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Regularity criteria of the weak solutions to the three-dimensional (3D) incompressible magnetohydrodynamic (MHD) equations
are discussed. Our results imply that the scalar pressure field π plays an important role in the regularity problem of MHD
equations. We derive that the weak solution ðu, bÞ is regular on ð0, T�, which is provided for the scalar pressure field π in the
Besov spaces.

1. Introduction

In this article, we consider the global regularity problem con-
cerning the 3D incompressible MHD equations

∂tu + u · ∇u+∇π = b · ∇b + Δu,
∂tb + u · ∇b = b · ∇u + Δb,
∇·u = 0,∇ · b = 0,

8>><
>>: ð1Þ

that satisfy the initial condition

u t=0 = u0, bj jt=0 = b0: ð2Þ

Here, u = ðu1, u2, u3Þ, b = ðb1, b2, b3Þ, and π = πðx, tÞ rep-
resent the velocity field, the magnetic field, and the pressure,
respectively; u0ðxÞ, b0ðxÞ are the corresponding initial data
which satisfied ∇·u0 = 0, ∇ · b0 = 0 in the sense of distribution.

MHD equations govern the dynamics of the velocity and
magnetic fields of electrically conducting fluids such as
plasmas, liquid metals, and salt water. Besides their impor-
tant physical applications, the MHD equations also have

important mathematical significance. It is well known [1]
that problem (1) is locally well-posed for any given initial
datum u0, b0 ∈HsðR3Þ. However, whether a local strong solu-
tion can exist globally, or equivalently, whether global weak
solutions are smooth is still a challenging open problem.
Nevertheless, there exist plenty of results in the literature
showing that the answer to this problem is positive if some
additional conditions are imposed on the weak solutions
[2–12]. Some of them are motivated by the works on the
Navier-Stokes equations (b = 0)

∂tu + u · ∇u+∇π = Δu,
∇·u = 0,
ujt=0 = u0:

8>><
>>: ð3Þ

Among these results, Zhou [7] and He and Xin [13]
obtained some Ladyzhenskaya-Prodi-Serrin-type regularity
criteria for the 3D MHD equations in terms of velocity and
the gradient of velocity, independently. They proved that
the velocity u satisfies
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ðT
0

u ·, tð Þk ksLr dt < +∞, 2
s
+ 3
r
≤ 1, r > 3, ð4Þ

then the weak solution ðu, bÞ is regular on ð0, T�.
However, we are interested in regularity criteria involving

only in terms of the pressure π (for details, refer to [14–17]).
For regularity criteria results for the 3D MHD equations, Jia
and Zhou [14] obtained the following:

∂3π ∈ Lp 0, T ; Lq R3� �� �
, 2
p
+ 3
q
= 2, 3 ≤ q <∞: ð5Þ

In [15], Liu established the new regularity criteria in
terms of the pressure as follows:

∂3π ∈ Lp 0, T ; Lq1 R2
x1,x2 ; L

q2 Rx3

� �� �� �
, 2
p
+ 2
q1

+ 1
q2

= s ∈ 2, 3½ �, 3
s
≤ q2 ≤ q1 ≤

1
k − 2 :

ð6Þ

Later, Gala and Ragusa [16] extended the regularity
criteria to the BMO space and Besov space. If the pressure
π or the pressure gradient ∇π satisfies

π ∈ L2 0, T ; _B−1
∞,∞ R3� �� �

, ð7Þ

or

∇π ∈ L2/3 0, T ; BMO R3� �� �
, ð8Þ

then the weak solution ðu, bÞ is regular on ð0, T�:
Very recently, Tong andWang [17] showed the following

regularity criterion for the 3D MHD:

ðT
0

πk k _B
−1
∞,∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + ln e+ πk k _B−1
∞,∞

� �r dt <∞, ð9Þ

or

ðT
0

∇uk k2_B−1∞,∞
+ ∇uk k2_B−1∞,∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + ln e+ ∇uk k _B−1
∞,∞+ ∇uk k _B−1

∞,∞

� �r dt <∞: ð10Þ

It is the aim of the paper to give the complete description
on the regularity criteria of the weak solutions of the 3D
MHD equations on the pressure field. Let us introduce the
assignment of this paper; we first recall some preliminaries
on functional settings and state the main results in Section
2 and prove the main results in Section 3.

2. Preliminaries and Main Result

Throughout this text, C stands for a generic positive constant
which may differ in value from one line to another. We use
k·kp to denote the norm of the Lebesgue space Lpð1 ≤ p≤∞Þ
, and the norm as follows:

fk kp =

ð
R3

f xð Þj jpdx
� �1/p

, 1 ≤ p<∞,

esssup
x∈R3

f xð Þj j, p =∞:

8>><
>>: ð11Þ

In order to define the Besov space, let us first recall the
Littlewood-Paley theory (see Ref. [18]). For a given function
f ∈ S , its Fourier transformation f̂ of F is defined by

F f ξð Þ = f̂ ξð Þ =
ð
R3
e−ix·ξ f xð Þdx, ð12Þ

where S is the Schwartz class of rapidly decreasing functions
defined on R3. Choose a nonnegative radial function ψ ∈ S
ðR3Þ supported in B ≜ fξ ∈ R3 ; jξj ≤ 2g such that for ξ ∈ R3

and jξj ≤ 1. Setting the radial function

ϕ ξð Þ = ψ
ξ

2

� �
− ψ ξð Þ, ξ ∈ R3, ð13Þ

for the integer set Z, we have

〠
j∈Z

ϕ 2−jξ
� �

= 1, ξ ∈ R3 \ 0f g: ð14Þ

Let h =F−1ϕ and define the dyadic blocks as follows:

Δj f xð Þ = 23j
ð
R3
h 2js
� �

f x − sð Þds, x ∈ R3: ð15Þ

We thus have the following Littlewood-Paley decompo-
sition:

f =〠
j∈Z

Δj f xð Þ: ð16Þ

For α ∈ R, 1 ≤ p, q ≤∞, we can now define the homoge-
neous Besov space _B

α
p,qðR3Þ as

_B
α
p,q R3� �

= f ∈
S ′ R3� �
P R3� �

(
;  fk k _B

α
p,q
<∞, ð17Þ

where

fk k _B
α
p,q
=

〠
∞

j=−∞
2jαq Δj f xð Þ		 		q

p

 !1/q

, 1 ≤ q <∞,

sup
j∈Z

Δj f xð Þ		 		
p
, q =∞:

8>>>><
>>>>:

ð18Þ

P ðR3Þ is the set of all scalar polynomials defined on R3.
S ′ðR3Þ is the space of all tempered distributions on R3.
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Definition 1. Assuming ðu0, b0Þ ∈ L2ðℝ3Þ, and ∇·u0 = ∇ · b0
= 0, T > 0, the measurable function ðu, bÞ defined on ð0, T�
× R3 is called the weak solution of Equation (1), if

(1) ðu, bÞ ∈ L∞ð0, T ; L2ðR3ÞÞ ∩ L2ð0, T ;H1ðR3ÞÞ.
(2) ∇·u = ∇ · b = 0 and ∀φ ∈ C∞

0 ðð0, TÞ × R3Þ have

ðT
0

ð
R3

u, bð Þ · ∇φdxdt = 0, ð19Þ

Equation (1) holds in the sense of distributions.
For ∀φ ∈ C∞

0 ðð0, TÞ × R3Þ, ∇ · φ = 0, we have
ðT
0

ð
R3

∂tφ + u · ∇ð Þφð Þ · udxdt +
ð
R3
u0 · φ x, 0ð Þdx =

ðT
0

ð
R3
∇u : ∇φdxdt,

ðT
0

ð
R3

∂tφ + b · ∇ð Þφð Þ · bdxdt +
ð
R3
b0 · φ x, 0ð Þdx =

ðT
0

ð
R3
∇b : ∇φdxdt,

ð20Þ

where A : B =∑3
i,j=1aijbij, A = ðaijÞ, B = ðbijÞ.

(3) The strong energy inequality, that is,

u tð Þ, b tð Þk k2L2 + 2
ðt
0
∇ u, bð Þ τð Þk k2L2dτ ≤ u 0ð Þ, b 0ð Þk k2L2 , ∀0 ≤ t < T:

ð21Þ

In this paper, we establish the following theorem.

Theorem 2. Let u0, b0 ∈ L2ðℝ3Þ ∩ L4ðℝ3Þ, with ∇·u0 = 0, ∇ ·
b0 = 0, T > 0 in the sense of distribution. Let ðu, bÞ be a weak
solution of the MHD Equations (1) on ð0, T� which satisfies
the strong energy inequality (21). If the corresponding pressure
π satisfies

π ∈ L2/ α+1ð Þ 0, T ; _Bα
∞,∞ R3� �� �

,  0 < α < 1, ð22Þ

then the weak solution ðu, bÞ is regular on ð0, T�:

When the time critical index 2/ðα + 1Þ = 1, we can derive

the following Theorem 3. And ifπ ∈ L4/3ð0, T ; _B0
∞,∞Þ, we prove

that the weak solution ðu, bÞ is regular on ð0, T� in Theorem 4.

Theorem 3. Under the same assumption in Theorem 2, if the
corresponding pressure p satisfies

π ∈ L1 0, T ; _Bα
∞,∞ R3� �� �

,  1
2
≤ α < 1, ð23Þ

then the weak solution ðu, bÞ is regular on ð0, T�:

Theorem 4. Under all the assumptions in Theorem 2, the
weak solution ðu, bÞ is regular on ð0, T�: If the corresponding
pressure p satisfies the following condition:

π ∈ L4/3 0, T ; _B0
∞,∞ R3� �� �

: ð24Þ

Remark 5. In article [17], the regularity condition ofÐ T
0 ðkπk _B

−1
∞,∞

/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ln ðe+∥π∥ _B−1

∞,∞Þ
q

Þdt <∞ is better than

the regularity condition of Theorems 2–4. However, in article
[17], the initial condition is required to satisfy u0, b0 ∈H3

ðR3Þ, while Theorems 2–4 only need to satisfy u0, b0 ∈ L2
ðR3Þ ∩ L4ðR3Þ.

3. Pressure Regularity Criteria

In order to avoid the difficulties caused by the magnetic field
when we do energy estimates, by adding and subtracting (1)1
with (1)2, we convert the 3D MHD Equations (1) into a
mathematically symmetric form as follows:

∂tw
+ +w− · ∇w++∇π = Δw+,

∂tw
− +w+ · ∇w−+∇π = Δw−,

∇·w+ = 0,∇ ·w− = 0,
w+ x, 0ð Þ =w+

0 xð Þ,w− x, 0ð Þ =w−
0 xð Þ,

8>>>>><
>>>>>:

ð25Þ

with w± ≜ u ± b.
Let us introduce some auxiliary results. To establish some

new regularity criteria in terms of pressure, an effective
method is to find a “bridge” between the desired results and
the known criteria. The following lemma plays such a role
in the proof of Theorems 2–4.

Lemma 6 (Bernstein inequality [18]). For 1 ≤ p ≤ q ≤∞ and
an integer k, the following estimate is true:

∇kΔj f
			 			

q
≤ C2jk+3j 1/p−1/qð Þ Δj f

		 		
p
: ð26Þ

Lemma 7. Let ðu0, b0Þ ∈ L2ðR3Þ ∩ L4ðR3Þ and ∇·u0 = ∇ ·b0 = 0.
Let ðu, bÞ be the corresponding solution to the 3D MHD
Equations (1). If w+ and w− satisfy

sup
0≤t≤T

w+ ·, tð Þk k4 + w+ ·, tð Þk k4
� �

< +∞: ð27Þ

Then, the weak solution ðu, bÞ is regular on ½0, T�.

Proof. By the definition of w+ and w−, one can deduce that

u ·, tð Þk k4 + b ·, tð Þk k4 ≤ w+ ·, tð Þk k4 + w− ·, tð Þk k4: ð28Þ

By (4), we can derive that the weak solution ðu, bÞ is reg-
ular on ½0, T�.

Now, we are ready to prove the theorem. Taking the
inner product of the first equation of (21) with jw+

3 j2w+
3 and

the second equation of (21) with jw−
3 j2w−

3 in L2ðR3Þ, adding
them together, and noticing that ∇·w± = 0, we have
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1
4
d
dt

w+k k44 + w−k k44
� �

+ 1
2

ð
R3

∇ w+j j2



 


2 + ∇ w−j j2

 

2� �

dx

+
ð
R3

∇ w+j jj j2 w+j j2 + ∇ w−j jj j2 w−j j2
� �

dx

= −
ð
R3
∇π ·w+ w+j j2dx −

ð
R3
∇π ·w− w−j j2dx

≜ I + II:

ð29Þ

Here, we have used the following identities due to the fact
that the divergence free condition ∇w+ = ∇w− = 0:
ð
R3

w+ · ∇w−ð Þ ·w− w−j j2dx =
ð
R3

w− · ∇w+ð Þ ·w+ w+j j2dx = 0:

ð30Þ

By the Littlewood-Paley decomposition, p can be written
as follows:

π =〠
j∈Z

Δjπ = 〠
j≤N

Δjπ + 〠
j≥N+1

Δjπ: ð31Þ

Hence, by (29), we obtain

I = 〠
j≤N

ð
R3
Δj∇π ·w+ w+j j2dx












 + 〠

j≥N+1

ð
R3
Δj∇π ·w+ w+j j2dx












 ≜ I1 + I2:

ð32Þ

☐

3.1. The Proof of Theorem 2.We first consider that the veloc-
ity π satisfies the growth condition (22):

π ∈ L2/ α+1ð Þ 0, T ; _Bα
∞,∞

� �
, 0 < α < 1: ð33Þ

For 0 < α < 1, by the Hölder inequality, we estimate
Iiði = 1, 2Þ of the right-hand side of (32) one by one.

I1 ≤ 〠
j≤N

Δj∇π
		 		

∞
w+k k2 w+j j2

			 			
2

≤ 〠
j≤N

2j −α+1ð Þ2j α−1ð Þ Δj∇π
		 		

∞
w+k k2 w+k k24

≤ C2N −α+1ð Þ ∇πk k _B
α−1
∞,∞

w+k k2 w+k k24:

ð34Þ

Similarly, for I2, integration by parts gives

I2 ≤ 〠
j≥1+N

Δjπ
		 		

∞
w+k k2 w+j j∇w+k k2

≤ 〠
j≥1+N

2−jα2jα Δjπ
		 		

∞
w+k k2 w+j j∇w+k k2

≤ C2−αN πk k _B
α
∞,∞

w+k k2 w+j j∇w+k k2:

ð35Þ

Hence, choosing the integer N such that (34) is equal to
(35),

2N −α+1ð Þ ∇πk k _B
α−1
∞,∞

w+k k2 w+k k24 = 2−αN πk k _B
α
∞,∞

w+k k2 w+j j∇w+k k2,
ð36Þ

then

log2
w+j j∇w+k k2
w+k k24

" #
≤N ≤ log2

w+j j∇w+k k2
w+k k24

" #
+ 1: ð37Þ

Plugging the estimates (34) and (35) into (32), and using
Young inequality, we have

I ≤ C2−αlog2 w+j j∇w+k k2/ w+k k24ð Þ πk k _B
α
∞,∞

w+k k2 w+j j∇w+k k2

≤ C
w+j j∇w+k k2
w+k k24

 !−α

πk k _B
α
∞,∞

w+j j∇w+k k2

≤ C w+j j∇w+k k1−α2 w+k k2α4 πk k _B
α
∞,∞

≤ C w+k k2α4 πk k _B
α
∞,∞

� �2/ α+1ð Þ
+ 1
4 w+j j∇w+k k1−α2

� �2/ 1−αð Þ

≤ C w+k k4α/ α+1ð Þ
4 πk k2/ α+1ð Þ

_B
α
∞,∞

+ 1
4 w+j j∇w+k k22:

ð38Þ

By letting 0 < α < 1, such that 4α/ðα + 1Þ ≤ 4, and by using
the Young inequality, it follows that

w+k k4α/ α+1ð Þ
4 ≤ C w+k k44 + 1

� �
: ð39Þ

Hence, we obtain

I ≤ C πk k2/ α+1ð Þ
_B
α
∞,∞

w+k k44 + 1
� �

+ 1
4 w+j j∇w+k k22: ð40Þ

Using the similar way with the estimate II, we see that

II ≤ C πk k2/ α+1ð Þ
_B
α
∞,∞

w−k k44 + 1
� �

+ 1
4 w−j j∇w−k k22: ð41Þ

Combination of (40), (41), and (29) implies that

1
4
d
dt

w+k k44 + w−k k44 + 1
� �

+ 1
2

ð
R3

∇ w+j j2



 


2 + ∇ w−j j2

 

2� �

dx

+
ð
R3

∇ w+j jj j2 w+j j2 + ∇ w−j jj j2 w−j j2
� �

dx

= −
ð
R3
∇π ·w+ w+j j2dx

−
ð
R3
∇π ·w− w−j j2dx

= C w+k k4L4 + w−k k44+1
� �

πk k2/ α+1ð Þ
_B
α
∞,∞

:

ð42Þ
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Using the Gronwall inequality, we have

sup
0<t<T

w+k k44 + w−k k44 + 1
� �

≤ C w+
0k k44 + w−

0k k44+1
� �

exp

� C
ðt
0
πk k2/ α+1ð Þ

_B
α
∞,∞

� �
:

ð43Þ

By assuming Theorem 2 and the definition of W±
0 , we

have

w+ 0ð Þk k4 + w− 0ð Þk k4 ≤ C: ð44Þ

By using Lemma 6 and (22), we have

sup
0<t<T

w+k k44 + w−k k44 + 1
� �

≤ C: ð45Þ

This completes the proof of Theorem 2.

3.2. The Proof of Theorem 3.Next, we are ready to prove The-
orem 3. Let us begin with the case of growth condition (23):

π ∈ L1 0, T ; _Bα
∞,∞

� �
,  1

2 ≤ α < 1: ð46Þ

For 1/2 ≤ α < 1, by the Hölder inequality, we estimate Ii
ði = 1, 2Þ one by one.

I1 ≤ 〠
j≤N

Δj∇π
		 		

∞
w+k k2 w+j j2

			 			
2

≤ 〠
j≤N

2j −α+1ð Þ2j α−1ð Þ Δj∇π
		 		

∞
w+k k2 w+j j2

			 			
2

≤ 2N −α+1ð Þ ∇πk k _B
α−1
∞,∞

w+k k2 w+j j2
			 			

2

≤ C2N −α+1ð Þ πk k _B
α
∞,∞

w+k k24:

ð47Þ

Similarly, for I2 of (32), by (26) and integration by parts,
gives

I2 ≤ 〠
j≥1+N

Δjπ
		 		

4 w+k k4 w+j j∇w+k k2

≤ 〠
j≥1+N

23j/4 Δjπ
		 		

2 w+k k4 w+j j∇w+k k2

≤ 〠
j≥1+N

2−j/2
( )1/2

〠
j≤1+N

22j Δjπ
		 		2

2

( )1/2

w+k k4 w+j j∇w+k k2

≤ C2−N/4 πk k _B
1
2,2

w+k k4 w+j j∇w+k k2
≤ C2−N/4 w+ · ∇w−k k2 w+k k4 w+j j∇w+k k2:

ð48Þ

Hence, choosing the integer N such that (47) is equal to
(48)

2N −α+1ð Þ πk k _B
α
∞,∞

w+k k24 = 2−N/4 w+ · ∇w−k k2 w+k k4 w+j j∇w+k k2,
ð49Þ

then

log2
w+ · ∇w−k k2 w+j j∇w+k k2

πk k _B
α
∞,∞

w+k k4

( )4/ 5−4αð Þ2
4

3
5

≤N ≤ log2
w+ · ∇w−k k2 w+j j∇w+k k2

πk k _B
α
∞,∞

w+k k4

( )4/ 5−4αð Þ2
4

3
5 + 1:

ð50Þ

Plugging the estimates (47) and (48) into (32), we have

I ≤ C2
log2 w+·∇w−k k2 w+j j∇w+k k2/ πk k _Bα∞,∞ w+k k4
n o4 1−αð Þ/ 5−4αð Þ

πk k _B
α
∞,∞

w+k k24
≤ C πk k1/ 5−4αð Þ

_B
α
∞,∞

w+k k 6−4αð Þ/ 5−4αð Þ
4 w+ · ∇w−k k4 1−αð Þ/ 5−4αð Þ

2

� w+j j∇w+k k4 1−αð Þ/ 5−4αð Þ
2 ≤ C πk k1/ 5−4αð Þ

_B
α
∞,∞

w+k k 6−4αð Þ/ 5−4αð Þ
4

n o5−4α

+ 1
4 w+ · ∇w−k k4 1−αð Þ/ 5−4αð Þ

2 w+j j∇w+k k4 1−αð Þ/ 5−4αð Þ
2

n o 5−4αð Þ/4 1−αð Þ

≤ C πk k _B
α
∞,∞

w+k k6−4α4 + 1
4 w+ · ∇w−k k2 w+j j∇w+k k2

≤ C πk k _B
α
∞,∞

w+k k6−4α4 + 1
8 w+ · ∇w−k k22 +

1
8 w+j j∇w+k k22:

ð51Þ

Using the similar way with the estimate II, we see that

II ≤ C πk k _B
α
∞,∞

w−k k6−4α4 + 1
8 w− · ∇w+k k22 +

1
8 w−j j∇w−k k22:

ð52Þ

Combination of (51), (52), and (29) implies that

1
4
d
dt

w+k k4L4 + w−k k4L4
� �

+ 1
4

ð
R3

∇ w+j j2



 


2 + ∇ w−j j2

 

2� �

dx

+
ð
R3

∇ w+j jj j2 w+j j2 + ∇ w−j jj j2 w−j j2
� �

dx

= C πk k _B
α
∞,∞

w+k k6−4α4 + w−k k6−4α4

� �
+ 1
4 w− · ∇w+k k22 + w− · ∇w+k k22
� �

:

ð53Þ

By letting 1/2 ≤ α < 1, such that 6 − 4α ≤ 4, and by using
the Young inequality, it follows that

w±		 		6−4α
4 ≤ C w±		 		4

4 + 1
� �

: ð54Þ
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Using the triangle inequality

uk kr =
1
2 w+ +w−k kr =

1
2 w+k kr + w−k kr
� �

,

bk kr =
1
2 w+ −w−k kr =

1
2 w+k kr + w−k kr
� �

,

w+k kr = u + bk kr ≤ uk kr + bk kr ,
w−k kr = u − bk kLr ≤ uk kr + bk kr ,

ð55Þ

we obtain

1
4
d
dt

uk k44 + bk k44 + 1
� �

+ 1
4

ð
R3

∇ uj j2

 

2 + ∇ bj j2

 

2� �
dx

+
ð
R3

∇ uj jj j2 uj j2 + ∇ uj jj j2 bj j2 + ∇ bj jj j2 bj j2 + ∇ bj jj j2 uj j2� �
dx

≤ C πk k _B
α
∞,∞

uk k44 + bk k44 + 1
� �

+ 1
2

· u · ∇uk k22 + u · ∇bk k22 + b · ∇bk k22 + b · ∇uk k22
� �

:

ð56Þ

Hence,

1
4
d
dt

uk k44 + bk k44 + 1
� �

+ 1
4

ð
R3

∇ uj j2

 

2 + ∇ bj j2

 

2� �
dx

+ 1
2 u · ∇uk k22 + u · ∇bk k22 + b · ∇bk k22 + b · ∇uk k22
� �

≤ C πk k _B
α
∞,∞

uk k44 + bk k44 + 1
� �

:

ð57Þ

Then, the bounds for the L4-norms of u and b follow
from the standard Gronwall inequality. Thanks to (4), this
completes the proof of Theorem 3.

3.3. The Proof of Theorem 4. For the final assumptions (24),
that is,

π ∈ L4/3 0, T ; _B0
∞,∞ R3� �� �

: ð58Þ

After applying the Hölder inequality, we estimate
Iiði = 1, 2Þ one by one.

I1 ≤ 〠
j≤N

Δj∇π
		 		

∞
w+k k2 w+j j2

			 			
2

≤ 〠
j≤N

2j2−j Δj∇π
		 		

∞
w+k k2 w+k k24

≤ 2N ∇πk k _B
−1
∞,∞

w+k k2 w+k k24 ≤ C2N πk k _B
0
∞,∞

w+k k24:

ð59Þ

Similarly, for I2 of (32), by (27), the Hölder inequality,
and integration by parts, we have

I2 ≤ 〠
j≥1+N

Δjπ
		 		

3 w+k k6 w+j j∇w+k k2

≤ 〠
j≥1+N

2j/2 Δjπ
		 		

2 w+k k1/24 w+k k1/212 w+j j∇w+k k2

≤ 〠
j>1+N

2−j
( )1/2

〠
j>1+N

2j Δjπ
		 		2

2

( )1/2

w+k k1/24 w+j j2
			 			1/4

6
w+j j∇w+k k2

≤ C2−N/2 πk k _B
1
2,2

w+k k1/24 w+j j∇w+k k5/42

≤ C2−N/2 w+ · ∇w−k k2 w+k k1/24 w+j j∇w+k k5/42 :

ð60Þ

Hence, choosing the integer N such that (59) is equal to
(60),

2N πk k _B
0
∞,∞

w+k k24 = 2−N/2 w+ · ∇w−k k2 w+k k1/24 w+j j∇w+k k5/42 , ð61Þ

then

log2
w+ · ∇w−k k2/32 w+j j∇w+k k5/62

πk k2/3_B0
∞,∞

w+k k4

2
4

3
5

≤N ≤ log2
w+ · ∇w−k k2/32 w+j j∇w+k k5/62

πk k2/3_B0
∞,∞

w+k k4

2
4

3
5 + 1:

ð62Þ

Plugging the estimates (59) and (60) into (32), we have

I ≤ C2
log2 w+·∇w−k k2/32 w+j j∇w+k k5/62 / πk k2/3

_B0∞,∞ w+k k4
� �

πk k _B
0
∞,∞

w+k k24
≤ C πk k1/3_B0

∞,∞
w+k k4 w+ · ∇w−k k2/32 w+j j∇w+k k5/62

≤ C πk k1/3_B0
∞,∞

w+k k4
n o4

+ 1
4 w+ · ∇w−k k2/32 w+j j∇w+k k5/62

n o4/3

≤ C πk k4/3_B0
∞,∞

w+k k44 +
1
4 w+ · ∇w−k k8/92 w+j j∇w+k k10/92

≤ C πk k4/3_B0
∞,∞

w+k k44 +
1
8 w+ · ∇w−k k22 +

1
8 w+j j∇w+k k22:

ð63Þ

Using the similar way with the estimate II, we see that

II ≤ C πk k4/3_B0
∞,∞

w−k k44 +
1
8 w− · ∇w+k k22 +

1
8 w−j j∇w−k k22:

ð64Þ

Combination of (63), (64), and (29) implies that

1
4
d
dt

w+k k44+∥w−∥44
� �

+ 1
4

ð
R3

∣∇∣w+ 2

 

2+∣∇∣w− 2

 

2� �
dx

+
ð
R3

∇ w+j jj j2 w+j j2 + ∇ w−j jj j2 w−j j2
� �

dx

= C πk k4/3_B0
∞,∞

w+k k44 + w−k k44
� �

+ 1
4 w− · ∇w+k k22 + w− · ∇w+k k22
� �

:

ð65Þ
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Using the same triangle inequality

uk kr =
1
2 w+ +w−k kr ≤

1
2 w+k k4 + w−k kr
� �

,

bk kr =
1
2 w+ −w−k kr ≤

1
2 w+k k4 + w−k kr
� �

,

w+k kr = u + bk kr ≤ uk kr + bk kr ,
w−k kr = u − bk kr ≤ uk kr + bk kr ,

ð66Þ

we obtain

1
4
d
dt

uk k44 + bk k44
� �

+ 1
4

ð
R3

∇ uj j2

 

2 + ∇ bj j2

 

2� �
dx

+
ð
R3

∇ uj jj j2 uj j2 + ∇ bj jj j2 bj j2 + ∇ uj jj j2 bj j2 + ∇ bj jj j2 uj j2� �
dx

≤ C πk k4/3_B0
∞,∞

uk k44 + bk k44
� �

+ 1
2

· u · ∇uk k22 + u · ∇bk k22 + b · ∇bk k22 + b · ∇uk k22
� �

:

ð67Þ

Hence,

1
4
d
dt

uk k44 + bk k44
� �

≤ C πk k4/3_B0
∞,∞

uk k44 + bk k44
� �

: ð68Þ

By Gronwall’s inequality and (4), Theorem 4 is proven.
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