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In this paper, we consider a first-order coupled impulsive system of equations with functional boundary conditions, subject to the
generalized impulsive effects. It is pointed out that this problem generalizes the classical boundary assumptions, allowing two-
point or multipoint conditions, nonlocal and integrodifferential ones, or global arguments, as maxima or minima, among
others. Our method is based on lower and upper solution technique together with the fixed point theory. The main theorem is
applied to a SIRS model where to the best of our knowledge, for the first time, it includes impulsive effects combined with
global, local, and the asymptotic behavior of the unknown functions.

1. Introduction

The study of impulsive boundary value problems is richer
than the related differential equation theory without
impulses and has strategic importance in multiple current
scientific fields, from sociology and medical sciences to gen-
eralized industry production or in any other real-world phe-
nomena where sudden variations occur.

The classic impulsive theory can be seen in [1, 2]. In the
last two decades, a vast literature on impulsive differential
problems has been produced, such as [3–17], only to men-
tion a few.

Functional problems composed by differential equations
and conditions with global dependence on the unknown vari-
able generalize the usual boundary value problems and can
include equations and/or conditions with deviating argu-
ments, delays or advances, nonlinear, or nonlocal, increasing
in this way the range of applications. The readers interested
in results in this direction, on bounded or unbounded
domains, may look for in [18–28] and the references therein.

Recently, coupled systems have been studied by many
authors, not only from a theoretical point of view but also

due to the huge applications in many sciences and fields,
with several methods and approaches. We recommend to
the interested readers, for instance, [29–39].

Motivated by the results contained in some of the above
references, in this paper, we consider the first-order coupled
impulsive system of equations

y1′ tð Þ = g1 t, y1 tð Þ, y2 tð Þ, y3 tð Þð Þ,
y2′ tð Þ = g2 t, y1 tð Þ, y2 tð Þ, y3 tð Þð Þ,
y3′ tð Þ = g3 t, y1 tð Þ, y2 tð Þ, y3 tð Þð Þ,

8>><
>>: ð1Þ

a:e:t ∈ ½a, b� \ ft jg, where t j is fixed points, and j = 1, 2,
⋯, n and gi : ½a, b� ×ℝ3 ⟶ℝ are L1-Carathéodory func-
tions, for i = 1, 2, 3, with the functional boundary conditions

B1 y1, y2, y3ð Þ = 0,
B2 y1, y2, y3ð Þ = 0,
B3 y1, y2, y3ð Þ = 0,

ð2Þ
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where Bi : ðC½a, b�Þ3 ⟶ℝ and i = 1, 2, 3 are continuous
functions linearly independent and verifying the generalized
impulsive conditions

Δy1 t j
� �

=H1j t j, y1 t j
� �

, y2 t j
� �

, y3 t j
� �� �

,

Δy2 t j
� �

=H2j t j, y1 t j
� �

, y2 t j
� �

, y3 t j
� �� �

,

Δy3 t j
� �

=H3j t j, y1 t j
� �

, y2 t j
� �

, y3 t j
� �� �

,

8>><
>>: ð3Þ

where Hij : ½a, b� ×ℝ3 ⟶ℝ is continuous functions for i =
1, 2, 3,j = 1, 2,⋯, n, with Δyiðt jÞ = yiðt+j Þ − yiðt−j Þ, and t j fixed
points such that a≔ t0 < t1 < t2 <⋯<tn < tn+1 ≔ b:

As far as we know, it is the first time where those three
features are taken together to have a coupled impulsive sys-
tem with functional boundary conditions and generalized
impulsive effects, which one including, eventually, impulses
on the three unknown functions. We underline two novelties
of this paper:

(1) Condition (2) generalizes the classical boundary
assumptions, allowing two-point or multipoint con-
ditions, nonlocal and/or integrodifferential ones, or
global arguments, as maxima or minima, among
others. In this way, new types of problems and appli-
cations could be considered, enabling greater and
wider information on the problems studied

(2) The main theorem is applied to a SIRS model where
to the best of our knowledge, for the first time, it
includes impulsive effects combined with global,
local, and asymptotic behavior of the unknown
functions

Our method is based on lower and upper solution tech-
nique together with the fixed point theory. In short, the main
result is obtained studying a perturbed and truncated sys-
tem, with modified boundary and impulsive conditions
and applying Schauder’s fixed point theorem to a completely
continuous vectorial operator. Moreover, the paper contains
a method to overcome the nonlinearities monotony through
a combination with adequate changes in the definition of
lower and upper solutions.

The paper is structured in the following way: Section 2
contains the functional framework, definitions, and other
known properties. The main result is in Section 3, where
the proof is divided into steps, for the reader’s convenience.
In Section 4, it is shown a method where the definition of
coupled lower and upper functions can be used to obtain dif-
ferent versions of the main theorem, with different mono-
tone characteristics on the nonlinearities. The last section
contains an application to a vital dynamic SIRS-type model,
representing the dynamic epidemiological evolution of sus-
ceptible (S), infected (I), Recovered (R), and newly infected
individuals in a population on a normalized period, subject
to impulsive effects and global restrictions.

2. Definitions and Auxiliary Results

Define yiðt±k Þ≔ lim
t⟶t±k

yiðtÞ, for i = 1, 2, 3, and consider the

sets

PCk a, b½ �ð Þ =

y : y ∈ Ck a, b½ �,ℝ3� �
continuous for t ≠ t j,

y kð Þ t j
� �

= y kð Þ t−j
� �

,

y kð Þ t+j
� �

existsforj = 1, 2,⋯, n

8>>>><
>>>>:

9>>>>=
>>>>;
,

ð4Þ

for k = 0, 1 and the space X3 ≔ ðPCð½a, b�ÞÞ3 equipped with
the norm

y1, y2,y3
� ��� ��

X3 = max y1k k, y2k k, y3k kf g, ð5Þ

where

yk k≔ sup
t∈ a,b½ �

y tð Þj j: ð6Þ

It is clear that ðX3, k:kX3Þ is a Banach space.
The triple ðy1, y2, y3Þ is a solution of problem (1)-(3) if

ðy1, y2, y3Þ ∈ X3 and verifies conditions (1), (2), and (3).

Definition 1. A function w : ½a, b� ×ℝ3 ⟶ℝ for i = 1, 2, 3 is
L1 − Carathéodory if

(i) for each ðx, y, zÞ ∈ℝ3, t↦wðt, x, y, zÞ is measurable
on ½a, b�

(ii) for a:e:t ∈ ½a, b�,ðx, y, zÞ↦wðt, x, y, zÞ is continuous
on ℝ3

(iii) for each ρ > 0, there exists a positive function ψρ ∈
L1ð½a, b�Þ and for ðx, y, zÞ ∈ℝ3 such that

max xj j, yj j, zj jf g < ρ, ð7Þ

one has

w t, x, y, zð Þj j ≤ ψρ tð Þ, a:e:t ∈ a, b½ �: ð8Þ

In this paper, the definition of lower and upper solutions
plays a key role in our method.

Next definition will be used in the main theorem:

Definition 2. Consider the PC1 -functions αi, βi : ½a, b�⟶
ℝ,i = 1, 2, 3:
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The triple ðα1, α2, α3Þ ∈ X3 is a lower solution of the
problem (1)-(3) if

αi′ tð Þ ≤ gi t, α1 tð Þ, α2 tð Þ, α3 tð Þð Þ, for i = 1, 2, 3,
B1 α1, α2, α3ð Þ ≥ 0,
B2 α1, α2, α3ð Þ ≥ 0,
B3 α1, α2, α3ð Þ ≥ 0,

ð9Þ

and, for j = 1, 2,⋯, n,

Δα1 t j
� �

≤H1j t j, α1 t j
� �

, α2 t j
� �

, α3 t j
� �� �

,

Δα2 t j
� �

≤H2j t j, α1 t j
� �

, α2 t j
� �

, α3 t j
� �� �

,

Δα3 t j
� �

≤H3j t j, α1 t j
� �

, α2 t j
� �

, α3 t j
� �� �

:

ð10Þ

The triple ðβ1, β2, β3Þ ∈ X3 is an upper solution of the
problems (1)-(3) if the reversed inequalities hold.

3. Main Result

The main result will provide the existence of, at least, a solu-
tion for the problems (1)-(3).

Theorem 3. Assume that there are α and β lower and upper
solutions of problem (1)-(3), according Definition 2, such that

αi tð Þ ≤ βi tð Þ,∀t ∈ a, b½ �, for i = 1, 2, 3: ð11Þ

Let gi : ½a, b� ×ℝ3 ⟶ℝ,i = 1, 2, 3, be L1 − Carathéodory
functions, not identically null, on the set

t, yið Þ ∈ a, b½ � ×ℝ3 : αi tð Þ ≤ yi ≤ βi tð Þ, i = 1, 2, 3
� �

, ð12Þ

g1 t, y1, α2 tð Þ, α3 tð Þð Þ ≤ g1 t, y1, y2, y3ð Þ ≤ g1 t, y1, β2 tð Þ, β3 tð Þð Þ,
ð13Þ

for t ∈ ½a, b� \ ft jg,j ∈ f1, 2,⋯, ng,y1 ∈ℝ,αiðtÞ ≤ yi ≤ βiðtÞ,
and i = 2, 3:

g2 t, α1 tð Þ, y2, α3 tð Þð Þ ≤ g2 t, y1, y2, y3ð Þ ≤ g2 t, β1 tð Þ, y2, β3 tð Þð Þ,
ð14Þ

for t ∈ ½a, b� \ ft jg,j ∈ f1, 2,⋯, ng,y2 ∈ℝ,αiðtÞ ≤ yi ≤ βiðtÞ,
and i = 1, 3:

g3 t, α1 tð Þ, α2 tð Þ, y3ð Þ ≤ g3 t, y1, y2, y3ð Þ ≤ g3 t, β1 tð Þ, β2 tð Þ, y3ð Þ,
ð15Þ

for t ∈ ½a, b� \ ft jg,j ∈ f1, 2,⋯, ng,y3 ∈ℝ,αiðtÞ ≤ yi ≤ βiðtÞ,
and i = 1, 2, with

Bi α1, α2, α3ð Þ ≤ Bi y1, y2, y3Þð Þ ≤ Bi β1, β2, β3ð Þ, ð16Þ

for αi ≤ yi ≤ βi,i = 1, 2, 3:

Assume that Hij : ½a, b� ×ℝ3 ⟶ℝ satisfies

Hij t j, α1 t j
� �

, α2 t j
� �

, α3 t j
� �� �

≤Hij t j,w1,w2,w3Þ
� �

≤Hij t j, β1 tj
� �

, β2 t j
� �

, β3 t j
� �� �

,
ð17Þ

for αiðt jÞ ≤wi ≤ βiðt jÞ,i = 1, 2, 3, and j ∈ f1, 2,⋯, ng:
If there is ρ > 0 such that

max
i=1,2,3

max αik k, βik kf g + 〠
n

j=1
Hij t j,w1,w2,w3Þ

� �		 		 + ðb
a
ψi,ρ sð Þ + 1

� �
ds

" #
< ρ,

ð18Þ

then there exists at least a triple ðy1, y2, y3Þ ∈ X3, solution of
(1)-(3), such that

αi tð Þ ≤ yi tð Þ ≤ βi tð Þ,∀t ∈ a, b½ �, for i = 1, 2, 3: ð19Þ

Proof. Let ðα1, α2, α3Þ, ðβ1, β2, β3Þ ∈ X3 be, respectively,
lower and upper solutions of (1)-(3), as in Definition 2, ver-
ifying (11).

Consider the continuous truncatures δi : ½a, b� ×ℝ⟶
ℝ, i = 1, 2, 3, denoted, for short, as δiðtÞ, defined by

δi tð Þ≔ δi t, yi tð Þð Þ =
βi tð Þ , yi tð Þ > βi tð Þ,
yi tð Þ , αi tð Þ ≤ yi tð Þ ≤ βi tð Þ,
αi tð Þ , yi tð Þ < αi tð Þ,

8>><
>>:

ð20Þ

and consider the modified and perturbed problem com-
posed by the differential system

y1′ tð Þ = g1 t, δ1 tð Þ, δ2 tð Þ, δ3 tð Þð Þ + y1 tð Þ − δ1 tð Þ
1 + y1 tð Þ − δ1 tð Þj j , ð21Þ

y2′ tð Þ = g2 t, δ1 tð Þ, δ2 tð Þ, δ3 tð Þð Þ + y2 tð Þ − δ2 tð Þ
1 + y2 tð Þ − δ2 tð Þj j , ð22Þ

y3′ tð Þ = g3 t, δ1 tð Þ, δ2 tð Þ, δ3 tð Þð Þ + y3 tð Þ − δ3 tð Þ
1 + y3 tð Þ − δ3 tð Þj j ,

ð23Þ
for t ∈ ½a, b� \ ft jg,j ∈ f1, 2,⋯, ng, together with the trun-
cated boundary conditions

yi að Þ = δi a, yi að Þ + Bi δ
∗
1 y1ð Þ, δ∗2 y2ð Þ, δ∗3 y3ð Þð Þð Þ, ð24Þ

for i = 1, 2, 3, with the functional truncations

δ∗i wð Þ =
βi ,w > βi,
w , αi ≤w ≤ βi,
αi ,w < αi,

8>><
>>: ð25Þ
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and the truncated impulsive conditions

Δyi t j
� �

=Hij t j, δ1 t j
� �

, δ2 t j
� �

, δ3 t j
� �� �

, ð26Þ

for j ∈ f1, 2,⋯, ng: ☐

Claim 4. The problems (21), (24), and (26) have at least a
solution.

This claim will be proved by the fixed point theory,
applied to the vectorial operator

T : X3 ⟶ X3, ð27Þ

given by

T y1, y2, y3ð Þ = T 1 y1, y2, y3ð Þ,T 2 y1, y2, y3ð Þ,T 3 y1, y2, y3ð Þð Þ,
ð28Þ

where for i = 1, 2, 3,

T i : X
3 ⟶ X ð29Þ

defined as

T i y1, y2, y3ð Þ tð Þ≔ δi a, yi að Þ + Bi δ
∗
1 y1ð Þ, δ∗2 y2ð Þ, δ∗3 y3ð Þð Þð Þ

+ 〠
j:t j<t

Hij t j, δ1 t j
� �

, δ2 t j
� �

, δ3 t j
� �� �

+
ðt
a

� gi s, δ1 sð Þ, δ2 sð Þ, δ3 sð Þð Þ + yi sð Þ − δi sð Þ
1 + yi sð Þ − δi sð Þj j


 �
ds:

ð30Þ

Integrating (21) for t ∈ ½a, t1�, by (24), we have

yi tð Þ = δi a, yi að Þ + Bi δ
∗
1 y1ð Þ, δ∗2 y2ð Þ, δ∗3 y3ð Þð Þð Þ++

ðt
a

� gi s, δ1 sð Þ, δ2 sð Þ, δ3 sð Þð Þ + yi sð Þ − δi sð Þ
1 + yi sð Þ − δi sð Þj j


 �
ds:

ð31Þ

By integration of (21) for t∈�t1, t2�, by (26) and (31), we
get

yi tð Þ = yi t
+
1ð Þ +

ðt
a

gi s, δ1 sð Þ, δ2 sð Þ, δ3 sð Þð Þ + yi sð Þ − δi sð Þ
1 + yi sð Þ − δi sð Þj j


 �
ds

== yi t
−
1ð Þ +Hi1 t1, δ1 t1ð Þ, δ2 t1ð Þ, δ3 t1ð Þð Þ++

ðt
t1

� gi s, δ1 sð Þ, δ2 sð Þ, δ3 sð Þð Þ + yi sð Þ − δi sð Þ
1 + yi sð Þ − δi sð Þj j


 �
ds

= δi a, yi að Þ + Bi δ
∗
1 y1ð Þ, δ∗2 y2ð Þ, δ∗3 y3ð Þð Þð Þ

+Hi1 t1, δ1 t1ð Þ, δ2 t1ð Þ, δ3 t1ð Þð Þ +
ðt
a

� gi s, δ1 sð Þ, δ2 sð Þ, δ3 sð Þð Þ + yi sð Þ − δi sð Þ
1 + yi sð Þ − δi sð Þj j


 �
ds:

ð32Þ

Iterating these arguments, it is clear that the fixed points
of T , that is, the set of the fixed points of T i, for i = 1, 2, 3,
are solutions of the problems (21), (24), and (26).

As gi is a L
1-Carathéodory function, Hij and the trunca-

tures δi, δ∗i are continuous; therefore, T i are well defined
and continuous. Therefore, T is well defined and continuous.

Consider a bounded set D ⊂ X3: So, there is k > 0 such
that kðx, y, zÞkX3 < k, for ðx, y, zÞ ∈D:

T iD is uniformly bounded, as, for i = 1, 2, 3,

T i y1, y2, y3ð Þk k = sup
t∈ a,b½ �

T i y1, y2, y3ð Þ tð Þj j

≤ sup
t∈a,b�

δi a, yi að Þ + Bi δ
∗
1 y1ð Þ, δ∗2 y2ð Þ, δ∗3 y3ð Þð Þð Þj j

+ 〠
j:t j<t

Hij t j, δ1 t j
� �

, δ2 t j
� �

, δ3 t j
� �� �		 		

+
ðt
a
gi s, δ1 sð Þ, δ2 sð Þ, δ3 sð Þð Þ + yi sð Þ − δi sð Þ

1 + yi sð Þ − δi sð Þj j
				

				ds
≤ max

i=1,2,3
max αik k, βik kf g + 〠

n

j=1
Hij t j, δ1 t j

� �
, δ2 t j

� �
, δ3 t j

� �� �		 		" #

+ max
i=1,2,3

ðb
a
ψi,k sð Þ + 1
� �

ds <∞,

ð33Þ

where ψi,k is the positive function given by Definition 1.
T iD is equicontinuous because, for i = 1, 2, 3, and t1, t2

∈ a, b� with t1 < t2 (without loss of generality),

T i y1, y2, y3ð Þ t1ð Þ −T i y1, y2, y3ð Þ t2ð Þj j
≤ 〠

j:t1<t j<t2
Hij t j, δ1 t j

� �
, δ2 t j

� �
, δ3 t j

� �� �		 		
+
ðt2
t1

ψi,k sð Þ + 1
� �

ds⟶ 0,

ð34Þ

as t1 ⟶ t2:
T iD is equiconvergent on the impulsive moments,

asjT iðy1, y2, y3ÞðtÞ − lim
t⟶t+j

T iðy1, y2, y3ÞðtÞj ≤ j∑j:t j<tjHijðt j,

δ1ðt jÞ, δ2ðt jÞ, δ3ðtÞÞj −∑ j:t j<t+j jHijðt j, δ1ðt jÞ, δ2ðt jÞ, δ3ðtÞÞjj +
jÐ taðψi,kðsÞ + 1Þds − Ð t+j

a ðψi,kðsÞ + 1Þdsj⟶ 0,(42)when t⟶
t+j : Therefore, T i and T are compact operators.

Consider now the closed, bounded, and convex set Ω ⊂
X3, defined by

Ω = w ∈ X3 : Twk kX3 ≤ R
� � ð35Þ

with R > 0 such that

R > max
i=1,2,3

max αik k, βik kf g + 〠
n

j=1
Hij t j, δ1 t j

� �
, δ2 t j

� �
, δ3 t j

� �� �		 		" #

+ max
i=1,2,3

ðb
a
ψi,R sð Þ + 1
� �

ds:

ð36Þ
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By the above calculus, TΩ⊂Ω, and from Schauders’
fixed point theorem, T has a fixed point y∗ = ðy∗1 , y∗2 , y∗3 Þ,
which is solution of the problems (21), (24), and (26).

Claim 5. This function y∗ = ðy∗1 , y∗2 , y∗3 Þ is a solution of prob-
lems (1)-(3), too.

To prove this claim is enough to show that, for every
solution ðy1, y2, y3Þ ∈ X3 of problems (21), (24), and (26),
the following inequalities hold:

αi tð Þ ≤ yi tð Þ ≤ βi tð Þ, for i = 1, 2, 3, and t ∈ a, b½ �, ð37Þ

αi að Þ ≤ yi að Þ + Bi δ1 a, y∗1 að Þð Þ, δ2 a, y∗2 að Þð Þ, δ3 a, y∗3 að Þð Þð Þ ≤ βi að Þ:
ð38Þ

Let y≔ ðy1, y2, y3Þ ∈ X3 be a solution of the problems
(21), (24), and (26).

To prove the first inequality of (37), for i = 1, assume
that there is t ∈ ½a, b� such that α1ðtÞ − y1ðtÞ > 0 and define

sup
t∈a,b�

α1 tð Þ − y1 tð Þð Þ≔ α1 t∗ð Þ − y1 t∗ð Þ > 0: ð39Þ

Remark that t∗ ≠ a, as, by (24) and (20),

α1 að Þ − y1 að Þ = α1 að Þ − δ1 a, yi að Þ + B1 δ∗1 y1ð Þ, δ∗2 y2ð Þ, δ∗3 y3ð Þð Þð Þ ≤ 0:
ð40Þ

If t∗ is between two consecutive impulses, that is, t ∈ �tp
, tp+1�, for fixed p = 0, 1,⋯, n, then α1′ðt∗Þ − y1′ðt∗Þ = 0, by
(24), (13), and Definition 2, this contradiction is achieved

0 ≤ α1′ t∗ð Þ − y1′ t∗ð Þ = α1′ t∗ð Þ − g1 t∗, α1 t∗ð Þ, δ2 t∗ð Þ, δ3 t∗ð Þð Þ
−

y1 t∗ð Þ − α1 t∗ð Þ
1 + y1 t∗ð Þ − α1 t∗ð Þj j < α1′ t∗ð Þ − g1 t∗, α1 t∗ð Þ, δ2 t∗ð Þ, δ3 t∗ð Þð Þ

≤ α1′ t∗ð Þ − g1 t∗, α1 t∗ð Þ, α2 t∗ð Þ, α3 t∗ð Þð Þ ≤ 0:
ð41Þ

If t∗ is an impulsive moment, that is, there is j ∈ f1, 2,
⋯, ng such that t∗ = t+j ; then, by (26), (17), and Definition
2, we have

0 ≤ Δα1 t j
� �

− Δy1 t j
� �

= Δα1 t j
� �

−H1j t j, δ1 t j
� �

, δ2 t j
� �

, δ3 t j
� �� �

≤ Δα1 t j
� �

−H1j t j, α1 t j
� �

, α2 t j
� �

, α3 t j
� �� �

≤ 0:
ð42Þ

Therefore,

Δy1 t j
� �

− Δα1 t j
� �

= 0, ð43Þ

that is, there are no jumps at any point t j: Then, by (39),

0 ≤ α1′ t−j
� �

− y1′ t−j
� �

, ð44Þ

and the contradiction is obtained as in the previous case.

Therefore, α1ðtÞ ≤ y1ðtÞ, for t ∈ ½a, b�: With the same
arguments, it can be proved that y1ðtÞ ≤ β1ðtÞ, for t ∈ ½a, b�:

A similar technique can be applied for functions g2 and
g3, applying conditions (14) and/or (15), respectively.

Suppose now, by contradiction, that

αi að Þ > yi að Þ + Bi δ
∗
1 y1ð Þ, δ∗2 y2ð Þ, δ∗3 y3ð Þð Þ: ð45Þ

Then, by (24),

yi að Þ = δi a, yi að Þ + Bi δ
∗
1 y1ð Þ, δ∗2 y2ð Þ, δ∗3 y3ð Þð Þð Þ = αi að Þ,

ð46Þ

which is in contradiction with (45), by (16) and Definition 2,

0 = yi að Þ − αi að Þ > Bi δ
∗
1 y1ð Þ, δ∗2 y2ð Þ, δ∗3 y3ð Þð Þ − Bi α1, α2, α3ð Þ ≥ 0,

ð47Þ

for i = 1, 2, 3:
The remaining inequalities can be proved with similar

arguments.

4. Relation between Monotonies and Lower and
Upper Definitions

The monotone assumptions required on the nonlinearities
and on the impulsive functions, by conditions (13)-(15)
and (17), although local, can seem too restrictive. Indeed,
these monotonies can be modified since they are combined
with different definitions of coupled lower and upper solu-
tions, following the method described in this section.

Definition 6. Consider the PC1-functions αi, βi : ½a, b�⟶
ℝ,i = 1, 2, 3:

The triples ðα1, α2, α3Þ, ðβ1, β2, β3Þ ∈ X3 are coupled
lower and upper solutions of the problems (1)-(3) if

α1′ tð Þ ≤ g1 t, α1 tð Þ, β2 tð Þ, α3 tð Þð Þ,
αi′ tð Þ ≤ gi t, α1 tð Þ, α2 tð Þ, α3 tð Þð Þ, for i = 2, 3,
β1′ tð Þ ≥ g1 t, β1 tð Þ, α2 tð Þ, β3 tð Þð Þ,
βi
′ tð Þ ≥ g1 t, β1 tð Þ, β2 tð Þ, β3 tð Þð Þ, for i = 2, 3,

ð48Þ

and, for j = 1, 2,⋯, n,

Δα1 t j
� �

≤H1j t j, β1 t j
� �

, α2 t j
� �

, α3 t j
� �� �

, ð49Þ

Δα2 t j
� �

≤H2j t j, α1 t j
� �

, α2 t j
� �

, α3 t j
� �� �

, ð50Þ

Δα3 t j
� �

≤H3j t j, α1 t j
� �

, α2 t j
� �

, β3 t j
� �� �

, ð51Þ

Δβ1 t j
� �

≥H1j t j, α1 t j
� �

, β2 t j
� �

, β3 t j
� �� �

, ð52Þ

Δβ2 t j
� �

≥H2j t j, β1 t j
� �

, β2 t j
� �

, β3 t j
� �� �

, ð53Þ

Δβ3 t j
� �

≥H3j t j, β1 t j
� �

, β2 t j
� �

, α3 t j
� �� �

: ð54Þ
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The inequalities for boundary conditions are similar to
Definition 2.

With this definition, the assumption on the local monot-
ony of function g1 and on the impulsive functions H1j and
H3j can be replaced, as in the following version of Theorem 3:

Theorem 7. Assuming that all the assumptions of Theorem 3,
with coupled lower and upper solutions defined as in Defini-
tion 6, (13) is replaced by

g1 t, β1 tð Þ, β2 tð Þ, α3 tð Þð Þ ≤ g1 t, y1, y2, y3ð Þ ≤ g1 t, α1, α2 tð Þ, β3 tð Þð Þ,
ð55Þ

for t ∈ ½a, b� \ ft jg,j ∈ f1, 2,⋯, ng,y1 ∈ℝ,αiðtÞ ≤ yi ≤ βiðtÞ,
i = 2, 3, and (12) by

H1j t j, β1 t j
� �

, α2 t j
� �

, α3 t j
� �� �

≤H1j t j,w1,w2,w3Þ
� �

≤H1j t j, α1 t j
� �

, β2 t j
� �

, β3 t j
� �� �

,

H2j t j, α1 t j
� �

, α2 t j
� �

, α3 t j
� �� �

≤H2j t j,w1,w2,w3Þ
� �

≤H2j t j, β1 t j
� �

, β2 t j
� �

, β3 t j
� �� �

,

H3j t j, α1 t j
� �

, α2 t j
� �

, β3 t j
� �� �

≤H3j t j,w1,w2,w3Þ
� �

≤H3j t j, β1 t j
� �

, β2 t j
� �

, α3 t j
� �� �

,
ð56Þ

for αiðt jÞ ≤wi ≤ βiðt jÞ,i = 1, 2, 3, and j ∈ f1, 2,⋯, ng: Then,
there is at least ðy1, y2, y3Þ ∈ X3 solution of (1)-(3) such that

αi tð Þ ≤ yi tð Þ ≤ βi tð Þ,∀t ∈ a, b½ �, for i = 1, 2, 3: ð57Þ

Proof. The proof of Theorem 3 holds, and it remains to
prove that every solution ðy1, y2, y3Þ ∈ X3 of problems (21),
(24), and (26) verifies

α1 tð Þ ≤ y1 tð Þ ≤ β1 tð Þ, for t ∈ a, b½ �: ð58Þ

Assume that there is t ∈ ½a, b� such that αiðtÞ − y∗i ðtÞ > 0
and define

sup
t∈a,b�

αi tð Þ − y∗i tð Þð Þ≔ αi t∗ð Þ − y∗i t∗ð Þ > 0: ð59Þ

Consider t∗ between two consecutive impulses, that is,
t ∈ �tp, tp+1�. Then, by (24), (13), and Definition 2, this con-
tradiction is achieved

0 ≤ α1′ tð Þ − y1′∗ tð Þ = α1′ tð Þ − g1 t, α1 tð Þ, δ2 tð Þ, δ3 tð Þð Þ
−

y∗1 tð Þ − α1 tð Þ
1 + y∗1 tð Þ − α1 tð Þj j < α1′ tð Þ − g1 t, α1 tð Þ, δ2 tð Þ, δ3 tð Þð Þ

≤ α1′ tð Þ − g1 t, α1 tð Þ, β2 tð Þ, α3 tð Þð Þ ≤ 0:
ð60Þ

In the impulsive points, case where t∗ = t+j , by (49),

0 ≤ Δα1 t j
� �

− Δy1 t j
� �

= Δα1 t j
� �

−H1j t j, δ1 t j
� �

, δ2 t j
� �

, δ3 t j
� �� �

≤ Δα1 t j
� �

−H1j t j, β1 t j
� �

, α2 t j
� �

, α3 t j
� �� �

≤ 0,
ð61Þ

analogously, for Δðα3 − y3Þðt jÞ: ☐

Following these arguments, we can obtain different ver-
sions of Theorem 3, combining adequate definitions of
coupled lower and upper solutions, as in Definition 6, and
alternative monotone assumptions on g2 and g3 and on
the impulsive functions Hij:

5. Application to a Vital Dynamic SIRS Model

The study of epidemiological phenomena via compartmen-
tal models is currently a special concern as it simplifies the
mathematical modeling of infectious diseases. These types
of models try to predict, for instance, how a disease spreads,
the duration of an epidemic, the variation of the number of
infected people, and other epidemiological parameters. So,
they are important tools to help the definition of rules for
public health interventions and how they may affect the out-
come of the epidemic.

The classic SIR model is a basic compartmental model
where the population is divided into three groups: suscepti-
ble (S), infected (I), and recovered (R). People may change
groups, but the SIR model assumes that the population gains
lifelong immunity to some disease upon recovery. This is
true for some infectious diseases, such as measles, mumps,
or rubella, but it is not the case for some airborne diseases,
such as seasonal influenza, where the individual’s immunity
may wane over time. In this situation, the SIRS model is
more adequate as it allows that the recovered individuals
can return to a susceptible state and be infected again.

These compartmental models were introduced in the
early 20th century, by Kermack and McKendrick in 1927,
([40]), but since then, many authors study these topics,
under different and varied features, objectives, and tech-
niques. As examples, we mention only some recent works
on the field: [41–48].

Motivated by the papers above, we apply our technique
to a vital dynamic SIRS system composed by the differential
equations

S′ tð Þ = −γS tð ÞI tð Þ + λR tð Þ,
I ′ tð Þ = γS tð ÞI tð Þ − μ + dð ÞI tð Þ,
R′ tð Þ = μI tð Þ − λR tð Þ,

8>><
>>: ð62Þ

for t in a normalized interval ½0, 1�,γ, μ, representing the
infection and recover rates; λ is the rate of recovered individ-
uals becoming susceptible again, and d is the death number
by infection.
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Our method allows to consider global and asymptotic
data as a particular case of functional boundary conditions:

inf
t∈ 0,1½ �

S tð Þ = lim
t⟶ 1

4ð Þ+
S tð Þ,

max
t∈ 0,14½ �

I tð Þ = lim
t⟶ 1

4ð Þ+
I tð Þ,

sup
t∈ 0,1½ �

R tð Þ = R 1ð Þ,

ð63Þ

and generalized impulsive functions, with only one impul-
sive moment, for the sake of clarity,

ΔS
1
4


 �
= −5γS 1

4


 �
I

1
4


 �
+ λR

1
4


 �
I

1
4


 �
, ð64Þ

ΔI
1
4


 �
= 5γS 1

4


 �
I

1
4


 �
, ð65Þ

ΔR
1
4


 �
= −λR

1
4


 �
I

1
4


 �
: ð66Þ

It is clear that problems (62)-(64) are a particular case of
problem (1)-(3), with y1 = S, y2 = I, y3 = R, a = 0, b = 1, n = j
= 1, t1 = 1/4,

g1 t, S tð Þ, I tð Þ, R tð Þð Þ = −γS tð ÞI tð Þ + λR tð Þ,
g2 t, S tð Þ, I tð Þ, R tð Þð Þ = γS tð ÞI tð Þ − μ + dð ÞI tð Þ,
g3 t, S tð Þ, I tð Þ, R tð Þð Þ = μI tð Þ − λR tð Þ,

ð67Þ

and the functional boundary conditions

B1 S, I, Rð Þ = inf
t∈ 0,1½ �

S tð Þ − lim
t⟶ 1

4ð Þ+
S tð Þ = 0,

B2 S, I, Rð Þ = max
t∈ 0,14½ �

I tð Þ − lim
t⟶ 1

4ð Þ+
I tð Þ = 0,

B3 S, I, Rð Þ = sup
t∈ 0,1½ �

R tð Þ − R 1ð Þ = 0,

ð68Þ

and the impulsive effects

ΔS
1
4


 �
=H11 S

1
4


 �
, I 1

4


 �
, R 1

4


 �
 �
= −5γS 1

4


 �
I

1
4


 �
+ λR

1
4


 �
I

1
4


 �
,

ΔI
1
4


 �
=H21 S

1
4


 �
, I 1

4


 �
, R 1

4


 �
 �
= 5γS 1

4


 �
I

1
4


 �
− kI

1
4


 �
,

ΔR
1
4


 �
=H31 S

1
4


 �
, I 1

4


 �
, R 1

4


 �
 �
= −λR

1
4


 �
I

1
4


 �
+ kI

1
4


 �
:

ð69Þ

As a numeric exampl.e we consider the rates γ1 = 0:017,
λ1 = 0:02, μ1 = 0:93, and d1 = 0:2 before the impulsive
moment, that is, for 0 ≤ t ≤ 1/4 and γ2 = 0:001,λ2 = 0:1, μ2
= 0:162, and d2 = 0, after the impulsive effect, i.e., for 1/4
< t ≤ 1:

For these values, the triple null functions ðα1, α2, α3Þ
= ð0, 0, 0Þ and the piecewise one ðβ1, β2, β3Þ given by

β1 tð Þ =
112t6 + 17:12t5 + 4:6t4 − 0:4t3 − 0:02t2 + 0:02t + 1:1,0 ≤ t ≤

1
4 ,

−14:5t6 + 20t5 + 10t4 + 14:6t3 − 0:02t2 + 0:006t + 2, 14 < t ≤ 1,

8>><
>>:

β2 tð Þ =
112t6 + 17:12t5 + 4:6t4 − 0:4t3 − 0:02t2 + 0:02t + 0:01,0 ≤ t ≤

1
4 ,

−14:5t6 + 20t5 + 10t4 + 14:6t3 − 0:02t2 + 0:006t + 1:5, 14 < t ≤ 1,

8>><
>>:

β3 tð Þ =
112t6 + 17:12t5 + 4:6t4 − 0:4t3 − 0:02t2 + 0:02t + 1, 0 ≤ t ≤

1
4 ,

−14:5t6 + 20t5 + 10t4 + 14:6t3 − 0:02t2 + 0:006t + 2, 14 < t ≤ 1,

8>><
>>:

ð70Þ

are, respectively, lower and upper solutions of problems
(62)-(64), according to Definition 6, as it can be seen in
Figures 1 and 2.
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0 0.05 0.10 0.15 0.20 0.25
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β3
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Figure 1: Graphs in ½0, 1/4�.
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Figure 2: Graphs in [0,1].
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All the assumptions of Theorem 7 are fulfilled for
56:22 ≤ ρ < 137:23, and therefore, there is a solution of prob-
lems (62)-(64), such that

0 ≤ S tð Þ ≤ β1 tð Þ,
0 ≤ I tð Þ ≤ β2 tð Þ,
0 ≤ R tð Þ ≤ β3 tð Þ, fort ∈ 0, 1½ �:

ð71Þ

Applying an adequate mathematical software, these
inequalities can be illustrated by the graph of the correspon-
dent solution, given in Figure 3, considering the population
in percentage in the first 100 days.

6. Conclusion

The paper’s main goal is to present sufficient conditions for
the solvability of impulsive coupled systems with functional
boundary conditions generalizing the classical boundary
ones. In this way, problems may consider restrictions related
to the global variation of solutions or their asymptotic
behavior near the impulsive moments, as can be seen in
Theorem 3.

Moreover, in Section 4, it is shown how we can use the
definition of lower and upper solutions to overcome restric-
tions on the monotone conditions on the nonlinearities.

The application’s aim is to illustrate how the theoretical
results could be applied to real phenomena.
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