þq−1
� �

− 1 − ξm−2ð Þq+1 + 1
p

1 − ξm−2ð Þq−1
�

≥
1

Γ q + 2ð Þ


1 − 2 1 − ξ1ð Þq+1 − 1

p
1 − 2 1 − ξ1ð Þq−1
� ��

≥
1

Γ q + 2ð Þ 1 − 1
22/q−1

� �
> 0:

ð34Þ

So, it concludes thatG1 >G2,G1 >G3, namely, �G =G1. ☐

3. Main Results

3.1. Existence Results

Theorem 7. Assume that (H1)-(H3) hold. In addition, there
exists a positive constant L > 0 such that

f uð Þ − f vð Þj j ≤ L u − vj j,∀u, v ∈ℝ: ð35Þ

Then, problem (1) has a unique solution if L�GjhjL1 < 1.

Proof. Let C½0, 1� = fxðtÞ: xðtÞ is continuous on ½0, 1�g is a
Banach space with the norm kxk = max

0≤t≤1
jxðtÞj. From Lemma

4, it is clear that solutions of (1) can be rewritten as fixed
points of operator T , which is defined by

Tu tð Þ =
ð1
0
G t, sð Þh sð Þf u sð Þð Þds: ð36Þ

Now, we show that T : Br ⟶ Br and T is a contraction
map, where Br = fu ∈ E : kuk < rg with

r >
�G hj jL1 f 0ð Þj j
1 − �GL hj jL1

: ð37Þ

On one hand, for any u ∈ Br , we have

T uð Þ tð Þk k =
ð1
0
G t, sð Þh sð Þf u sð Þð Þds












≤ �G
ð1
0
h sð Þf u sð Þð Þj jds

≤ �G
ð1
0
h sð Þj j f uð Þ − f 0ð Þj j + f 0ð Þj j½ �ds

≤ �G
ð1
0
h sð Þj j Lr + f 0ð Þj j½ �ds

≤ �G hj jL1 Lr + f 0ð Þj j½ � ≤ r,

ð38Þ

which implies that TðBrÞ ⊂ Br .
On the other hand, for any u, v ∈ E, we have

T uð Þ − T vð Þk k =
ð1
0
G t, sð Þh sð Þ f u sð Þð Þð Þds












≤ �G
ð1
0
h sð Þj j f u sð Þð Þ − f v sð Þð Þj jds

≤ �GL
ð1
0
h sð Þj j u sð Þ − v sð Þj jds

≤ L�G hj jL1 u tð Þ − v tð Þk k,

ð39Þ

which implies that T is a contraction map. ☐

Therefore, by the Banach contraction mapping principle,
it follows that the operator T has a unique fixed point, which
is the unique solution for problem (1).

Theorem 8. Assume that (H1)-(H3) hold. In addition, there
exists a positive constant K such that j f ðuÞj ≤ K for u ∈ R.
Then, problem (1) has at least one solution.

The proof is based on the following fixed-point theorem.

Lemma 9 [39]. Let E be a Banach space, E1 is a closed, convex
subset of E, Ω an open subset of E1, and 0 ∈Ω. Suppose that
T : Ω⟶ E1 is completely continuous. Then, either

(i) T has a fixed point in Ω, or

(ii) there are u ∈ ∂Ω (the boundary of Ω in E1) and ρ ∈
ð0, 1Þ with u = ρTu

Proof of Theorem 8. First, we show that the operator T is uni-
formly bounded.
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For any u ∈ �Ωδ = fu ∈ C½0, 1�: kuk ≤ δg, we have

T uð Þ tð Þk k =
ð1
0
G t, sð Þh sð Þf u sð Þð Þds










 ≤ �GK hj jL1 , ð40Þ

which implies that TðΩδÞ is uniformly bounded.
Second, for 0 ≤ s ≤ ξ1, from Lemma 4, we have

(i) if s ≤ t ≤ 1

∂G t, sð Þ
∂t

����
���� = 1

Γ q + 1ð Þ t − sð Þq − tq + tq 1 − 1 − sð Þq−1� 	
p

�����
�����

≤
1

Γ q + 1ð Þ t − sð Þq + tq −
tq 1 − 1 − sð Þq−1� 	

p

 !

≤
1

Γ q + 1ð Þ 2 − 1
p

� �
:

ð41Þ

(ii) if 0 ≤ t < s

∂G t, sð Þ
∂t

����
���� = 1

Γ q + 1ð Þ −tq + tq 1 − 1 − sð Þq−1� 	
p

�����
�����

≤
1

Γ q + 1ð Þ tq −
tq 1 − 1 − sð Þq−1� 	

p

 !

≤
1

Γ q + 1ð Þ 1 − 1
p

� �
,

ð42Þ

which implies that j∂Gðt, sÞ/∂tj is bounded for 0 ≤ s
< ξ1, 0 ≤ t ≤ 1. In the similar way, we know that there
exists a S > 0 such that j∂Gðt, sÞ/∂tj ≤ S for 0 ≤ s, t ≤ 1.

Furthermore, for t1, t2 ∈ ½0, 1�, we have

Tu t2ð Þ − Tu t1ð Þj j

=
ð1
0
G t2, sð Þh sð Þf u sð Þð Þds −

ð1
0
G t1, sð Þh sð Þf u sð Þð Þds

����
����

=
ð1
0
G t2, sð Þ −G t1, sð Þ½ �h sð Þf u sð Þð Þds

����
����

≤ SK hj jL1 t2 − t1j j:
ð43Þ

Therefore, applying the Arzela-Ascoli theorem [39], we
can find that TðΩδÞ is relatively compact.

Third, we claim that T : �Ωδ ⟶ℝ is continuous. Assume
that fung∞n=1 ⊂ �Ωδ, which converges to u0 uniformly on [0,1].
Since fðTunÞðtÞg∞n=1 is uniformly bounded and equicontinu-
ous on [0,1], from the Arzela-Ascoli theorem, it follows that
there exists a uniformly convergent subsequence in
fðTunÞðtÞg∞n=1. Let fðTunðmÞÞðtÞg∞m=1 be a subsequence which
converges to vðtÞ uniformly on [0,1]. Observe that

Tun mð Þ tð Þ =
ð1
0
G t, sð Þh sð Þf un mð Þ sð Þ

� ��
ds: ð44Þ

Furthermore, by Lebesgue’s dominated convergence the-
orem and letting m⟶∞, we have

v tð Þ =
ð1
0
G t, sð Þh sð Þf u0 sð Þð ÞÞds, ð45Þ

namely, vðtÞ = Tu0ðtÞ. This shows that each subsequence of
fðTunÞðtÞg∞n=1 uniformly converges to vðtÞ. Therefore, the
sequence fðTunÞðtÞg∞n=1 uniformly converges to Tu0ðtÞ. This
means that T is continuous at u0 ∈Ωδ. So, T is continuous on
�Ωδ. Thus, T is completely continuous.

Finally, let Ωδ = fu ∈ C½0, 1�: kuk < δg with δ = �GKjhjL1
+ 1. If u is a solution of problem (1), then, for ρ ∈ ð0, 1Þ, u
∈ ∂Ωδ, we have

uk k = ρ Tu tð Þk k = ρ
ð1
0
G t, sð Þh sð Þf u sð Þð Þds












≤ ρ�G
ð1
0
h sð Þf u sð Þð Þj jds ≤ �GK hj jL1 ,

ð46Þ

which yields a contradiction. Therefore, by Lemma 9, the
operator T has a fixed point in Ωδ.

Theorem 10. Assume that (H1)-(H3) hold. In addition, f sat-
isfies the following assumptions:

(H4) There exists a nondecreasing function ψ : ℝ+ ⟶
ℝ+ such that

f uð Þj j ≤ ψ uk kð Þ,∀u ∈ℝ: ð47Þ

(H5) There exists a constant R > 0 such that R/�GjhjL1ψð
RÞ > 1. Then, problem (1) has at least one solution.

Proof. Now we show that (ii) of Lemma 9 does not hold. If u
is a solution of problem (1), then for ρ ∈ ð0, 1Þ, we obtain

uk k = ρ T u tð Þð Þk k ≤ ρ
ð1
0
G t, sð Þh sð Þf u sð Þð Þj jds

≤ ρ�G
ð1
0
h sð Þf u sð Þð Þj jds ≤ �G hj jL1ψ uk kð Þ:

ð48Þ

Let BR = fu ∈ C½0, 1�: kuk < Rg. From the above inequal-
ity and (H5), it yields a contradiction. Therefore, by Lemma
9, the operator T has a fixed point in BR. ☐

3.2. Lyapunov’s Inequality

Theorem 11. Assume that (H1)-(H3) hold. In addition, f ðuÞ
is a concave function on ℝ. Then, for any nontrivial solution
of problem (1), we have

ð1
0
h tð Þj jdt > uk k

�G maxu∈ u∗ ,u∗½ � f uð Þj j , ð49Þ
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where

u∗ = min
t∈ 0,1½ �

u tð Þ, u∗ = max
t∈ 0,1½ �

u tð Þ: ð50Þ

Proof. If uðtÞ is a nontrivial solution of problem (1), then by
Lemma 4, we have

u tð Þ =
ð1
0
G t, sð Þh sð Þf u sð Þð Þds: ð51Þ

Furthermore, by Lemma 6, we have

u tð Þj j ≤
ð1
0
G t, sð Þh sð Þf u sð Þð Þj jds: ð52Þ

Since f is continuous and concave, then from Jensen’s
inequality, it follows that

u tð Þk k ≤ max
t∈ 0,1½ �

ð1
0
G t, sð Þj j h sð Þf u sð Þð Þj jds

≤
ð1
0
max
t∈ 0,1½ �

G t, sð Þj j

 �

h sð Þf u sð Þð Þj jds

≤ �G h tð Þj jL1
ð1
0

h sð Þj j
Λ tð Þj jL1

f u sð Þð Þj jds

≤ �G max
u∈ u∗ ,u∗½ �

f uð Þj j hj jL1 ,

ð53Þ

namely,

ð1
0
h tð Þdtj j > uk k

�G maxu∈ u∗ ,u∗½ � f uð Þj j : ð54Þ

☐

3.3. Stability Analysis

Definition 12 [34]. Equation (1) is said to be Ulam-Hyers-
Rassias stability with respect to Ψ ∈ C½0, 1� if there exists a
nonzero positive real number μ such that for every ε > 0
and each solution v ∈ C½0, 1� of the inequality

Dq
0+v″ tð Þ − h tð Þf v tð Þð Þ�� �� ≤ εΨ tð Þ, t ∈ 0, 1½ �, ð55Þ

there exists a solution u ∈ C½0, 1� of problem (1) such that j
uðtÞ − vðtÞj ≤ μεΨðtÞ, t ∈ ½0, 1�.

Theorem 13. Assume that (H1)-(H3) hold. In addition, there
exists a positive constant L > 0 such that

f uð Þ − f vð Þj j ≤ L u − vj j,∀u, v ∈ C 0, 1½ �: ð56Þ

Then, problem (1) is Ulam-Hyers-Rassias stability if LG
jhjL1 < 1.

Proof. Let v ∈ C½0, 1� be the solution of the inequality (55);
then,

D1
0+v″ tð Þ − h tð Þf v tð Þð Þ�� �� ≤ εΨ tð Þ, t ∈ 0, 1½ �: ð57Þ

Thus, for ε > 0, we get

v tð Þ −
ð1
0
G t, sð Þh sð Þf v sð Þð Þds

����
���� ≤ εΨ tð Þ, t ∈ 0, 1½ �: ð58Þ

By Theorem 7, problem (1) has a solution uðtÞ satisfies

u tð Þ =
ð1
0
G t, sð Þh sð Þf u sð Þð Þds: ð59Þ

Then, for t ∈ ½0, 1�, we have

v tð Þ − u tð Þj j = v tð Þ −
ð1
0
G t, sð Þh sð Þf u sð Þð Þds

����
����

≤ v tð Þ −
ð1
0
G t, sð Þh sð Þf v sð Þð Þds

����
����

+
ð1
0
G t, sð Þh sð Þ f u sð Þð Þ − f v sð Þð Þð Þds

����
����

≤ εΨ tð Þ + L
ð1
0
G t, sð Þh sð Þ u sð Þ − v sð Þð Þj jds

≤ εΨ tð Þ + L�G
ð1
0
h sð Þj j u sð Þ − v sð Þj jds

≤ εΨ tð Þ + L�G hj jL1 u tð Þ − v tð Þj j,

ð60Þ

which yields

v tð Þ − u tð Þj j ≤ εΨ tð Þ
1 − L�G hj jL1

= μεΨ tð Þ, tε 0, 1½ �: ð61Þ

Therefore, problem (1) is Ulam-Hyers-Rassias stability.
☐

4. Examples

Now we give some examples to illustrate our main results.

Example 1. We consider the following problem:

D3/2
0+ u″ tð Þ = 6t arctan u, t ∈ 0, 1½ �,

u′ 0ð Þ = u″ 0ð Þ = u 1ð Þ = 0, u″ 1ð Þ − 2u‴ 4
5

� �
−
1
8 u

‴ 6
7

� �
= 0,

8><
>:

ð62Þ
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where hðtÞ = 12t and f ðuÞ = 1/2 arctan u. It is obvious that
(H1)-(H3) hold. Via some computations, we have

ξ1 =
4
5 > 1 − 1

21/q−1 = 3
4 ,

p = 1 −
ffiffiffi
5

p

2 −
ffiffiffi
7

p

16
ffiffiffi
6

p ,

�G = 8
105 ffiffiffi

π
p 1 − 1ffiffiffiffiffi

55
p −

ffiffiffi
5

p
− 1ffiffiffi

5
p

− 5/2 − 35/16
ffiffiffi
6

p
" #

≈ 0:170285:

ð63Þ

Since

f ′ uð Þ = 1
2 arctan u
� �

′ = 1
2 1 + u2ð Þ ≤

1
2 = L, ð64Þ

the function f satisfies the condition

f uð Þ − f vð Þj j ≤ L u − vj j,∀u, v ∈ C 0, 1½ �: ð65Þ

Furthermore, we can verify that GLjhjL1 ≈ 0:510855 < 1.
Therefore, by Theorem 7 and Theorem 13, problem (62)
has a solution uðtÞ, which is Ulam-Hyers-Rassias stability.

Example 2. Let us consider the following problem:

D3/2
0+ u″ tð Þ = 6t 2 arctan u1/2 + sin u

� �
, t ∈ 0, 1½ �,

u′ 0ð Þ = u″ 0ð Þ = u 1ð Þ = 0, u″ 1ð Þ − 2u‴ 4
5

� �
−
1
8 u

‴ 6
7

� �
= 0,

8><
>:

ð66Þ

where hðtÞ = 6t and

f uð Þj j = 2 arctan u1/2 + sin u
�� �� ≤ 2 uk k1/2 + uk k = ψ uk kð Þ:

ð67Þ

It is obvious that (H1)-(H4) hold. By computations of Exam-
ple 2, we have

�G ≈ 0:170285: ð68Þ

Furthermore, for R > 4:362954, the inequality R/�GjhjL1ψ
ðRÞ > 1 holds, Therefore, by Theorem 10, problem (66) has
at least one solution.
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