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Many phenomena in physics and engineering can be built by linear and nonlinear fractional partial differential equations which
are considered an accurate instrument to interpret these phenomena. In the current manuscript, the approximate analytical
solutions for linear and nonlinear time-fractional Swift-Hohenberg equations are created and studied by means of a recent
superb technique, named the Laplace residual power series (LRPS) technique under the time-Caputo fractional derivatives. The
proposed technique is a combination of the generalized Taylor’s formula and the Laplace transform operator, which depends
mainly on the concept of limit at infinity to find the unknown functions for the fractional series expansions in the Laplace
space with fewer computations and more accuracy comparing with the classical RPS that depends on the Caputo fractional
derivative for each step in obtaining the coefficient expansion. To test the simplicity, performance, and applicability of the
present method, three numerical problems of the time-fractional Swift-Hohenberg initial value problems are considered. The
impact of the fractional order β on the behavior of the approximate solutions at fixed bifurcation parameter is shown
graphically and numerically. Obtained results emphasized that the LRPS technique is an easy, efficient, and speed approach for
the exact description of the linear and nonlinear time-fractional models that arise in natural sciences.

1. Introduction

Partial fractional models are a natural generalization of clas-
sical multivariable models with arbitrary order derivate that
have received great interest in the scientific community due
to their diverse applications in engineering, physics, pharma-
cology, astronomy, and medicine. From the classical point of
view, the following leading equation has been proposed in
1977 by Swift and Hohenberg [1] as a global model for
describing fluid velocity and temperature dynamics of ther-
mal convection:

∂w
∂t

= rw − 1 + ∇2� �2
w −w3, ð1Þ

where x ∈ℝ, t > 0, and r is bifurcation parameter. w is a
scaler function of x and t defined on the line or the plane.
The Swift-Hohenberg (S-H) equation is a mathematical
model that has a great role in modeling the pattern formula-
tion theory which includes the chosen of pattern, the impacts
of noise on bifurcations, the dynamics of defects, and spatio-
temporal chaos [2–4]. Also, it describes numerous models in
engineering and thermal physics including the pattern for-
mulation theory in fluid layers, hydrodynamics, lasers, flame
dynamics, and statistical mechanics [5–7].

In the last decades, considerable attention has been paid
to the topic of fractional differential equations (FDEs) and
fractional partial differential equations (FPDEs) due to the
fast-growing and widespread of their applications in various
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science and engineering areas like medicine, chemistry, biol-
ogy, electrical engineering, and viscoelasticity, and for more
details about these applications and others, we refer to
[8–15]. Fractional derivative is a significant instrument that
gives ideal assistance to characterize the memory and hered-
itary features of different processes and materials. With this,
numerous mathematicians presented and developed various
differential operators that allow analyzing the dynamical
behaviors of solutions for FDEs and FPDEs [16–20].

The investigation of the closed-form solutions for the
linear and nonlinear FDEs and FPDEs is a difficult task.
However, the numerical and analytical techniques have been
proposed to solve the nonlinear FPDEs. The most common
of these methods to determine approximate analytical solu-
tions for FPDEs are the Adomian decomposition method,
variational iteration method, homotopy perturbation
method, and reproducing kernel method [21–25]. In this
work, we consider the nonlinear time-fractional S-H equa-
tion with bifurcation [4].

Dβ
t w + ∂4w

∂x4
+ 2 ∂

2w
∂x2

+ 1 − rð Þw +w3 = 0, 0 < β ≤ 1, ð2Þ

subject to initial condition wðx, 0Þ =w0ðxÞ, where Dβ
t indi-

cates to the fractional derivative in the Caputo meaning. Par-
ticularly, if β = 1, the fractional sense (2) reduces to the
standard case S-H Equation (1). Equation (2) has been
solved by numerous scholars, remarkably, Atangana and
Kılıçman [3], Li and Pang [4], Prakasha et al. [5], and others.
Solving nonlinear FDEs and nonlinear FPDEs is not an easy
matter. However, several mathematical techniques have
been employed to investigate their solutions. For example,
homotopy analysis technique, variational iteration tech-
nique, Adomian decomposition technique, residual power
series technique, and other techniques are some of these
methods, and for more details, see [21, 26–33].

Unfortunately, the aforesaid standard traditional tech-
niques and others need more computational time and com-
puter memory to determine the closed-form solutions for
the nonlinear problems. To beat these defects, some scholars
coupled the standard existing approaches and the Laplace
transform approach like Kumar in [34] investigated the
solution for the time-fractional Cauchy-reaction diffusion
equation by using the homotopy perturbation transform
approach. In [35], a coupled fractional system of PDEs was
studied by the generalized and reduced differential trans-
form approaches. The authors in [36] applied the fractional
reduced differential transform approach to provide the solu-
tions of the nonlinear fractional Klein-Gordon equation. In
[37, 38], the explicit solutions of some FPDEs are con-
structed by combining the homotopy perturbation approach
and fractional Sumudu transform approach.

The motivation of this work is to construct an approxi-
mate analytical solution for the nonlinear time-fractional
S-H Equation (2) by directly applying the Laplace residual
power series (LRPS) technique. This technique has been pre-
sented and proved in [39] to investigate the exact solitary
solutions for a certain class of time-FPDEs. It is an efficient

analytic-numeric technique that is constructed by coupling
the RPS technique with Laplace transform operator. The
basic idea of the present approach depends upon transfer-
ring the target problem into the Laplace space and creating
the solutions for the new algebraic equation, and then
finally, by utilizing the inverse Laplace transform of the
obtained results, one can get the solution of the target prob-
lem. The suggested approach determines the unknown
functions of the suggested fractional expansion series based
on the limit concept, unlike the RPS approach that based
on the concepts of the fractional derivative. So, the
unknown functions can be found by fewer time computa-
tions, and hence, the approximate analytical solution can
be constructed as a convergent multiple fractional power
series [40, 41].

The structure of this analysis is as follows: In Section 2,
some of the necessary definitions and basic theories of frac-
tional calculus and Laplace power series representation are
reviewed. The methodology of the present technique in find-
ing the series solution for (2) is introduced, in Section 3.
Three different initial value problems of the time-fractional
Swift-Hohenberg problem are studied to confirm the
simplicity and applicability of the proposed approach for
constructing the series solutions, in Section 4. Lastly, a con-
clusion is drawn in Section 5.

2. Fundamental Concepts

In this section, essential definitions of fractional and Laplace
transform operators and the fundamental properties related
to them are revisited. In addition, we review basic theories
and primary results related to fractional Taylor’s formula
in the Laplace space.

Definition 1 (see [10]). For β ∈ℝ+, the Riemann-Liouville
fractional integral operator for a real-valued function wðx,
tÞ is denoted by J

β
t and is defined as follows:

J
β
t w x, tð Þ =

1
Γ βð Þ

ðt
0

w x, ηð Þ
t − ηð Þ1−β

dη, 0 < η < t, β > 0,

w x, tð Þ β = 0:

8><
>:

ð3Þ

Definition 2 (see [10]). The time fractional derivative of
order β > 0, for the function wðx, tÞ in the Caputo case, is

denoted by Dβ
t , and it is defined as follows:

Dβ
t w x, tð Þ = J

n−β
t Dn

xw x, tð Þð Þ, 0 < n − 1 < β ≤ n,
Dn

xw x, tð Þ, β = n,

(

ð4Þ

where Dn
x = ∂n/∂xn, and n ∈ℕ.

Definition 3 (see [39]). The Laplace transform of the piece-
wise continuous function wðx, tÞ on T × ½0,∞Þ is defined
as follows:
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L w x, tð Þf g =W x, sð Þ =
ð∞
0
w x, tð Þ e−stdt, s > σ, ð5Þ

where σ is the exponential order of wðx, tÞ.

Definition 4 (see [39]). The inverse Laplace transform of the
function Wðx, sÞ is defined as follows:

w x, tð Þ =L−1 W x, sð Þf g =
ða+i∞
a−i∞

W x, sð Þ estds, a = Re sð Þ > b,

ð6Þ

where Wðx, sÞ is analytic transform function on the right
half plane of the absolute convergence of the Laplace
integral.

For Lfwðx, tÞg =Wðx, sÞ, Lfⱬðx, tÞg = Ⱬðx, sÞ, and λ,
μ ∈ℝ, where wðx, tÞ and ⱬðx, tÞ, are two piecewise continu-
ous functions defined on T × ½0,∞Þ, of exponential order
ϑ1, ϑ2 , respectively, such that ϑ1 < ϑ2. Following, some of
the useful characteristics of the Laplace transform operator
and its inverse operator are listed below, which will be essen-
tial utilized in this work as follows:

(1) Lfλwðx, tÞ + μⱬðx, tÞg = λWðx, sÞ + μⱫðx, sÞ, for ∈T
, s > ϑ1

(2) L−1fλWðx, sÞ + μⱫðx, sÞg = λwðx, tÞ + μⱬðx, tÞ, for
∈T , t ∈ ½0,∞Þ

(3) lim
s⟶∞

sWðx, sÞ =wðx, 0Þ, for x ∈ T

(4) Lftmβg = Γðmβ + 1Þ/smβ+1,mβ > −1, s > ϑ1, and m
∈ℕ

L Dβ
t w x, tð Þ

n o
= sβW x, sð Þ − 〠

n−1

j=0
sβ−j−1w jð Þ

t x, 0ð Þ, n − 1

< β ≤ n, n ∈ℕ,

L Dmβ
t w x, tð Þ

n o
= smβW x, sð Þ − 〠

m−1

j=0
s m−jð Þβ−1Djβ

t w x, 0ð Þ, 0

< β ≤ 1, m ∈ℕ:

ð7Þ

Next, El-Ajou [39] has been introduced and proved new
results related to the generalized Taylor series formula in the
Laplace space to identify the series solution of linear and
nonlinear FPDEs. Further, the requirements for convergence
of the new series expansion will be clarified and proved as
follows:

Theorem 5 (see [39]). For piecewise continuous function of
exponential order ϑ, wðx, tÞ on T × ½0,∞Þ. Assume that the
fractional expansion series of the transform function Wðx, sÞ
=Lfwðx, tÞg has the following shape:

W x, sð Þ = 〠
∞

k=0

wk xð Þ
skβ+1

, x ∈ T , s > ϑ, β ∈ 0, 1ð �: ð8Þ

Then, the unknown functions wkðxÞ will be in the form

wkðxÞ =Dkβ
t wðx, 0Þ, where Dkβ

t =Dβ
t ∙D

β
t ∙∙∙D

β
t (k-times).

Remark 6. The inverse Laplace transform of the series
expansion in Theorem 5 has the following multiple frac-
tional power series (MFPS) shape:

w x, tð Þ = 〠
∞

k=0

Dkβ
t w x, 0ð Þ
Γ kβ + 1ð Þ tkβ, t ≥ 0, β ∈ 0, 1ð �: ð9Þ

Theorem 7 (see [40]). β ∈ ð0, 1�. If j sLfDðn+1Þβ
t wðx, tÞgj ≤

MðxÞ, on T × ðδ, d� where Lfwðx, tÞg =Wðx, sÞ, can be
expanded as a fractional expansion series in Theorem 5, then
the reminder Rmðx, sÞ of (8) satisfies the following inequality:

Rm x, sð Þj j ≤ M xð Þ
s1+ m+1ð Þβ , x ∈ T , δ < s ≤ d: ð10Þ

3. Methodology of the LRPS Technique

The current section is devoted to illustrating the main prin-
ciple of the LRPS technique to create the approximate solu-
tion for the nonlinear S-H Equation (2). The basic principle
of our approach depends at the beginning by converting the
target problem to Laplace space and then solving the new
Laplace equation algebraically utilizing the limit concept
and as a final stage; one converts the obtained Laplace solu-
tion into the main space to get the approximate solution for
the target problem. For more exciting works on the residual
error method and its various applications in physics and
engineering, see [42–45]. For more information about the
different fractional operators and their applications, we refer
to [46–51] and references therein.

However, we apply firstly the Laplace transform to both
sides of the main problem (2) as stated in [39] and utilize the

fact LfDβ
t wðx, tÞg = sβWðx, sÞ − s1−βwðx, 0Þ to get the fol-

lowing algebraic equation:

W x, sð Þ = w x, 0ð Þ
s

−
1
sβ
D4

xW x, sð Þ − 2
sβ
D2

xW x, sð Þ

− 1 − rð Þ 1
sβ
W x, sð Þ − 1

sβ
L L−1W x, sð Þ� �3n o

,

ð11Þ

where Lfwðx, tÞg =Wðx, sÞ.
Since wðx, 0Þ =w0ðxÞ, then we can rewrite (11) as fol-

lows:

W x, sð Þ = w0 xð Þ
s

−
1
sβ
D4

xW x, sð Þ − 2
sβ
D2

xW x, sð Þ

− 1 − rð Þ 1
sβ
W x, sð Þ − 1

sβ
L L−1W x, sð Þ� �3n o

:

ð12Þ
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According to Theorem 5, the proposed solution Wðx, sÞ,
for the algebraic Equation (12), has the following transform
function:

W x, sð Þ = 〠
∞

k=0

wk xð Þ
skβ+1

x ∈ T , s > ϑ: ð13Þ

And the m-th series solution Wmðx, sÞ, of the fractional
expansion (13), will be written as the shape:

Wm x, sð Þ = 〠
m

k=0

wk xð Þ
skβ+1

x ∈ T , s > ϑ: ð14Þ

Clearly, w0ðxÞ = lim
s⟶∞

sWðx, sÞ. So, the fractional expan-
sion (14) becomes the following:

Wm x, sð Þ = w0 xð Þ
s

+ 〠
m

k=1

wk xð Þ
skβ+1

x ∈ T , s > ϑ, ð15Þ

in which one can find the unknown functions wkðxÞ, for
k = 1, 2, 3,⋯,m, via solving lim

s⟶∞
smβ+1LResmWðx, sÞ = 0, for

m = 1, 2, 3,⋯, 0 < β ≤ 1, where LResmWðx, sÞ is called the m
-th Laplace residual function of (11) and which is defined
as follows:

LResmW x, sð Þ =Wm x, sð Þ − w0 xð Þ
s

+ 1
sβ
D4

xWm x, sð Þ

+ 2
sβ
D2

xWm x, sð Þ + 1 − rð Þ 1
sβ
Wm x, sð Þ

+ 1
sβ
L L−1Wm x, sð Þ� �3n o

:

ð16Þ

To determine w1ðxÞ, in the fractional expansion (15), we
write the first transform function W1ðx, sÞ =w0ðxÞ/s +w1ðxÞ
/sβ+1, into the first Laplace residual function as follows:

LRes1W x, sð Þ =W1 x, sð Þ − w0 xð Þ
s

+ 1
sβ
D4

xW1 x, sð Þ

+ 2
sβ
D2

xW1 x, sð Þ + 1 − rð Þ 1
sβ
W1 x, sð Þ

+ 1
sβ
L L−1W1 x, sð Þ� �3n o

= w1 xð Þ
sβ+1

+ w 4ð Þ
0 xð Þ
sβ+1

+ w 4ð Þ
1 xð Þ
s2β+1

+ 2w0′′ xð Þ
sβ+1

+ 2w1′′ xð Þ
s2β+1

+ 1 − rð Þ w0 xð Þ
sβ+1

+ w1 xð Þ
s2β+1

� �

+ 1
sβ
L L−1 w0 xð Þ

s
+ w1 xð Þ

sβ+1

� �� 	3( )

= 1
sβ+1

w1 xð Þ +w 4ð Þ
0 xð Þ + 2w0′′ xð Þ + 1 − rð Þw0 xð Þ


 �
+ 1
s2β+1

1 − rð Þw1 xð Þ +w 4ð Þ
1 xð Þ + 2w1′′ xð Þ


 �

+ 1
sβ
L w0 xð Þ +w1 xð Þ tβ

Γ β + 1ð Þ
� 	3( )

:

ð17Þ

Multiply both sides of (17) by sβ+1 to get the following:

sβ+1LRes1W x, sð Þ = w1 xð Þ +w 4ð Þ
0 xð Þ + 2w0′′ xð Þ + 1 − rð Þw0 xð Þ


 �
+ 1
sβ

1 − rð Þw1 xð Þ +w 4ð Þ
1 xð Þ + 2w1′′ xð Þ


 �
+ w3

0 xð Þ + 3w2
0 xð Þw1 xð Þ

sβ
+ 3w0 xð Þw2

1 xð Þ
s2βΓ 2β + 1ð Þ

�

+ w3
1 xð Þ

s3βΓ2 β + 1ð Þ

�
:

ð18Þ

Next, solving the limit of the resulting algebraic equation
as s⟶∞, for the unknown functionw1ðxÞ, gives the follow-
ing: w1ðxÞ = ðr − 1Þw0ðxÞ −w3

0ðxÞ −wð4Þ
0 ðxÞ − 2w0′′ðxÞ:

Likewise, to find w2ðxÞ, let m = 2, in the fractional
expansion (15) and substitute the second transform function
W2ðx, sÞ of (15) into the second Laplace residual function of
(16), that is,

LRes2W x, sð Þ =W2 x, sð Þ − w0 xð Þ
s

+ 1
sβ
D4

xW2 x, sð Þ

+ 2
sβ
D2

xW2 x, sð Þ + 1 − rð Þ 1
sβ
W2 x, sð Þ

+ 1
sβ

W2 x, sð Þð Þ3 = w1 xð Þ
sβ+1

+ w2 xð Þ
s2β+1

+ w 4ð Þ
0 xð Þ
sβ+1

+ w 4ð Þ
1 xð Þ
s2β+1

+ w 4ð Þ
2 xð Þ
s3β+1

+ 2w0′′ xð Þ
sβ+1

+ 2w1′′ xð Þ
s2β+1

+ 2w2′′ xð Þ
s3β+1

+ 1 − rð Þ w0 xð Þ
sβ+1

+ w1 xð Þ
s2β+1

+ w2 xð Þ
s3β+1

� �

+ 1
sβ
L L−1 w0 xð Þ

s
+ w1 xð Þ

sβ+1
+ w2 xð Þ

s2β+1

� �� 	3( )

= 1
sβ+1

w1 xð Þ +w 4ð Þ
0 xð Þ + 2w0′′ xð Þ + 1 − rð Þw0 xð Þ


 �
+ 1
s2β+1

w2 xð Þ + 1 − rð Þw1 xð Þ +w 4ð Þ
1 xð Þ + 2w1′′ xð Þ


 �

+ 1
sβ
L w0 xð Þ +w1 xð Þ tβ

Γ β + 1ð Þ +w2 xð Þ t2β

Γ 2β + 1ð Þ
� 	3( )

:

ð19Þ

Then, we multiply the resulting equation by the factor
s2β+1 and based on the fact lim

s⟶∞
s2β+1LRes2Wðx, sÞ = 0, and

this yields the following: w2ðxÞ = ðr − 1Þw1ðxÞ − 3w2
0ðxÞw1

ðxÞ −wð4Þ
1 ðxÞ − 2w1′′ðxÞ.

To obtain w3ðxÞ, we consider m = 3 in Equation (9) so
that

LRes3W x, sð Þ =W3 x, sð Þ − w0 xð Þ
s

+ 1
sβ
D4

xW3 x, sð Þ

+ 2
sβ
D2

xW3 x, sð Þ + 1 − rð Þ 1
sβ
W3 x, sð Þ

+ 1
sβ
L L−1W3 x, sð Þ� �3n o

,

ð20Þ
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where

W3 x, sð Þ = w0 xð Þ
s

+ 〠
3

k=1

wk xð Þ
skβ+1

: ð21Þ

Thus,

LRes3W x, sð Þ = 〠
3

k=1

wk xð Þ
skβ+1

+ 〠
3

k=0

w 4ð Þ
k xð Þ

s k+1ð Þβ+1 + 2〠
3

k=0

wk′′ xð Þ
s k+1ð Þβ+1

+ 1 − rð Þ〠
3

k=0

wk xð Þ
s k+1ð Þβ+1 +L L−1 〠

3

k=1

wk xð Þ
s k+1ð Þβ+1

 !" #3( )

= 〠
3

k=1

wk xð Þ
skβ+1

+ 〠
3

k=0

w 4ð Þ
k xð Þ

s k+1ð Þβ+1 + 2〠
3

k=0

wk′′ xð Þ
s k+1ð Þβ+1

+ 1 − rð Þ〠
3

k=0

wk xð Þ
s k+1ð Þβ+1 +L 〠

3

k=0
wk xð Þ tkβ

Γ kβ + 1ð Þ

" #3( )
:

ð22Þ

As a last step, after multiplying both sides of (22) by s3β+1

, solve lim
s⟶∞

s3β+1LRes3Wðx, sÞ = 0 for the required

unknown function to get w3ðxÞ = ðr − 1Þw2ðxÞ − 3w2
0ðxÞw2

ðxÞ −wð4Þ
2 ðxÞ − 2w2′′ðxÞ − ð3Γð2β + 1Þ/Γ2ðβ + 1ÞÞw0ðxÞw2

1ðxÞ.
In the same argument, the fourth unknown function

w4ðxÞ can be obtained via writing W4ðx, sÞ =w0ðxÞ/s +
∑3

k=1wkðxÞ/skβ+1 , into the fourth Laplace residual function,
LRes4Wðx, sÞ, of (9), then by multiplying the obtained alge-
braic equation by s4β+1, and finally by solving lim

s⟶∞
s4β+1L

Res4Wðx, sÞ = 0, for w4ðxÞ to conclude that

w4 xð Þ = r − 1ð Þw3 xð Þ − 3w2
0 xð Þw3 xð Þ −w 4ð Þ

3 xð Þ − 2w3′′ xð Þ
−

6Γ 3β + 1ð Þ
Γ β + 1ð ÞΓ 2β + 1ð Þw0 xð Þw1 xð Þw2 xð Þ − Γ 3β + 1ð Þ

Γ2 β + 1ð Þ w
3
1 xð Þ:

ð23Þ

Continuing with this procedure, the m-th unknown
function, wmðxÞ, can be determined for arbitrary m. So,
based on the previous results of wmðxÞ, the transform func-
tion Wðx, sÞ of the Laplace Equation (12) has the following
form:

W x, sð Þ = w0 xð Þ
s

+
r − 1ð Þw0 xð Þ −w3

0 xð Þ −w 4ð Þ
0 xð Þ − 2w0′′ xð Þ


 �
sβ+1

+
r − 1ð Þw1 xð Þ − 3w2

0 xð Þw1 xð Þ −w 4ð Þ
1 xð Þ − 2w1′′ xð Þ


 �
s2β+1

+⋯:

ð24Þ

Lastly, we convert the fractional expansion (24) into the
original space by operating the inverse Laplace transform
into (24), to get the MFPS approximate solution for the
time-fractional S-H Equation (2) as follows:

w x, tð Þ =w0 xð Þ + r − 1ð Þw0 xð Þ −w3
0 xð Þ −w 4ð Þ

0 xð Þ − 2w0′′ xð Þ

 � tβ

Γ 1 + βð Þ
+ r − 1ð Þw1 xð Þ − 3w2

0 xð Þw1 xð Þ −w 4ð Þ
1 xð Þ − 2w1′′ xð Þ


 �
� t2β

Γ 1 + 2βð Þ+⋯:

ð25Þ

4. Numerical Examples

This section is aimed at using the proposed approach to con-
struct the Laplace MFPS approximate solutions for three
applications of S-H Equation (2) and show the applicability
and the notability of our approach as reliable scheme to han-
dle various FPDEs. Notice that all the computations and
symbolic were done by using MATHEMATICA 12 software
package.

Example 1. Consider the linear time-fractional S-H equation
of the form [4].

Dβ
t w + 1 − rð Þw + ∂4w

∂x4
+ 2 ∂

2w
∂x2

= 0, ð26Þ

subject to initial condition

w x, 0ð Þ = ex, ð27Þ

where ðx, tÞ ∈ℝ × ½0, 1�, 0 < β ≤ 1: The exact solution of frac-
tional IVPs (26) and (27) at β = 1 is wðx, tÞ = ex+ðr−4Þt :

Before applying the LRPS method, we convert the time-
fractional S-H Equation (26) to the Laplace space by taking
the Laplace transform to both sides of (26) and utilizing
the initial data (27), and we get the following Laplace alge-
braic equation:

W x, sð Þ = ex

s
−

1
sβ
D4

xW x, sð Þ − 2
sβ
D2

xW x, sð Þ − 1 − rð Þ 1
sβ
W x, sð Þ:
ð28Þ

According to layout of the proposed approach, we can
solve (28) by identifying the following m-th Laplace residual
function:

LResmW x, sð Þ =Wm x, sð Þ − ex

s
+ 1
sβ
D4

xWm x, sð Þ

+ 2
sβ
D2

xWm x, sð Þ + 1 − rð Þ 1
sβ
Wm x, sð Þ,

ð29Þ

where Wmðx, sÞ represents the m-th transform function as
follows:

Wm x, sð Þ = ex

s
+ 〠

m

k=1

wk xð Þ
skβ+1

x ∈ℝ, s > ϑ: ð30Þ
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To determine w1ðxÞ, consider m = 1 in the series expan-
sion (30) and substitute it into the first Laplace residual
function as follows:

LRes1W x, sð Þ = w1 xð Þ
sβ+1

+ 1
sβ

ex

s
+ w 4ð Þ

1 xð Þ
sβ+1

 !

+ 2
sβ

ex

s
+ w1′′ xð Þ

sβ+1

 !
+ 1 − rð Þ 1

sβ
ex

s
+ w1 xð Þ

sβ+1

� �
:

ð31Þ

Next, multiply both sides of (31) by sβ+1 to get the fol-
lowing:

sβ+1LRes1W x, sð Þ = sβ+1
w1 xð Þ
sβ+1

+ 1
sβ

ex

s
+ w 4ð Þ

1 xð Þ
sβ+1

 ! 

+ 2
sβ

ex

s
+ w1′′ xð Þ

sβ+1

 !
+ 1 − rð Þ 1

sβ
ex

s
+ w1 xð Þ

sβ+1

� �!

= ex − exr + 2ex + ex +w1 xð Þ + w1 xð Þ
sβ

− r
w1 xð Þ
sβ

+ 2w1′′ xð Þ
sβ

+ w 4ð Þ
1 xð Þ
sβ

:

ð32Þ

Then, solving lim
s⟶∞

sβ+1LRes1Wðx, sÞ = 0, for w1ðxÞ gives
w1ðxÞ = ðr − 4Þex. So, the 1st-transform function for the
Laplace Equation (28) has the following expansion: W1ðx, sÞ
= ex/sðex/sÞ + ðr − 4Þex/sβ+1:

Similarly, for constructing the 2nd-Laplace residual func-
tion, we substitute W2ðx, sÞ = ex/s + ðr − 4Þex/sβ+1 +w2ðxÞ/
s2β+1 into the second Laplace residual function LRes2Wðx, sÞ
of (29) such that

LRes2W x, sð Þ = r − 4ð Þex
sβ+1

+ w2 xð Þ
s2β+1

+ 1
sβ

ex

s
+ r − 4ð Þex

sβ+1
+ w2 xð Þ

s2β+1

� �

+ 2
sβ

ex

s
+ r − 4ð Þex

sβ+1
+ w2 xð Þ

s2β+1

� �
+ 1 − rð Þ 1

sβ

� ex

s
+ r − 4ð Þex

sβ+1
+ w2 xð Þ

s2β+1

� �
:

ð33Þ

Thereafter, we multiply (33) by the factor s2β+1 to give the
following:

s2β+1LRes2W x, sð Þ = sβ+1
r − 4ð Þex
sβ+1

+ w2 xð Þ
s2β+1

+ 1
sβ

ex

s
+ r − 4ð Þex

sβ+1
+ w2 xð Þ

s2β+1

� ��

+ 2
sβ

ex

s
+ r − 4ð Þex

sβ+1
+ w2 xð Þ

s2β+1

� �
+ 1 − rð Þ 1

sβ

� ex

s
+ r − 4ð Þex

sβ+1
+ w2 xð Þ

s2β+1

� ��
= −4ex + 5exr − exr2 − 3exsβ − 8ex + 2exr + 2exsβ − 4ex + exr

+ exsβ +w2 xð Þ + w2 xð Þ
sβ

−
rw2 xð Þ
sβ

+ 2w2′′ xð Þ
sβ

+ w 4ð Þ
2 xð Þ
sβ

:

ð34Þ

Depending on the result lim
s⟶∞

smβ+1LResmWðx, sÞ = 0, for
m = 2, we conclude that w2ðxÞ = ðr − 4Þ2ex. Thus, the second
Laplace function for the Laplace Equation (28) will be W2ðx
, sÞ = ex/s + ðr − 4Þex/sβ+1 + ðr − 4Þ2ex/s2β+1:

Following the same argument, the 3rd-transform func-
tion can be constructed by writing W3ðx, sÞ, of the fractional
expansion (30) into the third Laplace residual function L

Res3Wðx, sÞ of (29) such that

LRes3W x, sð Þ = r − 4ð Þex
sβ+1

+ r − 4ð Þ2ex
s2β+1

+ w3 xð Þ
s3β+1

+ 1
sβ

� ex

s
+ r − 4ð Þex

sβ+1
+ r − 4ð Þ2ex

s2β+1
+ w3 xð Þ

s3β+1

 !

+ 2
sβ

ex

s
+ r − 4ð Þex

sβ+1
+ r − 4ð Þ2ex

s2β+1
+ w3 xð Þ

s3β+1

 !

+ 1 − rð Þ 1
sβ

ex

s
+ r − 4ð Þex

sβ+1
+ r − 4ð Þ2ex

s2β+1
+ w3 xð Þ

s3β+1

 !
:

ð35Þ

And by solving lim
s⟶∞

s3β+1LRes3Wðx, sÞ = 0, for the desired

unknown function w3ðxÞ, then one can get w3ðxÞ = ðr − 4Þ3
ex. Therefore, the 3rd-transform function the Laplace Equa-
tion (28) has the following expansion: W3ðx, sÞ = ex/s + ðr
− 4Þex/sβ+1 + ðr − 4Þ2ex/s2β+1 + ðr − 4Þ3ex/s3β+1:

Continuing in this manner, one can obtain the m-th
unknown function wmðxÞ, for arbitrary m, and hence, the
m-th transform function Wmðx, sÞ, for the Laplace Equation
(28), is obtained in the following expansion:

Wm x, sð Þ = ex

s
+ r − 4ð Þex

sβ+1
+ r − 4ð Þ2ex

s2β+1
+ r − 4ð Þ3ex

s3β+1

+⋯+ r − 4ð Þmex
smβ+1 :

ð36Þ

As m⟶∞, the transform function Wðx, sÞ, for the
Laplace Equation (28), can be expressed as the following
infinite series:

W x, sð Þ = ex
1
s
+ r − 4ð Þ

sβ+1
+ r − 4ð Þ2

s2β+1
+ r − 4ð Þ3

s3β+1
+⋯+ r − 4ð Þm

smβ+1 +⋯
 !

= ex 〠
∞

k=0

r − 4ð Þk
skβ+1

:

ð37Þ

Finally, to get the MFPS approximate solution for the
fractional IVPs (26) and (27), we apply the inverse Laplace
transform to both sides of (37) as follows:
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Table 1: Absolute errors for Example1 at β = 1 and n = 10 for different values of r.

ti r = 1 r = 3 r = 5
0:15 1:005617811 × 10−11 4:440892099 × 10−16 0:0
0:30 1:987156617 × 10−8 1:176836406 × 10−13 1:239008895 × 10−13

0:45 1:660194246 × 10−6 1:005617811 × 10−11 1:083932943 × 10−11

0:60 3:800576801 × 10−5 2:352540385 × 10−10 2:600089033 × 10−10

0:75 4:281970881 × 10−4 2:706239455 × 10−9 3:066872978 × 10−9

1:00 3:081913228 × 10−3 1:987156617 × 10−8 2:309139457 × 10−8
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Figure 1: (a) Plots of exact solution wðx, tÞ and 10th-MFPS approximate solution w10ðx, tÞ at various β values and fixed values of x = −2 and
r = 5; (b) plots of exact solution wðx, tÞ and 10th-MFPS approximate solution w10ðx, tÞ at various β values and t = 1 and r = 5, for Example 1.
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Figure 2: (a) Plots of exact solution wðx, tÞ and 10th-MFPS approximate solution w10ðx, tÞ at fixed value of x = π/6; (b) plots of exact
solution wðx, tÞ and 10th-MFPS approximate solution w10ðx, tÞ at fixed value of t = 0:32, with various β values and r = 2, for Example 2.
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w x, tð Þ = ex 1 + r − 4ð Þtβ
Γ β + 1ð Þ + r − 4ð Þ2t2β

Γ 2β + 1ð Þ +⋯+ r − 4ð Þmtmβ

Γ mβ + 1ð Þ +⋯
 !

= ex 〠
∞

k=0

r − 4ð Þktkβ
Γ kβ + 1ð Þ :

ð38Þ

Based on the obtained results and with no loss of gener-
ality, the accuracy and efficiency of our proposed approach
have been illustrated; the absolute errors at x = 1, with vari-
ous values of t and parameter r, have been computed and
summarized in Table 1. One can notice from Table 1 that
the results refer to well-harmony between the exact and
MFPS approximate solutions. Also, the behavior of the
10th-MFPS approximate solution for the time-fractional
IVPs (26) and (27) has been studied and compared with
the exact solution as in Figure 1.

Example 2. Consider the linear time-fractional S-H equation
of the form [4]:

Dβ
t w + 1 − rð Þw + ∂4w

∂x4
+ 2 ∂

2w
∂x2

= 0, ð39Þ

subject to initial condition

w x, 0ð Þ = cos xð Þ, ð40Þ

where ðx, tÞ ∈ℝ × ½0, 1�, 0 < β ≤ 1: The exact solution of
fractional IVPs (39) and (40) at β = 1 is wðx, tÞ = cos ðxÞert .

According to employing the LRPS scheme, we convert
the time-fractional S-H Equation (39) into the Laplace space
and use the initial condition (40), to get the following
Laplace algebraic equation:

W x, sð Þ = cos xð Þ
s

−
1
sβ
D4

xW x, sð Þ − 2
sβ
D2

xW x, sð Þ

− 1 − rð Þ 1
sβ
W x, sð Þ:

ð41Þ

Following, let the approximate solution of (41), and it
has the following m-th transform function:

Wm x, sð Þ = cos xð Þ
s

+ 〠
m

k=1

wk xð Þ
skβ+1

x ∈ℝ, s > ϑ: ð42Þ

In order to investigate the unknown functions wkðxÞ, we
identify the following the m-th Laplace residual function:

LResmW x, sð Þ = 〠
m

k=1

wk xð Þ
skβ+1

+ cos xð Þ
sβ+1

+ 〠
m

k=1

w 4ð Þ
k xð Þ

s k+1ð Þβ+1

 !

+ 2 −
cos xð Þ
sβ+1

+ 〠
m

k=1

wk′′ xð Þ
s k+1ð Þβ+1

 !

+ 1 − rð Þ cos xð Þ
sβ+1

+ 〠
m

k=1

wk xð Þ
s k+1ð Þβ+1

 !
:

ð43Þ

Table 2: Absolute errors for Example2 at β = 1, and n = 10, with different values of r.

ti r = 1 r = 2 r = 3
0:16 4:440892099 × 10−16 9:281464486 × 10−14 8:131717522 × 10−12

0:32 9:281464485 × 10−14 1:952191742 × 10−10 1:736975808 × 10−8

0:48 8:131717522 × 10−12 1:736975808 × 10−8 1:569467859 × 10−6

0:64 1:952191742 × 10−10 4:233315316 × 10−7 3:888067467 × 10−5

0:80 2:304785252 × 10−9 5:076409958 × 10−6 4:743977753 × 10−4

0:96 1:736975807 × 10−8 3:888067467 × 10−5 3:701046898 × 10−3

Table 3: Numerical results of the approximate solution at n = 10
for different values of β and parameter r for Example 2.

ri ti
10th-MFPS approximate solution

β = 1 β = 0:95 β = 0:85 β = 0:75

3

0:25 0:326550322 0:355783973 0:439413482 0:585936283
0:50 0:691306656 0:793037250 1:112531266 1:772249160
0:75 1:463461560 1:759067720 2:776148009 3:199715336
1:00 3:097317467 3:893554312 4:862973030 6:698826476

5

0:25 0:538390412 0:630100786 0:946089559 1:726592675
0:50 1:879051549 2:464692765 4:996474868 6:001370563
0:75 6:547505591 7:560995725 9:140575178 9:781842380
1:00 22:57941994 23:04998298 24:13141857 25:36859332

Table 4: Numerical results of the approximated solution at n = 5
and L = 7 with different values of β and r for Example 3.

r ti β = 1 β = 0:95 β = 0:85 β = 0:75

3

0:25 0:130235598 0:138601698 0:163195116 0:208272383
0:50 0:241985850 0:274987590 0:378120295 0:568190733
0:75 0:523404754 0:620746749 0:909781606 1:393600940
1:00 1:190766401 1:408620937 2:014116748 2:936614248

5

0:25 0:249269193 0:301512503 0:498227923 0:970174288
0:50 1:351750386 1:770999038 3:193745388 4:019381092
0:75 6:353284329 7:840191289 8:379398245 9:168510709
1:00 21:86124928 22:09938948 22:49186598 23:27968921
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Following the procedure of the Laplace RPS algorithm
and based on the result lim

s⟶∞
smβ+1LResmWðx, sÞ = 0, for m

= 1, 2, 3,⋯, then the first few unknown functions wkðxÞ
are as follows:

w1 xð Þ = r cos xð Þ,
w2 xð Þ = r2 cos xð Þ,
w3 xð Þ = r3 cos xð Þ,
w4 xð Þ = r4 cos xð Þ:

⋮:

ð44Þ

So, the m-th transform function Wmðx, sÞ, for the
Laplace Equation (41) will be written as follows:

Wm x, sð Þ = cos xð Þ
s

+ r cos xð Þ
sβ+1

+ r2 cos xð Þ
s2β+1

+ r3 cos xð Þ
s3β+1

+⋯+ r
m cos xð Þ
smβ+1 :

ð45Þ

Thus, the transform functionWðx, sÞ, for fractional IVPs
(39) and (40) can be expressed as the following infinite
series:

W x, sð Þ = cos xð Þ 1
s
+ r

sβ+1
+ r2

s2β+1
+ r3

s3β+1
+⋯+ rm

smβ+1 +⋯
� �

= cos xð Þ〠
∞

k=0

rk

skβ+1
:

ð46Þ

Finally, by applying the inverse Laplace transform to
both sides of (46), we get the following MFPS solution for
the fractional IVPs (39) and (40):

w x, tð Þ = cos xð Þ 1 + rtβ

Γ β + 1ð Þ + r2t2β

Γ 2β + 1ð Þ+⋯+ rmtmβ

Γ mβ + 1ð Þ+⋯
� �

= cos xð Þ〠
∞

k=0

rktkβ

Γ kβ + 1ð Þ :

ð47Þ

The convergence of the MFPS approximate solution to
the exact solution for the fractional IVPs (39) and (40) has
been shown graphically as in Figure 2 and numerically as
in Tables 2 and 3. It is evident from the obtained results that
the present technique is an effective and convenient algo-
rithm to solve certain classes of FPDEs with fewer calcula-
tions and iteration steps.
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Figure 3: (a) Plots of w5ðx, tÞ at various β values and x = 0; (b) plots w5ðx, tÞ at various β values and t = 0:125, for Example 3.

Table 5: The recurrence errors jw5ðx, tÞ −w4ðx, tÞj of the fifth approximate solution with different values of β, for Example 3.

ti β = 0:45 β = 0:65 β = 0:85 β = 1:00
0:16 2:330727639 × 10−9 3:175844934 × 10−10 5:367856853 × 10−11 1:632998306 × 10−11

0:32 1:108687157 × 10−8 3:021389905 × 10−9 1:021358990 × 10−9 5:225594212 × 10−10

0:48 2:760669069 × 10−8 1:128504684 × 10−8 5:722242603 × 10−9 3:968185638 × 10−9

0:64 5:273834620 × 10−8 2:874446701 × 10−8 1:943371804 × 10−8 1:672190145 × 10−8

0:80 8:713126837 × 10−8 5:936244804 × 10−8 5:016761473 × 10−8 5:103119306 × 10−8

0:80 1:313202919 × 10−7 1:073620640 × 10−7 1:088789059 × 10−7 1:269819411 × 10−7
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Example 3. Consider the nonlinear time-fractional S-H
equation of the form [5]:

Dβ
t w + ∂4w

∂x4
+ 2 ∂

2w
∂x2

+ 1 − rð Þw +w3 = 0, 0 < β ≤ 1, ð48Þ

subject to initial condition

w x, 0ð Þ = 1
10 sin πx

L


 �
: ð49Þ

As stated previously in Section 3, we operate the Laplace
transform to both sides of (48), and using the initial data
(49), we get the following Laplace algebraic equation:

W x, sð Þ = w0 xð Þ
s

−
1
sβ
D4

xW x, sð Þ − 2
sβ
D2

xW x, sð Þ

− 1 − rð Þ 1
sβ
W x, sð Þ − 1

sβ
L L−1Wm x, sð Þ� �3n o

:

ð50Þ

According to LRPS scheme, the proposed m-th approxi-
mate solution of (50) has the following series shape:

Wm x, sð Þ = 1
10s sin

πx
L


 �
+ 〠

m

k=1

wk xð Þ
skβ+1

x ∈ℝ, s > ϑ: ð51Þ

To investigate the unknown coefficients wkðxÞ via defin-
ing the following m-th Laplace residual function,

LResmW x, sð Þ = 〠
m

k=1

wk xð Þ
skβ+1

+ π4 sin πx/Lð Þ
10L4 sβ+1 + 〠

m

k=1

w 4ð Þ
k xð Þ

s k+1ð Þβ+1

 !

− 2 π2 sin πx/Lð Þ
10L2sβ+1

− 〠
m

k=1

wk′′ xð Þ
s k+1ð Þβ+1

 !

+ 1 − rð Þ sin πx/Lð Þ
10 sβ+1 + 〠

m

k=1

wk xð Þ
s k+1ð Þβ+1

 !

+ 1
sβ
L L−1 sin πx/Lð Þ

10 s + 〠
m

k=1

wk xð Þ
skβ+1

 !" #3( )
:

ð52Þ

Now, based on the same methodology that is discussed
in the last section to find out the forms of wkðxÞ, then the
first few five unknown functions in the fractional expansion
(51) are given as follows:

w1 xð Þ = 1
2 × 103 −201 + 200r + cos 2πx

L

� �� �
sin πx

L


 �
,

w2 xð Þ = 1
4 × 105 −201 + 200r + cos 2πx

L

� �� �

� −203 + 200r + 3 cos 2πx
L

� �� �
sin πx

L


 �
,

w3 xð Þ = 1
4 × 107 −201 + 200r + cos 2πx

L

� �� �
sin πx

L


 �

� −203 + 200r + 3 cos 2πx
L

� �� �2
 

−
6 −201 + 200r + cos 2πx/Lð Þð ÞΓ 1 + 3βð Þ sin πx/Lð Þ2

Γ2 1 + βð Þ

!
,

w4 xð Þ = 1
16 × 109 −201 + 200r + cos 2πx

L

� �� �
sin πx

L


 �

+ −203 + 200r + 3 cos 2πx
L

� �� �3
+ 1
Γ2 1 + βð ÞΓ 1 + 2βð Þ

 

� 12 −201 + 200r + cos 2πx
L

� �� ��

� 203 − 200r − 3 cos 2πx
L

� �� �
Γ 1 + βð Þ − 2

�

� −101 + 100r + cos 2πx
L

� �� �
Γ 1 + 2βð Þ

��
Γ 1 + 3βð ÞSin

� πx
L


 �2��
,

w5 xð Þ = 1
32 × 1011Γ3 1 + βð ÞΓ2 1 + 2βð ÞΓ 1 + 3βð Þ
� −201 + 200r + cos 2πx

L

� �� �
sin πx

L


 ��
� −3 81609ð + 1600r −101 + 50rð Þ + 4 −403 + 400rð Þ cosð
� 2πx

L

� �
+ 3 cos 4πx

L

� ��
Γ 1 + βð ÞΓ 1 + 2βð ÞΓ 1 + 3βð Þ

� 4 −101 + 100r + cos 2πx
L

� �� �
Γ 1 + 2βð ÞΓ 1 + 3βð Þ

�

+ −201 + 200r + cos 2πx
L

� �� �
Γ 1 + 4βð Þ

�
sin2

� πx
L


 �
− 12 −201 + 200r + cos 2πx

L

� �� �

� −203 + 200r + 3 cos 2πx
L

� �� �2
Γ2 1 + βð ÞΓ 1 + 2βð Þ

� Γ2 1 + 3βð Þ + Γ 1 + 2βð ÞΓ 1 + 4βð Þ� �
sin2 πx

L


 �
+ 72 −201 + 200r + cos 2πx

L

� �� �2
Γ2 1 + 2βð ÞΓ

� 1 + 3βð ÞΓ 1 + 4βð Þ sin4 πx
L


 �
+ −203 + 200r + 3 cos 2πx

L

� �� �2
Γ2 1 + βð ÞΓ 1 + 3βð Þ

� −203 + 200r + 3 cos 2πx
L

� �� �2
Γ2 1 + 2βð Þ

 

− 6 −201 + 200r + cos 2πx
L

� �� �
Γ 1 + 4βð Þ sin2 πx

L


 ��!
:

ð53Þ

Therefore, the 5th-transform function to the Laplace
algebraic equation of (50) can be reformulated:
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Figure 4: 3D graph representation of the 5th-MFPS approximate solution of Example 3, for all t ∈ ½0, 1�, x ∈ ½−2π, 2π�, L = 5, and r = 3.
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W5 x, sð Þ = 1
10 s sin

πx
L


 �
+ 1
2 × 103sβ+1

� −201 + 200r + cos 2πx
L

� �� �
sin πx

L


 �

+ 1
4 × 105 s2β+1 −201 + 200r + cos 2πx

L

� �� �

� −203 + 200r + 3 cos 2πx
L

� �� �
sin πx

L


 �

+ w3 xð Þ
s3β+1

+ w4 xð Þ
s4β+1

+ w5 xð Þ
s5β+1

:

ð54Þ

As a last step, we take the inverse Laplace transform to
both sides of (54), to conclude that the 5th-MFPS approxi-
mate solution for the fractional IVPs (48) and (49) will be
expressed as follows:

w5 x, tð Þ = 1
10 sin πx

L


 �
+ 1
2 × 103 −201 + 200r + cos 2πx

L

� �� �
sin

� πx
L


 � tβ

Γ β + 1ð Þ + 1
4 × 105 −201 + 200r + cos 2πx

L

� �� �

� −203 + 200r + 3 cos 2πx
L

� �� �
sin

� πx
L


 � t2β

Γ 2β + 1ð Þ +w3 xð Þ t3β

Γ 3β + 1ð Þ

+w4 xð Þ t4β

Γ 4β + 1ð Þ +w5 xð Þ t5β

Γ 5β + 1ð Þ :

ð55Þ

For the numerical simulation of the 5th-MFPS approxi-
mate solution (48), some numerical results are calculated
for the approximate solution w5ðx, tÞ, at different values of
β and r with some selected grid points with step size 0:25
on the interval ½0, 1� and for x = π/3, and given in Table 4.
Further, numerical comparisons are performed to validate
the accuracy of our approach by establishing the recurrence
errors jw5ðx, tÞ −w4ðx, tÞj for the obtained approximate
solution of fractional IVPs (48) and (49) at various values
of β and at fixed values L = 10, r = 0:9, as in Table 5. Graph-
ically, we have drawn the profile solution w5ðx, tÞ, for differ-
ent values of β and at fixed values L = 5, r = 3, as in Figure 3.
Moreover, the geometric behavior of the 5th-MFPS approxi-
mate solution for the fractional IVPs (48) and (49) is studied
for different values of β and fixed values L = 5, r = 3 by draw-
ing 3D-graphs for the obtained approximate solution as in
Figure 4.

5. Conclusion

In this analysis, a recent numeric-analytic iterative technique
has been utilized for finding the approximate analytical solu-
tions to both linear and nonlinear time-fractional S-H equa-
tions with appropriate initial conditions based on coupling
the RPS approach with the Laplace transform operator.
The proposed technique has an advantage over other tech-
niques in getting the approximate solution as the MFPS for-

mula reduces the steps of mathematical computations to
find out the unknown coefficients for proposed fractional
series throughout applying the concept of limit at infinity.
Three linear and nonlinear time-fractional S-H equations
are solved using the LRPS technique, and its efficiency has
been shown via graphical and numerical obtained results
which showed the similar and coinciding behavior of the
MFPS approximate solution for various values of β and for
the classical case β = 1, in terms of the accuracy. Therefore,
the current results confirm that the LRPS technique gives
notable merits in terms of efficiency, accuracy, and applica-
bility, and it is a convenient method to solve various ranges
of linear and nonlinear FPDEs.
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