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The topological and geometric behaviors of the variable exponent formal power series space, as well as the prequasi-ideal
construction by s-numbers and this function space of complex variables, are investigated in this article. Upper bounds for s
-numbers of infinite series of the weighted nth power forward and backward shift operator on this function space are being

investigated, with applications to some entire functions.

1. Introduction

Operator ideal theory has various applications in the geom-
etry of Banach spaces, xed point theory, spectral theory, and
other areas of mathematics, among other areas of knowl-
edge. Throughout the article, we will adhere to the etymo-
logical conventions listed below. If any other sources are
used, we will make a note of them.

1.1. Conventions 1.1. N={0, 1,2, ---}.C: complex number
space

RN: the space of all real sequences

£, the space of bounded real sequences

¢": the space of r-absolutely summable real sequences

¢,: the space of null real sequences

¢,=(0,0,---,1,0,0, ---), as 1 lies at the I' coordinate, for
allleN

F: the space of each sequence with finite nonzero
coordinates

card (®): the number of elements of the set ©

mi /" the space of all monotonic increasing sequences of
positive reals

L: the ideal of all bounded linear operators between any
arbitrary Banach spaces

F: the ideal of finite rank operators between any arbi-
trary Banach spaces

A: the ideal of approximable operators between any arbi-
trary Banach spaces

L.: the ideal of compact operators between any arbitrary
Banach spaces

L(%,9): the space of all bounded linear operators from a
Banach space X into a Banach space Y

L(%) : the space of all bounded linear operators from a
Banach space X into itself

F(X,9): the space of finite rank operators from a
Banach space X into a Banach space Y

F(%): the space of finite rank operators from a Banach
space X into itself

A(%,9) : the space of approximable operators from a
Banach space X into a Banach space Y

A(X): the space of approximable operators from a
Banach space X into itself

L.(%,9): the space of compact operators from a Banach
space X into a Banach space Y

L.(%X): the space of compact operators from a Banach
space X into itself

(5,(G)) e the sequence of s-numbers of the bounded
linear operator G
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(0t,(G)) e the sequence of approximation numbers of
the bounded linear operator G

(,(G)) sen: the sequence of Kolmogorov numbers of the
bounded linear operator G

S,: the operator ideals formed by the sequence of s
-numbers in any sequence space V
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S¥P: the operator ideals formed by the sequence of
approximation numbers in any sequence space V

SK°l: the operator ideals formed by the sequence of Kol-
mogorov numbers in any sequence space V

1.2. Notations 1.2 (see [1]). Sgp = {S%(%,9)); X and Y are
Banach Spaces}, where

S (%,9) = {P €L(X,9): f, € #,wheref (z)= OZO: s, (P)z" converges forany z € (C} (1)
n=0

Sy = {S3" (%X,9); X and P are Banach Spaces}, where

SHT(%,9) = {P €L(X,9): f,, € > wheref, (2)= ) a,(P)z" converges foranyz € (C} (2)
n=0
SKol'; {SKel(%, 9)) ; € and 9) are Banach Spaces}, where
shl(x,9) = {P €L(%X,9): fx, € %, wheref (z) = z d,(P)z" converges forany z € C} (3)
n=0

(S%p)A = {(S%P))L(I, 9) ; X and ¥ are Banach Spaces},
where

18

(S%p)A(x’ @) = {T € L(x’ 2)) f,\ € %P’ wheref)L(z) =

n=0

Several operator ideals in the class of Banach or Hilbert
spaces are defined by sequences of real numbers. L, for
example, is produced by (d,(G)), and ¢,. Pietsch [2]
looked into the quasi-ideals Sz,p P for 0 < t < co. He demon-
strated how ¢ and ¢! yield the ideals of Hilbert Schmidt
operators and nuclear operators between Hilbert spaces,
respectively. In addition, he proved that F= Spt> for 1<t <
00, and Sy is a simple Banach space. Pietsch [3] explained
that Sy, where 0 <t < 00, is small. Makarov and Faried [4]
showed that for any Banach spaces X and %) with dim (%)

= dim (9)) = 0o, then for every r>¢ >0, one has ;" (%X, 9

)gSZ?p(%, 2))§L(X, 9)). The concept of prequasi-ideal was
developed by Faried and Bakery [5], who elaborated on the

A, (T)z" converges forany z € Cand || T — A(T)I|| =0, foreveryl € IN}

(4)

concept of quasi-ideal. They investigated some geometric
and topological properties of the spaces S..; and §, .

ces(t
According to the spectral decomposition theorem [2], for
A €L (H), where H is a Hilbert space, one has A(y) =Y,
a, <y, 1, >w,, where {r,} and {w,} are orthonormal fami-
lies in H. Suppose (t,),. € R™ be decreasing and D : (1)
— (t,n,) be the diagonal operator on € with p > 1. There-
fore, s,(D) = t,. Shields [6] investigated an indication to the
weighted shift operators as formal power series in unilateral
shifts and formal Laurent series in bilateral shifts. Hedaya-
tian [7] offered the space of formal power series with power
r, " ((ba)), where ((ba)) is a sequence of positive numbers
with by =1 and r > 0. By the space #*((ba)), he meant that

—

the set of all formal power series Y00 f,z* with Yo
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|b.f Al < 00. He studied cyclic vectors for the H forward
shift operator and supercyclic vectors for the backward shift
operator on the space #7((b,)).

However, Emamirad and Heshmati [8] explored the idea
of functions evident on the Bargmann space by f(z) = Yo7
c,(z%1V/al) with ||f]| = ¥2|c,|* < 00, where {z%/V/a! : ae
N} is an orthonormal basis. Faried et al. [9] introduced
the upper bounds for s-numbers of infinite series of the
weighted nth power forward shift operator on #"((ba)),
for 1<r<oo, with some applications to some entire
functions.

The paper is arranged as follows. In Section 3, we offer
the definition of the space %, ) with definite function p.
We introduce the sufficient conditions on 7, ) to generate
premodular special space of formal power series. This gives
that 7, is a prequasinormed space. In Section 4, firstly,
we give the sufficient conditions on %,y such that the class
S, generates an operator ideal. Secondly, we explain

p
SWp(-))p' This shows the nonlinearity of s-type (%))

enough settings (not necessary) on (# (.>)p, so that F=

p()/,p
spaces which gives an answer of Rhoades [10] open problem.
Thirdly, we investigate the conditions on (# P(»))p such that
the prequasi-ideal S(%PU) are Banach and closed. Fourthly,

Vp

we examine the sufficient conditions on (# P(-))p such that

S<7f’p<->)p is strictly contained for different powers. We show
the smallness of SWP(Y))}). Fifthly, we investigate the simple-
ness of S, - Sixthly, we present the enough setup on
(# P(-))p such that the class L with its sequence of eigen-
values in (# P('))P equals S(%m)p' In Section 5, we estimate

the upper bounds for s-numbers of infinite series of the
weighted nth power forward and backward shift operator
on %, with approaches to some entire functions.

2. Definitions and Preliminaries

Definition 1 (see [11]). A function s : L(%, %)) — [0,00)" is
called an s-number, if the sequence (s,(B))2,, for all Be L
(%,9), shows the following settings:

(a) If Be L(%,9), then ||B|| =s4(B) =5,(B) >s,(B) = -
>0

(b) Spray1(By +By) <s,,(B;) +5,(B,), for every By, B, € L
(%,9),b,aeN

(c) The inequality s,(ABD) <||A|ls,(B)||D|| holds, if D
€L(%,,%X),BeL(X,9) and A€L(9,9,), where
X, and %), are arbitrary Banach spaces

(d) Suppose AeL(%X,, X) and A€ R, then s,(AA) =|A]|
sa(A)

(e) Let rank (A)<b then s,(A)=0, whenever A e L(
X, %)

(f) Assume I, indicates the identity operator on the A
-dimensional Hilbert space €2, then s,.,(I,) =0 or

Ssal) =1

Consider the following examples of s-numbers:

(i) The bth approximation number, a;,(A), where

oy (A) =inf {||A - B||: Be L(X,Y)and rank (B) < b}
(5)

(i) The bth Kolmogorov number, d;,(A), where

dy(A)= inf sup inf|Au—v|. (6)

dim YSbHuHSl veY

Remark 2 (see [11]). If Be Lc(H), where H be a Hilbert
space, then all the s-numbers equal the eigenvalues of |B|,

where |B| = /B * B.

Lemma 3 (see [2]). If Be L(¥X,, X) and B ¢ A(¥X,, X), then
DeL(X) and M € L(9) with MBD,;, = e,, for each b € N.

Definition 4 (see [2]). A Banach space ) is said to be simple
if L(9)) has one and only one nontrivial closed ideal.

Theorem 5 (see [2]). If D is a Banach space with dim (D)
=00, then

F(D)cA(D)SLe(D)CL(D). (7)

Definition 6. (see [2]). A class U C L is said to be an operator
ideal if every vector U(X,Y)=UNL(X,Y) shows the fol-
lowing settings:

(i) FcU

(i) U(%,9) is linear space on R

(iii) If DeL(%X,%),BeU%,9)
then, ABD € U(%X,,9),)

and A€L(9.9,)

Definition 7 (see [5]). A function g : U — [0,00) is called a
prequasinorm on the ideal U if it shows the next settings:

(1) For each AeL(%X,9),9(A)>0 and g(A)=0A
=0

(2) One has M >1 with g(BA) <M | ] g(A), for all 3
cRand AcU(%,9)

(3) One has K >1 with g(A, + 4,) <K[g(Al) + g(A2)],
for every A, A, € U(%X,9)

(4) There exists C>1 so that if A € L(¥X,, X),Be U(X%,
9) and De L(9),9),) then g(DBA) < C|Dllg(B)|All,
where X, and 9), are normed spaces



Theorem 8 (see [5]). Suppose g is a quasinorm on the ideal
U, then g is a prequasinorm on the ideal U.

Theorem 9 (see [12]). Assume s-type 7'v:={f = (sr(T)) €
RN : T e L(%,9)and v(f)<oo}. If Svv is an operator ideal,
then we have

(1) F Cs-type Vv

(2) Assume  (s,(T;))ry € s-type?', and(s,(T,))ro, € s-
type V', then(s,(T, + T,))ic, € s-type 7',

(3) Suppose AeR and (s.(T));2, € s-type V', then|A|
(Sr(T))SSO € s-type %v

(4) The sequence space 7', is solid. i.e., when (s,(G));2,

es-type? , ands,(T) <s,(G), foreveryr € Nand T,
GeL(X,Y), then(s,(T))2, € s-type 7,

Lemma 10 (see [13]). If {&i},.y is a bounded family of R. We
have

sup inf& = inf sup&,. (8)
card (G)=a+1 i€G card (G)=a i¢G

Lemma 11 (see [14]). If (r,), (t,) € RN and (q,) € (0,00)",
with K = max {1, 2%} and ®, = max {1, sup,q, }, then

o+ ta|®e < K(|r|™ +[t[™).- ©)

Definition 12 (see [1]). The linear space of formal power
series

n=0

X = {f 1 f(z) = i?’nz" convergesforanyze(C,}, (10)

is called a special space of formal power series (or in short
(ssfps)), if it shows the following settings:

(1) e™ € #, for all me N, where el™(z) = Z;’ioe?)z”

:Zm
(2) If ged and | f,|<|g,| foralln € N, then f € 7

(3) Suppose f € #, then f|; € #, where f|,(z) =};%

—~

f [blz]zb and [b/2] marks the integral part of b/2

Theorem 13 (see [1]). If Z is a (ssfps), then Sy is an opera-
tor ideal.
By &, we explain the space of finite formal power series,

ie, for f € F, one has 1 € N with f(z) = ZLZO?nz”.

Definition 14 (see [1]). A subspace # p of the (ssfps) is called
a premodular (ssfps), if there is a function p : % — [0,00)
verifies the next conditions:
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(i) For f € %, we have p(f)>0and f=0 o p(f) =0,
where 0 is the zero function of #

(ii) Suppose f € Z and A € R, then there is [ > 1 with
p(Af) < [Allp(f)
(iii) Let f, g € #, then there is K >1 such that p(f + g

) <K(p(f) +p(9))
(iv) Suppose |?b| <|g,|, for every b e N, then p(f) <p
(9)
(v) There is K, > 1 so that p(f) < p(f[.]) < Kyp(f)
i) = x,
(vii) one has £>0 with p(1e(®) > &|A|p(e®), where A
€eR

Note that the continuity of p(f) at 8 comes from condi-
tion (ii). Condition (1) in Definition 12 and condition (vi) in
Definition 14 investigate that (e{™)), € is a Schauder basis
of Zp.

The (ssfps) #p is called a prequasinormed (ssfps) if p
shows the conditions (i)-(iii) of Definition 14, and if the
space H is complete under p, then #'p is called a prequasi-
Banach (ssfps).

Theorem 15 (see [1]). Every premodular (ssfps) # p is a pre-
quasinormed (ssfps).

Definition 16 (see [1]). Assume Hp is a prequasinormed
(ssfps). An operator V,: Hp—> Hp is called forward
shift, if V,f =zf, for all f € #p, where V_f(z) =Y. f,

n+1

z™1 converges for every z € C and p(V ,f) < co.

Definition 17 (see [1]). Suppose # p is a prequasinormed
(ssfps). An operator B, #p— Hp is called backward

shift, if B,f(z) = (f(z) - f(0))/z, for all f € #p, where B,f

(z) = Ziioj?nﬂz” converges for every z€ C and p(B,f) <
0.

Definition 18 (see [9]). By using the power series of an entire

function g(z) =3 a,,2", the shift operator V. is
defined as

Vo (f(2) = (Z%W) (f(2))- (11)

Definition 19 (see [9]). By using the power series of an entire
function g(z) = },,_a,,2", the shift operator B, is defined
as

By (f(2)) = <§0 am3?> (f(2)- (12)
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3. Main Results enough conditions on it to create pre-modular (ssfps) which
implies that is a prequasi-Banach (ssfps).
3.1. The Space of Functions (7 . )) We define in this sec- If p=(p,),n(0:00), we define the new space of
tion the space (# P<‘))P under tHe function p and give  functions:
< ) {f f(z) Z f 2" converges for any z € C and p({f)<co,for some { > 0} (13)
v=0
where
N P
P =2 |F] (14)
V:OPV

8

—
\H

f(z) = Z JA‘ z" converges for any z € C and p({f)<oco,for some { > 0}

8

~ S|
fiflz)= Z f 2" converges forany z € Cand Z —

y= v=0Lv

~ Py
(f,| <ooforsomed > 0}

(f ‘ <oof0rsome(>0} (15)

V= v=0L"v

~ b }
f,| <oo

fiflz)= Z ?Vz" converges for any z € C and Z 1

v=0 v=0Lv

v

= {f f(z) = Zf z" converges for any z € C and mf\(\pv Zp

v=0

fif(z)= Z ?Vz" converges for any z € C and p({f)<oo,for any { > 0} .

If (p,) € €., one has
Theorem 20. Consider (p,) € mi , N8 with p,>0, one has  verges for any zeC. From (p,)el,, we

1 ~ Py ~ Py
(y,), is @ premodular Banach (ssfps) haveX 2, (1Up, ) Af, | < sup AP X% (1/p,)] | <co.
SoAMfex ()" Therefore, from conditions (1-i) and (1-

Proof (1-0). Let f, g € %, . Therefore, f(z) = Z;)ZO]?VZV and ii), the space %, is linear. To prove el ¢ Py
for all m € N, where e (z) = szoe(v )2 = 2" and Yool

g(z) =Y, 9,7" converge for any z € C. Then, (f +g)(z) ) P
= Zfﬁo(fv +g,)z" convergesforany z € C. From (p,) € £, Up)les™ | =1ip,,

we

have- (2) Assume \?:| <|g,|, for all veN and ge%,).
(g1, + 8 <KL+ DU, thenconverges for any € ©
)<oo,sof+ge?/p'. One has
(1-ii) Let A € Rand f € #p,,. Therefore, f(z) = Z‘;ZOJA‘V
z" converges for any z € C. Then, (Af)(z) = ZSZO/\?VZ" con- Z A< Z |gA [P < co. (16)

v=0Lv VOV



So, f(z)=Y%.f,z" and z€C and p(f) < co. Hence, f
€ X o)

(3) Let f e #,,, and e mi/ N L., with p, >0. Then,
0] v 00 Po
f(z) = Y% f,z" converges for any z € C

and p(f) < co. One has

o 1
= Z—|fv/\|p2v

v=0 p2v

p(f1) - ipl

v=0

Frmh

£ Y LA <2y D If A = 20(f)

=0 p2v+1 v:Opv
(17)

Hence, f|;(2) = 2%, @ z” converges for any z € C and
p(f()) <co. Then f|, € 7 .

(i) Obviously, if f € %), one gets p(f) >0 and p(f)
=0ef=0

(i) There is [=max {1, sup|q[’" '} =1, for all y e R\ {
0} and I> 1, for #=0 so that

X1 31
mm=2;mm%smwwzngxwwﬁ
v=0Lv v v=0Lv

(18)

forall f e 7,

Supp,-1

(iii) There is K = max {1,2 ¥ }>1 so that

p(nf) = Zl

—~ S|
pnﬂswwngmw%wwﬁ
v=0L"v v

o (19)

for every f, ge # )

(iv) Obviously from the proof part (2).
(v) From the proof part (3), one has K, =22>1
(vi) Clearly, =% )

(vii) One has ¢ with 0 < <#P~ with p(17el”) > {|n|p(
e®), for each #0 and { >0, when 7 =0. There-

fore, the space (%PU)P is a premodular (ssfps).

To show that (%PO)P is a premodular Banach

(ssfps), we suppose 1 to be a Cauchy sequence

in (?/pO)P, then for every ¢ € (0, 1), there is i, € N
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such that for all 4, j > i;, one gets

; . < 1 i . |Py
p(1O =)= Y- A=A <& (20)
‘V:OPV
For i, j> i, and v € N, we have
fO-fi<e (21)

So, ( ff,”) is a Cauchy sequence in R, for fixed ve N,

hence lim; ., f iﬁ = f(v0> , for fixed v € N.
Therefore, p(f” - f*)) < &®p, for every i > i. Finally, to

show that 1) ¢ F ()> we have

p<f<0>> =P(f(°) - £ +f(z‘>> SK(PU(:‘) _f<0)> " p<f<i>>> <o,
(22)

Hence, f<0) € # () Then, the space (%P(‘))p is a pre-

modular Banach (ssfps).
In view of Theorems 15 and 20, we conclude the follow-
ing theorem. O

Theorem 21. If (p,) € mi/ "N L, with p,> 0, then the space
(H <~))p is a prequasi-Banach (ssfps), where

p
p(f) = Zﬁzo(l/f’v)‘fv/\ Pv’for allf € %P()

Theorem 22. Suppose (p,) € mi/ N L., with p,> 0, one has

(H p(,))p is a prequasiclosed (ssfps), where

o0

PUI= Yo NP forallf €7y, (23)

v=0Lv
Proof. According to Theorem 21, the space (H P('))P is a pre-
quasinormed (ssfps). To explain that (H P<'))P is a prequasi-
U5 e(@,,),  and

lim, _p(f” = f?) =0, we have for all ¢ € (0,1), there is
iy € N such that for all i > i, one gets

closed (sstps), let

1/@
l. 1L p|
s>p(f()_f(0)):[Z;fg)A—fg0>A‘| S ()
a=0L"a

—

So, for i > iy and a € N, we have |f¥ — f©)| < & There-
fore, ( fgi)) is a convergent sequence in R, for fixed a € N.

Then, lim; ft(li) = f;o) for fixed a € N. Finally to prove
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that f(% (%P('))P’ we have

P(f(o)):P(f(o>_f(i>+f(i)>Sp(f(b f >+p(f )<oo,

(25)
this gives f*) € (%P<‘))p which shows that (%p(_))P is a pre-
quasiclosed (ssfps). |

4. Properties of Operator Ideal

Throughout this section, some geometric and topological
properties of the prequasi-ideals formed by s-numbers and
(%P('))p are presented.

4.1. Ideal of Finite Rank Operators. In this part, enough set-

tings (not necessary) on (%P('))P so that F=S(%p()> are
p

given. This explains the nonlinearity of the s-type (# P(J)p

spaces (Rhoades open problem [10]).
In view of Theorems 13 and 20, we conclude the next
theorem.

Theorem 23. Consider (p,) € mi/ Ne,
S, is an operator ideal.

with p,>0, then

Theorem 24. If (p,) € mi/ N &, with py> 0, then F=Sg

, where

(26)

p<f>=20p17

Proof. Clearly, F(X,9)cC Sy
S(s,,). is an operator ideal. Therefore, we have to show that

v,
S(?/p(_))P (X,9)c F(%X,9). By letting T € S<%P())p (%X,9), then,
foe(Hy ) with f (z) = Y,20s,(T)z" converges for any z
eC. So, p(f ) <00, fix € (0,1), we have m € N - {0} with

p(f,— Y te) < e/a. As (s,(T)),cy is decreasing, we have

o) (%X,9), since the space
,

D (M Y aM)fs Y oM<

v=m+1Lv v=mLtv

(27)

Therefore, we have A € F,, (%,9), rank A <2m and

3m 2m 1 £
D —||T A< Y —|T-AP <= (28)
v—2m+1pv v=m+1Lv 4
As (p,) € £, then
—|T- A< (29)
VZoPV IT-A

Since T-Ae S(%P<))p(%, 2), then h e (¥,

hy(z) =Y 0s,(T —A)z" converges for any z € C. Because
(p,) is increasing and from the inequalities (27)-(29), we
get

('))p, where

3m—11 00 1
d(T,A)=p(h)= Y —(s,(T-A)+ Y —(s,(T~A))"
v=0 P v=3m P
< Z—HT AllP+ Y, —2< viam(T = A))Poe
v—O v v=m L v+2m
<3 z i(sv(T))Pv <e.
V=l O v V= mpv
(30)
Since I, € Sz, 1) (%,9) but the condition (p,) € mi
n+1 p

/N¢,, is not verified which explain a negative example
of the converse statement. This finishes the proof.

We can reformulate Theorem 24 as follows: if (p,) € mi
/N e, with p, >0, then every compact operators can be
approximated by finite rank operators and the converse is
not always true. O

4.2. Banach and Closed Prequasi-Ideal. In this part, enough

settings on (# P(‘))P so that the prequasioperator ideal S%p

is Banach and closed are investigated.

Theorem 25. Assume (p,) € mi/ N, with p,> 0, then the

function g(P)=p(f,) is a prequasinorm on S, where
P
fo(2) = X208, (P)z" converges for any z € C and
pUf)= Y. s, (P forevery f € (31)
v=0Lv

Proof. One has g verifies the next setups:
(1) Let P€ Sz, ) (X.9), g(P) =p(f,) 20 and g(P) = p
(f)=0es,(P)=0,foralve N P=0
(2) There is 1>1 with g(AP) = p(Af,) <I|A|p(f,) =1A]
g(P), for every P e S, (%,9)and L eR
P

(3) One has KK, >1, for P,,P, € S, (% 9). Then,
ZV 05y (P )ZV

f1(2) = X5, (Py)2" and f2( )
converge for any z € C. Therefore, for h(z) = Y2,
s,(P, + P,)z", one has

9P, +Py) = p(h) <p((fL) + (F2),)) <K (p((f1.),)

+ p((fzs)[.])) <KKy(g(Py) +9(P,))
(32)



(4) We have C>1, let AeL(%X,,%),Be¢ Sr,) (%,9)
P

and DeL(9,9,). Then, f (z)=),2s,(B)z" con-
verges for all z € C. Then, for h(z) =} s, (DBA)
z’, one has

9(DBA) = p(hy) < p(|[A[l[IDIIf,) < ClIAIg(B)IDI]  (33)

O

Theorem 26. Assume X and ) are Banach spaces, and (p,

)emi/ N, with p,>0, then (S(%()) ,g) is a prequasi-
e

P(fs)’fs(z) = Z;.ZOSV(P

Banach operator ideal, where g(P) =
)z" converges for any z € C and

pUf)= Y s Py forevery f, e . (34)

Proof. As (p,) € mi/ "N L, with p, >0, one has the function
g(P)=p(f,) is a prequasinorm on S, - Let (P,,) be a
p

(%,2}). Therefore, ") ¢

Cauchy sequence in S( s
Yooy (Pm)zv converges for any z €

(%p(-)) andf ( )=

C. Suppose h(z) = 325, (P; = P;)z", then from parts (iv)

and (vii) of Definition 14 and since L(¥,9)) 2 S@,,) (%,9
P

), we have

g(P; _Pj> = p(hy) 2P(So(Pi _Pj)e(o))
ZEHPi‘PJHP(e(O))’

= p(2i=7,)

(35)

then (P,,),.n is @ Cauchy sequence in L(¥, ). Since the
space L(X,9) is a Banach space, there is P € L(%,9)) with

. _ (m)
mh—r>noo||Pm _PH =0 and as fsm € (%P(-))p’

Hence, by using Theorem 25 and the continuity of p at 0,
we have

for every m € IN.

g(P)=g(P-P, +P,)<KK,(g(P, —P)+g(P,))
:KKOp<||Pm -y e<”’>> +KK0p(f< ) <&,
(36)
SO fs € (%P(‘))p’ which 1mphes Pe S(%p()) (x, @) 0

Theorem 27. Suppose X and ) are Banach spaces, and (p,
) € mi/ N L, with p, > 0, then (S5 ) ,g) is a prequasiclosed

P (2) = $2s, ()" con-

operator ideal, where g(P) =

Journal of Function Spaces

verges for any z € C and

< 1

pf)= 2 s

2y s,(PYP, forevery f € . (37)

Proof. As (p,) € mi/ N L, with p, >0, so the function g(P)
=p(f,) is a prequasinorm on S, - Let Py €Sz, ) (%,
p P

9), with meN and lim g(Pm—P)zo. Then, f\" ¢

(%p(.)) and f\")(z) =
C. Suppose h(z) =

ZV oSy (P,,)2" converges for any z €

1205, (P; = P;)z", then from parts (iv)

and (vii) of Definition 14 and since L(¥,9)) 2 S5 ) (%,9
), one obtains
9(P=P)) =p(h) 2 p(so (P~ Py)e” ) = p(||P~P,|e)
28P-2, o e),
(38)

then (P,,),, is a convergent sequence in L(%, ). Since the
space L(%,9) is a Banach space, then there is Pe L(%X,9)

with lim,,_, ||P,, — P||=0 and asf €(Hy) ) for every

m € N, by using Theorem 25 and the contlnulty of p at 0,
one has

g(P)=g(P-P,+P,)<KKi(g(P, —P)+g(P,))
=KK0P<||P - P i ) +KKop(f< >) <e
(39)

hence, f € (#

P(-))p’ which gives P € S,

L&D

According to Theorem 9, we introduce the following
properties of the s-type (# P('>)P'

Theorem 28. For s-type (HP(‘))p ={(s,(T)) e RN : T ¢

S, (£,9)}. The next settings are verified.
P
(1) We have s-type (%p<_))P SF

(2) Suppose (s,(T;))r2, € s-type (
€ s-type (%’p(_))P, then

K (), and (s,(T5))2

p
(s,(T, +T,))2 € s-type

(3) One has A € R and (s,(T));2, € s-type (%P(,))p, then
M (s, (T)):2p €5 = type (% ),

(4) The s-type (%P(')>p is solid
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4.3. Small Prequasi-Banach Ideal. We introduce here some
inclusion relations concerning the space S ) for different
p

(p))-

Theorem 29. Let X and ) be Banach spaces with dim (%)
=dim (%) =co, and (p,), (q,) € mi/ N L, with p,>0 and
p, <4, for all v €N, we have

S(,,) (BD)CS(,) (BD)CLFE D). (40)

), ,

Proof. Assume T € S(%’P(A))P(x, 9). Therefore, f, € (%P(,))P
and f (z) = Y,20s,(T)z" converges for any z € C. Then,

Y LT <o (a)

S 1
> —(s(T)P < 25

v=0v

hence, T € S(%q(‘))p(x, 9)). Next, by taking T with s,(T) =
(p,/(v+1))", one has T¢ S(%’p(‘))p(&”, 9) and TeS
(%q(,))P(x, 9)). Clearly, S<Hq(_)>p(£, 9) cL(%,9). Again, by
choosing s,(T) = (q,/(v +1))"%, one has T ¢ S(%q('))p(x,

9) and T € L(%, 9)). This finishes the proof.
In this part, we examine the sufficient setting for which

app .
S(%( o I8 small. O

P

Theorem 30. Let X and %) be Banach spaces with dim (X)
=dim (%) = co. Assume (p,) € mi/ N, with p,>0, then

app .
S<7fp<<))p is small.

Proof. Obviously, the space (S{% )9
P p

Banach operator ideal, with g(T) = Y32, (1/p,) (e, (T))"". Let

S?;;’()) (%X,9)=L(%X,9). Hence, there is C>0 with g(T)
708

<C||TJ|, for all T € L(%,9). According to Dvoretzky’s the-
orem [15] with r € N, there are quotient spaces X/A, and
subspaces #, of 9) that operated onto €} by isomorphisms
D, and B, with ||D,||||D;"|| <2 and ||B,|||B;|| < 2. Suppose
I, be the identity operator on ¢}, {, be the quotient operator
from X onto X/A, and J, be the natural embedding operator
from #, into 9). Let h, be the Bernstein numbers [16], we
have

) generates a prequasi-

= h,(1) = hy (B,B;'1,D,D;") < B, (B;'1,D,) [ D7
= ||Br||ha(]rB;IIrDr) ||D;1|| < ”Bera(]rB;lIrDr)||D;1||
= ”Br”da (]rB;IIrDr(r> ||D:1H S ”Br”aa (]rB;IIrDrCr) HD;I ’

(42)

9
for 0 <j<r. Then for /> 1, one has
< (B D) - (07,8, DL, =
P; p; ! p;
1 ) T 1
<|B,||— (o (J,B,'1,D,3,)) ||| = Y —
Pj 0P
w1 _ . =1
<U|BJ|DM| Y - (o (B, LDE,)) T = Y
j:op' j:Opj
<108, 1107|918, 1.0.5,) = ¥ - )

=1
.
1
<IC|B,|[|D; || [|7.B;'L,DE, || = Y —
=P
<ICI1B 1D 178, [P
_ _ L1
=1C|B, ||| D7 [[||B; I 1Py = Y. — <4iC.
=1
As r— 00, we get Y 1/p; <co. Since Y %alp;>1/
sup p; %% 1 = co. Hence, the space S?;%(_J)P is small.

By the same manner, we can easily conclude the next
theorem. O

Theorem 31. Assume X and %) be Banach spaces with dim
(%) =dim (9) = co. Suppose (p,) € mi/ N, with p,>0,
then Sf;}m) is small.

p

4.4. Simple Prequasi-Ideal. In this part, we offer enough set-

tings on (# P('))P so that the space S(%p(_>)p is simple.

Theorem 32. Let (p,), (q,) € mi/ NL,, with 1<p, <q,, for
every v € N, then

L (s(%q(_))p, S(%L) =A (s(%w)p, s%(_))) L (49)

Proof. Consider T € L(Sg ) ,Sg,.) ) and T ¢ A(Siz

at)/p 0/ p at)/p

S#,) ). According to Lemma 3, one has GEL(S(%q()) )

e P

and Be L(S(%P()> ) with BTGI,, =1,,. For every m € N, one
Vp

obtains

® 1/sup p, m-1 1 1/sup p,
= S. P = o
||1m\|s(?/ <Z (5,(Ln)) ) (ZPV>

'PL‘))}, v=0pv =0

© 1/sup q,
<[IBTG|[| Ll | 2@
S(”q(»))p ;qv
) mz_:li 1/sup q,
v=0 4y .

This defies Theorem 29. O

(45)
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Corollary 33. Let (p,), (q,) € mi/ N, with 1<p, <q,, for
each v e N, then

L (S(%q<_))p, S(%P(_))J =L, (S(%)p’ s%(_))p) . (46)

Proof. Clearly, as ACL,. O

Theorem 34. Assume (p,) € mi/Ne,

S<7fp<»>)p is simple.

with p,>1, then

Proof. Suppose T € LC(S( ) and T ¢ A(S 5
of Lemma 3, we have G,B € L(S( #) ) so as to BTGIk =1I.
I3

One gets IS(WM)p € LC(S(WP(-))P)' Therefore, L(SWP(-J),D) =Lc(

o), ). In view

S<7fp<-))p)' This implies one and only one nontrivial closed

ideal A(S(%’p(.))p) in L(S(%p(.))p)' -

4.5. Spectrum of Prequasi-Ideal. In this part, we introduce

enough settings on (# P('))P so that the class L with sequence

of eigenvalues in (#

P('))p equals S(%P(_))p.

Theorem 35. If X and %) are Banach spaces with dim (¥X)
=dim () = co. Suppose (p,) € mi/ NE,, with p,>0, we
have

A
(S(%<->)p> (£.9) =57, (%3). (47)

Proof. Let T € (S5, M(Z,9), then f, € (#
P

P('))p)’ where
fi(z) =224, (T)z" converges for all ze C with p(f,) =
o2 (1/p,) A (T) P < 00, and || T = A,(T)I|| =0 for all ve
N. We have T=A,(T)I, with v € N, hence s,(T) =s,(A,(T
)I) =|A,(T)|, with ve N. As a result, f, € (HP(-))p’ then T

€ S(HP(‘))p(x’ g)) SeCOndly, Te S(HP())p(x, 2))
Hence, f € (H, '>) , where f (z)=3,2s,(T)z" converges
for all z € C with p(f ) =200 (1/p,)ls, (T)

assume

P < 0o0. One has

o0 1 [ee]

i Py > s Py
Sz o SR

Therefore, lim s,(T)=0. Let | T —s,(T)I||”" exists, for
V—>>00

all ve N. Hence, || T —s,(T)I||”" exists and bounded, for all

v € N. Therefore, lim ||T—s (D)I||™" = ||T||”" exists and
bounded. By using the prequasioperator ideal of (S ), 9
), one has

I=TT 8, ) (£.9)= ()5 e (%) = Jim s, (1)=0

Journal of Function Spaces

Since lim s,(I) =1. Hence, ||T —s,(T)I|| =0, for all v
V—2>00
€ IN. This gives T € (S(%p()) E, D).
P
This shows the proof. O

P

In this section, we present the upper bounds of s-numbers
for infinite series of the weighted nth power forward and
backward shift operator on %, ) with applications to some
entire functions.

5. Weighted Shift Operators on (% (,))P

Theorem 36. Assume (p,) € mi/ N
€ L((%P())P) with

IV.Jl=sup (p) , (50)

py]1/wp’for all f € (%P('>)P'

with p,> 0, then V,

where p(f) = [X2(1/p,)| f,A

Proof. Suppose the setups are verified. For f € (
(p,) emi/ Ney,

HP(-))p‘ Since

p(V.f) =plzf) =

with  p, >0, then

(2720 (Upra ) U AP T < [ (Upr )L AP < sup
(pr/pr+l)1/wp [ZSSO(I/pr) |fr/\ le] p = Sup(p /pr+1)1/w (f)
Therefore, V,eL((# 1’('))17) w1th | V.|| < sup,

(p,Ip,,,)""%. Since V, eL((%, ) ). Then, there is A >0
with p(V,f) <Ap(f), for all f € (# ) Hence, p(V,e!")

< Ap(e),one getssup (/)" < 1V,
This completes the proof. O

Theorem 37. Consider (p,) € mi/ N L., with p,> 0, then B,

1/(2)1,
I =sup (%) 1)

where p(f) = [Y20(1p )| f NPT, for every f € (%,)) .

Proof. Let the given settings hold for every f e (%P(-))p'
Since (p,) € mi/ N L, with p, >0, then

p(B.f) = [Z Sl } csup (%) [ZP ¥ }
() [ ar] - (22) "otr

(52)
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Therefore, B, € L((%’p(_))p) with ||B, || < sup, (p,,,/p,)"

. Since B, e L((# ())p) Then, there is A >0 with p(B,f)
Ap(f), for all fe(x ) Hence, p(B,el™) < Ap(el™h),

<
)
then sup, (p, +1/pr)1/‘DP < ||BZ|| This completes the proof. [J

Theorem 38. Let (p,) e mi/N€, with p,>1. Suppose

lim sup(1//p,) = 1, then every function in (%P(->)p is ana-

V—>00
Iytic on the open unit disc D. Moreover, the convergence in
(%p(_))P implies the uniform convergence on compact subsets

of D, where p(f)=[32y(1ip,)|f AP, for any fe

(Z )

Proof. Suppose hm sup(l/\/_) =1,and f € (#
fore, f(z) =

»0), (), There-

I fvz converges for every z € C and p(f) =

(X020 (1/p,) |fV/\\PV]U‘D" < 00. Hence, lim sup
V—>00

'/ (1/p,)|f AP < 1. We have
lim sup/|f Al < L (53)

00 v lim sup (1/y/p,)
V—>00

Since (p,) € mi/ N, with p,>1, we obtain lim sup
\ |ﬁ|\z| <|z| < 1], for all ze€D. Hence, f(z)= Zfﬁoﬁz"

converges for every complex value of z € D. Assume A is a

compact subset of D and f*(z) € A, for all k € N. Let f* con-
verges to f € (%P(,))p, we have

F@-r@| -3 (7-7)2| < E[f T
_ ‘| l/d)p [i PZV . qu‘| l/(Dp

Looo |
[m

%] p(*-1),

v=0
(54)
where (q,) € mi/(¢,, with g,>1 and (1/p,) +(1/g,) =1,
for all veN. Clearly, lim suppV“/V z|" <1, then
(2208|291 < co. So limy__oof*(z) = f(z) €A. O

Theorem 39. Assume V, is the forward shift operator on
. 00 /
(F ), with p(f) = [E2(Up)f NPT, for all fe

11

(%P() )P. Then,

1/(Dp 1 I/IDp
sup inf (Pp_k> — <5, (V7)< sup inf (pp—k> ,
cardé=r+1 keg k+n An card &=r+1 keg k+n
(55)

n= [Z](Zo(]/pk)|fk/\|Pk]1/(Dp/[zk {(1/pk)|fk/\‘Pk+n]1/wp~-

for all f e

where A

Proof. Let card E=r+1 and as V]f € <%p(.))l_)’

(7 ('))p, where f(z) = Z?Oﬁzk converges for every z € C

p
and p(f) = (22 (1p) 7] < co. Hence, V’ij(Z)=
]I(D

YRofi ™ and  p(VIf) = [X2(alpy, ) fial] " < oo
Assume PE is and operator on (# (,))P with rank PE =7+

p
1 defined by

(Peg) (z) = P¢ (Zf Zk+”> = iﬁzk”- (56)

ke&

0
p(ng) = [Yhee (W) [f A Pe] %<
(552 (V) [ Pr] " = p(g). This implies ||| < 1.

Define an operator S! by (Sh)(z) = SH(Yreefc2"™) =
Zﬁoﬁzk, then

Since

o | Va, ) @,
pSIR) = | Y —[finl*| <UD —Ifih* | =U,p(h).
k:ng kegpkm
(57)
Hence, ||S7|| < U,,, where
(P f AP
1<U. = [zkfo( pk)|fk | ] (58)

- n :II/(DP

[Xket | UPx il frA [P

Therefore, the identity map will be I,,,=P;V]S],
according to the definition of s-numbers, we have

5, (Ie1) = L [|Pe|s, (VOIS I < 5, (VD) ISz =

_ [ ket [Pkl f A5 S inf <pPk )m 1
[ER0UpIFAP] " ket \Prn)  As

] la,

This inequality is satisfied for all card, £ =7+ 1 and one
has

@
s,(V2)= sup inf (ppk ) PAL. (60)

card E=r+1 k€€ k+n n

On the other hand, let £ be a subset of N with card & =r.
Define the finite rank map R” by (R,"v)(z) = R (Y220 f 125)

=S 25", In view of the definition of approximation
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numbers, we have

\%
SV <o (V< |[Vi- R < sup 02
[f(2)[#0

’Zkeff kzkﬂl
= sup < sup

: ~ R (@)
[f(2)]

{Zkes(l/Pm)

fi

Prin :| Ve,

saw @ i

/o,
<sup (pp—k)
ke& k+n

If(2)]

(61)

This inequality is verified for every card &=r and by

using Lemma 10, one has

1@, 1
sup inf <pp k )
card E=r+1 keg k+n

?
= inf (pp k )
card{ r+1 ke& k+n

This completes the proof.

5 (Vz) <

Theorem 40. If B, is the backward shift operator on (% ;) ,

inf sup P
card &=r k& kin

p(.

~ p, 118,
with p(f) = (% (1p I, ] > for all f € () Then,

1, 4 1@
sup inf <Iﬂ> G_ s, (B;)< sup inf <Iﬂ)

card E=r+1 keg Pr

where G, = [Y520(1p) | M) " [ ke

card E=r+1 keg

Px
(63)

o
| Lpgnl o]

Proof. Assume card £ =r+1 and since B]f € (%P(-))p’ for

every f € (%p,) , where f(z):Zf)O]A‘kzk converges for

P
any z € Cand p(f) = [X20(Up) lfeA™]

U
? < 00. Therefore,

BZf(Z)ZEZOJ?kMZ and p(BJf) = [Zﬁo(l/pk”fk/\lpk]l/wp <oo

.Suppose P; is an operator on (%))
evident by g

(Pe9) (2) = P (Z w2 )

As p(PEG) = [Xiet

[e9) 1 .
(220 (1P frn " =p(g). - This
Define an operator S by (S'h)(z) =

with rank Pr=r+1

= i?szk' (64)

ke&

~ P V@,
(Upl frnl 1 <
implies  ||pg < 1.

S (Tkeef ken?) = 220

Journal of Function Spaces

f 2", one gets

] = Unp(h)

(65)

-~

Therefore, IS21<U,,, where 1<U, =
1@ . , 1@,

I T
SRl ] kel (UpDI Finl T <0, Hence,
the identity operator will be I,,; = P¢B]S], in view of the def-

zVz?
inition of s-numbers, one has

2|

ke&

p(sth) [ ~I7f
k=0 Pk

§) = 1< [P (B2 <5, (B 2] =

Y,

R VAT T
= in —.

— Pk:| 1/, keE e G,

" [Z?:O(I/Pk)‘fk

(66)

This inequality is confirmed for all card £ = r + 1, and we
have

Ve
s,(B})= sup inf(pkH’) pi. (67)

card &=r+1 keg pk Gn

On the other hand, suppose & is a subset of N with card
& =r. Define the finite rank operator R? by (R!v)(z) = R}(

Yofid) = Ykeef i 2" From the definition of approxima-
tion numbers, one gets

B" — R"
§.(B") <a(B") < B!~ R < sup BRI ()
fao  1f(2)]

— Di l/(D‘,J
’zk¢zf kenZ ’ {Zk&l/l’k’f ke ]
sup < sup
ek @) f]#0 If(2)]
pk+n
2
keg \ Pr

(68)

This inequality is satisfied for any card £ =r and from
Lemma 10, we have

2\ V% »
sup inf < k+”) — <s,(B) < inf sup <k+">
card &=r+1 ket \ Py G card §=r ket Px

= sup inf (pk”’)
card E=r+1 k€&

This finishes the proof. O
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Next, the upper and lower bounds of norm } > ¢, V7

on the space (% p('))p have been explained.

Theorem 41. The effect of Y, oc,,

VI on the space (%P('))p’
o ~ P, 1/(2)1,
where p(f) = (5% 11p, |7, I"] " forallf € (%,) ,

(C)S0, € 0P™1% and (p) € mi N L., withp, > 1, we have

0 » la,
Sup [ Z |C Pk k ] <
k

m=0 Prim

1@, oo
<sup (P&> Z I, [P

m,k k+m m=0

(70)

Proof. Assume f € (%p('))P,WehaVe Yoo VIS (2) =

Zﬁzocm?kz’”m. Then,

2k

P(an(’:ocm V?e(k))

Ff;’=o<1/pm+k> G0 m

p(e) Up,
1/(Dp
>sup z |C |Pm+k P .
m=0 pk+m

(71)

Since p satisfies the triangle inequality, we get

P(ZM OC Vm )
= sup om0 2/
p(F)#0 p(f)
© © ~ Pk MDP
o | ZRa(0pmee) (el 7))
Sp?}l)io 2 ]
P&wm k}

o, v {Ziﬁo(”pk) <\cm| ‘J?kbpmk} va,

. Pk:| la,

[Zﬁowpk)(upk)\fk

(72)

Next the upper and lower bounds of norm ), c, B

on the space (% P(‘))P have been investigated. 0

Theorem 42. The effect of Z

where p(f) =

7 on the space (% ))P,
,for allf € (

%p(.))P’ (Cm)omO:O

[Z(r):ol/pr|fr| ']

13

€ 2% and (p,) € mi N L, withp,> 1, we have

o)
Y. cuB

m=0

f) 1@, oo
< sup( ;er) Z ‘Cm ‘Pm/lvp,
k

m=0

o , 1/a,
sup |y P EREm ] <
k LZZO "o

(73)

Proof. Suppose f € (%P(»)>p’ onehas Y ¢, Bl f(z) = Y12

> oCmf kem?* We have

L P(EnecnBre®) _ [Zoo(Upey)lewl?] "
- p(e®) 1/p,

1/,
> sup |:Z |€ [P pk*'”:| .
m=0 pk

As p verifies the triangle inequality, one can see

zcmB;n = sup P(Zm:OCmBzf)
m=0 p(f)#0 P(f)

)Pk:| V@,

[zgmolrif]

a0 (12) ([

)Pk:| l/tDP

e 5 Zov | ZEo (k) (e T
s sup () —
NUSITAN
1/(Dp 0
<sup (}M> Z [¢, [P
(75)

The following theorem indicates an upper estimation to
the s-numbers of Y c,, V2" on the space (% p(.))P. 0

Theorem 43. The effect of Y, ,c,, V' on the space (%p(_>)p,
P
,forall f € (Z’p('))P, the s

~ P, 1/®,
wherep(f) = [X21/p,1f ]

-numbers of this operator are presented by

0 ll@, o
/2,
s, Z ¢,V?¥ | < sup inf sup(p > Z |C "%
m=0 cardE r+1 k€& m k+m

(76)

forall (c,,)oy € gen)/ “and(p,) € mi , N L withp, > 1.

Proof. Let & be a subset of N and card & = . By using the def-
inition of s-numbers. Define the finite rank operator Rby R

£(2) = RS0 f 1) = SreeEeotnf . T view of the
definition of approximation numbers and since p satisfies
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the triangle inequality, we have

() (e8]
sr<z cmV;”> gar(z cmV;”> <
m=0 m=0

P(E046, Vf ~ RY)
=0k ()

Yo, [m( P k) (lfml\f kDM}
< sup
p(f)#0 pU)

l/@, o
<sup (L) e
ke&m \Fk+m m=

(=]

(77)

This inequality is verified for every card & =r, and one
has

v
@
i M8
o
3
=
§\
B

o0
s ¢, V" | < inf sup
! (r;) e > card &= rkifm (pk+m m
1/wp 00
inf sup C}pk ) Z |Gy [P %

= sup
card &=r+1 ke& m k+m m=0
(78)
This implies the proof. O

The next theorem investigates an upper estimation to the

s-numbers of Y ¢, B on the space (# P(_))P.

Theorem 44. Acting Y c,,B where

o) =152 F L]

P,for everyf € (y,) , the s
-numbers of this operator satisfy

" on the space (#, ) ,
z Po7p

P

] p li@, oo
s, Z ¢,Bl'| < sup inf sup( k+m) Z |C [P,
m=0 card E=r+1 k€& m

(79)

for all (), € 8?2 and (p,) € mi N e, withp, > 1.
Proof. Assume & is a subset of N and card & =r. From the
definition of s-numbers. Define the finite rank operator Rb

YRf(2) = R(EZ0f 17") = ket Zmeo6mS k2" From the defi-
nition of approximation numbers and as p verifies the trian-
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gle inequality, one has

(5ee)s(52) 8

< sup p(Zm OC Rf)

p(f)#0 P(f)

. _ IR
Domeo {Zkef(l/Pk) (|Cm|‘fk+m ) }

< sup

p(f)#0 p(f)

1/®, oo

< sup (I)an> ’ Z |Cm‘Pm/(D[,

kg&m Px m=0

(80)

This inequality is satisfied for all card £ =, and we have

(o) P 1/&) 0
s ¢ B" | < inf su ktm c, [Pm!®@
r<mz_o ! z) card = fk¢£p< ) Z i

P /@, oo
— k+m p /(D
= sup inf sup( ) |€p [P
card &=r+1 ke m Z
(81)

This completes the proof. O

The following theorems are direct consequences of The-
orem 43 and Definition 18, for some entire functions, for
example, the exponential and the sine functions.

Theorem 45. Let (p,) € mi , N € withp, > 1. Assume B, is a
p(f) =

[
02" Im!

shift  operator on (¥, ), where for
p

Py
00 ~ Py I/QP 0
XZ(ip)If 1] forallf € () and e =3,

. The upper estimation of the s-number of V. is given by

1@, oo Pl®
Pren )" S (L)
o= e wre(e) L)@
car r+ m m=0 :

Theorem 46. Let (p,) € mi , N € withp, > 1. Suppose B, ()

is a shift operator on (%’P()) , where p(f)=
)
0o ~ p, 1®, . 0
Zo(ip IS 1] forallf € () jand sin (2) = X,

(=-D)™(2*™1/(2m + 1)!). The upper estimation of the s-
numbers of V is presented by

sin (z)

P 1@, oo Pl @,
s (Vg > < sup infsu Hm .
r< sin (2) cardEpH-I keg mp( Z Zm + 1

N (83)

The following theorems are direct consequences of The-
orem 44 and Definition 19, for some entire functions, for
example, the exponential and the sine functions.
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Theorem 47. Assume (p,) € mi, N € withp,> 1. Suppose
(#, ), where p(f)=
P

Py
0o ~ P 1@, . © _m
S tp) 1111 forevery f € (%)) and e = 5522
ml. The upper estimation of the s-numbers of B, is pretended

by

B, is a shift operator on

pk 1@, oo 1 Pnl®,
s,(Bez)< sup inf sup (ﬂ) (—) . (84)
r( ¢ ) card E=r+1 K€€ m Pr mZ:O m!

Theorem 48. Suppose (p,) € mi , N withp,>1. Assume
B

sin (z)

is a shift operator on (%P()), where p(f) =
1p

~ p, 1@, ]
(XZo(Wp)Lf[] forevery f € (%)) and sin (z) =
Yoo (=)™ (2™ (2m + 1)!). The upper estimation of the

m=0
By, (2 is presented by

/@, oo Pl ®
. Peem) " L\
B < f —m —_— .
57( o <Z)> carcsil;g'-#l ]1‘126 SVLVIIP ( pk ) Z ((Zm + 1)'

N (85)
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