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In this work, we consider a quasilinear system of viscoelastic equations with degenerate damping, dispersion, and source terms
under Dirichlet boundary condition. Under some restrictions on the initial datum and standard conditions on relaxation
functions, we study global existence and general decay of solutions. The results obtained here are generalization of the previous
recent work.

1. Introduction of two viscoelastic equations in the presence of degenerate

damping, dispersion, and source terms, namely,
Let Q be a bounded domain with a sufficiently smooth

boundary in R"(n>1). We investigate a quasilinear system

t

|| 1ty — Au + J hy(t = s)Au(s)ds — Au,, + (|u|k + |v|l) lu " uy = £, (1 v), (x,1) €2 % (0, T),

0
[v v, — Av+f)h2(t - 5)Av(s)ds — Av,, + <|v|9 + |u|Q) |vt|s’1vt =f,(u,v), (x, 1) € Qx (0, T),
u(x,t)=v(x,t) =0, (x,t) €02 x (0, T),

u(x,0) = uy(x), u,(x,0) = u; (x), x €,

v(x,0) =vy(x), v,(x,0) =v,(x), x € O,

where, s>1,7>0,k,1,6,0>0, and k;(.): R — R*(i=1,2) By taking
are positive relaxation functions which will be specified later. 2e41) bl 2

- ,v)=alu+ +v) + ,
(OO, and =A(.),, are the degenerate Fulwnv) = afu+ v (w4 v) + blufTuly] (2)

damping term and the dispersion term, respectively. Fo(uv) = alu+ vPE (u+ ) + blv|v|u*?,
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in which a > 0,b > 0, and

3—-n

l<k<+ooifn=1,2and1<«x< 2ifn23. (3)

It is simple to show that
uf (u,v) +vf, (1, v) =2(k + 2)F(u, v),¥ (1, v) €R*,  (4)

where

F(u,v) =

1
—— |aju+ v 4 2b|uv|"+2} . (5
2(k+2)

To motivate our problem (1), it can trace back to the ini-
tial boundary value problem for the single viscoelastic equa-
tion of the form

t

|| "1y, — Au+ Lh(t —5)Au(s)ds — Auy, + g(u, u,) = f(u).
(6)

This type problem appears a variety of mathematical
models in applied science. For instance, in the theory of vis-
coelasticity, physics, and material science, problem (5) has
been studied by various authors, and several results concern-
ing blow-up and energy decay have been studied case ( > 0).
For example, Liu [1] studied a general decay of solutions case
(g(u, u,) =0). Messaoudi and Tatar [2] applied the potential
well method to indicate the global existence and uniform
decay of solutions (g(u, u,) = 0 instead of Au,). Furthermore,
the authors obtained a blow-up result for positive initial
energy. Wu [3] studied a general decay of solution case
(g(u, u,) = |u,|"u,). Later, Wu [4] studied the same problem
case (g(u, u,) =u,) and discussed the decay rate of solution
energy. Recently, Yang et al. [5] proved the existence of
global solution and asymptotic stability result without
restrictive conditions on the relaxation function at infinity
case (f(u) =0o(x, )W, (¢, x)).

In case g(u, u,) =0 and without dispersion term, prob-
lem (5) has been investigated by Song [6], and the blow-up
result for positive initial energy has been proved.

For a coupled system, He [7] investigated the following
problem

t

|| "1ty — Au+ J hy (t = s)Au(s)ds — Auy, + |u,2u, = f, (4, v),
0
t

1= v | (=) Av(s)ds = A, [P, = )
0
7)

where #>0,j,s > 2. The author proved general and optimal
decay of solutions. Then, in [8], the author investigated the
same problem without damping term and established a gen-
eral decay of solutions. Furthermore, the author obtained a
blow-up of solutions for negative initial energy. In addition,
problem (1) with in case 77 =0 and without dispersion term,
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Wu [9] proved a general decay of solutions. Later, Piskin
and Ekinci [10] studied a general decay and blow-up of solu-
tions with nonpositive initial energy for problem (1) case
(Kirchhoff-type instead of Au and without dispersion term).
In recent years, some other authors investigate the hyperbolic
type system with degenerate damping term (see [11-14]).
The rest of the paper is arranged as follows: in Section 2,
as preliminaries, we give necessary assumptions and lemmas
that will be used later and local existence theorem without
proof. In Section 3, we prove the global existence of solution.
In the last section, we studied the general decay of solutions.

2. Preliminaries

We begin this section with some assumptions, notations,
lemmas, and theorems. Denote the standart L?(£2) norm by
111 = 1l-ll2() and LF(2) norm by [[.[|, = |-l ()
To state and prove our result, we need some assumptions:
(A1) Regarding h; : [0,00) — (0,00),(i=1,2) is C!
functions and satisfies

hi(a) > 0, hi(a) <0, 1-°hy(a)da=1,>0,a>0  (8)

and nonincreasing differentiable positive C' functions ¢; and
G, such that

hi(t) < —;(t)h(t), t20,i=1,2. (9)

(A2) For the nonlinearity, we assume that

1<jsifn=1,2,

. n+2 .
1<j,s< 21fn23.

(A3) Assume that # satisfies
O<niftn=1,2,

if n>3.

O<y<
il n—2

In addition, we present some notations:

(aoVw)(t) = Jo(x(t —5)||Vw(t)-Vw(s)||*ds, (12)

I=min {I,,1,}.
Lemma 1 (Sobolev-Poincare inequality) [15]. Let g be a num-
ber with2<q<oo(n=1,2) or2<q<2n/(n—-2)(n=>3), and
then there is a constant C, = C,(Q, q) such that
||u||qgC*||Vu||foruEHé(Q). (13)

Now, we state the local existence theorem that can be
established by combining arguments of [7, 10].

Theorem 2. Assume that (A1)-(A3) and (2) hold. Let u,, v,
€ H)(Q) and u,;,v, € L*(Q) be given. Then, for some T > 0,
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problem (1) has a unique local weak solution in the following
class:

u,veC([0, T]; H*(Q) N Hy(Q)),
u, € C([0, T]; Hy(Q)) N/ (Q), (14)
v, € C([O, T];H (Q)) ﬂLs+1(Q).

We define the energy function as follows:

+ + 1
() = g (Il [wl2) + 5 [0neva) )

+ (V) () + || Va||* + |97, 7]

e3| (1= [ meoas) 1w 1)
+ (1 - J;hz(s)ds) ||Vv(t)||2} —JQF(u, v)dx.
Also, we define
1) = 9P+ 99 (1 [ o) foue
(1= [ materte ) mwce v
+ (hyoVv)(1) - (K+2)J F(u, v)dx,

Q

0= 5[ (1= [ s vator « (1] mae)

. ||Vv(t)||2] + % [(hloVu)(t) + (hyoVy)(1)

(16)

+ ||V ||* + || Vv, | ?] —J F(u,v)dx.
Q
By computation, we get

%E(t) 5[(;1 oVu)() (h;on)(t)}
2 (VP + B 6)]99]?)
1 (17)

Jul* +\V| \”|]+1dx
—J <|v| +|u|Q)|vt|5”deO.
0

3. Global Existence

In this part, in order to state and prove the global existence of
solution (1), we firstly give two lemmas.

Lemma 3 [16]. Assume that (4) holds. Then, there exist p >0
such that for the solution (u, v),

+2
[+ V[3(erz) + 2l wvl[553 < p(L | Vul)? + L] Vv|?) . (18)

Kk+2 =

Lemma 4. Let uy, vy € H)(Q), u;, v, € L*(Q). Suppose that
(A1)-(A3) hold. If

1(0) > 0and p = p(Z(KK:IZ)E(O))KH <1, (19)
then
I(t) >0t > 0. (20)

Proof. We have I(0) >0 and by continuity of I(¢) about t,
there exist a maximal time ¢, > 0 such that

I(t)=0,0ont€0,t,]. (21)
Let t, be as follows:
{I(ty) =0andI(t) >0, forall0 <t < ty}. (22)

By using (8), (9), and (A1), we get

K+ 1

0= 5o { (1= [ moas) e

(1= [ et ) 191+ (o9
(23)

+ (hyo W) (1) + |V, ||* + |\Vv,||2} * 3y )

> 2"“ {LIVa() >+ L0+ (hyoVu)(2)
+ (hyoWW)(6) + | Vi |2+ |9,

From (7) and (10), we have

LVu(t) |+ L||Vv(t)|?
< 2(K+2)](t) < 2(K+2)E

K+ 1 K+ 1
E(O),Vte [0, to].

() (24)
- 2(k+2)
T ok+1

By (11) and (12), we infer that

2(k+ 2)JQF(u(tO), v(ty))dx

< (1| Vuto) | + L | Vv(to) |P)
HEDEQ)) (valto) P+ 19t
p (L Vu(t)] + Ll To(t0) )

1= [ o vuto e (1= [ (o)

20!

IN

P (25)

I/\

IN



Thus, from (8), we obtain
I(ty) >0, (26)
which contradicts to (13). Thus, I(¢) > 0 on [0, T].

Theorem 5. Suppose that the conditions of Lemma 4 hold,
then the solution (1) is bounded and global in time.

Proof. We have

1 2 2
BO0) 2 B =1(1) + 5 (Il + Ivl23)
k+1
> ——— (L||Vu(t)||* + L||Vv(t)||?
e IV + BT )
+[[Va||* + {991 + (ByoVu) (2)
2 2
+ (o)1) + (I3 + vl )
Thus,
IVu(O)* + [IVv(£)[|” + [Vue||* + [[Vv,|* < CE(0),  (28)
where positive constant C depends only on «,1;,1,. This

implies that the solution of problem (1) is global in time.

4. General Decay of Solutions

This section is devoted to show the decay of solution (1). Set

I(t):=ME(t) +ed(t) + F(t), (29)

Lemma 8 [16]. Let (A1)-(A3) hold. Assume that uy, v, € Hj(
Q), u,v,€L?(Q), be given and satisfying (12). Then,
throughout the solution (u,v) of (1), there exist two positive
constants 3, and f3, such that for any § > 0 and for all t > 0,

[ st [ o =5)00) - st

1)cs (hyoVu)(t)
45 ’

1_
< B,0(1|Vull + 1 7v]) +

[ o[ =)0 = s s
~1)E (Vi) (1)

1
< B0 (L] Vul? + L7 P) + ¢

e (U

o+l _o+2
- ll) Cy <
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where M and ¢ are positive constants and

1
= _ 1
D(t)=6,(t) [’1 ) JQ|uz| u,udx + JQVutVudx]

1
+6,(t —J v ”vvdx+J VvVvdx},
O R A

=] (o552 -

- (u(t) - u(s))dsdx] +8,(t) UQ (Avt -

|Vt|ﬂvt
n+1

(30)

. Jt hy(t — $)(v(t) - v(s))dsdx} .

0

Lemma 6. For & which is small enough while M is large
enough, the relation

(31)

o, I'(t) <E(t) <a,l'(t),Vt=0

holds for two positive constants «; and a,.
Proof. As references [1, 10], it can be show easily that I'(t)
and E(t) are equivalent in the sense that «; and a, are posi-

tive constants, depending on & and M.

Lemma 7 [3]. Assume that (12) holds. Let (u, v) be the solu-
tion of problem (1). Then, for o >0, we get

(k+ 2)E(0)> 0/2(h1<>vu)(t))

(+2E0)\" o
) e,

Lk+1

Lemma 9. Let uy, v, € Hy(Q), u;,v, € L*(Q), be given and
satisfying (12). Suppose that (A1)-(A3) hold. Then, for each t,
> 0, the functional I'(t) verifies, throughout the solution of (1)

I' (1) < =EE(t) + &,[(hoVu) (1) + (hyoVv) (1), t 2 Ly, (34)

where &,>0,(i=1,2).

Proof. By applying (18) and Eq.(1) and getting 8, = 1(i =
in (18), we have

1,2)

' 1 +2 +2 2 2
@'(1) < g (Iwellpa + Ival) = 17l = 9
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t
+ ||V ||* + ||Vvt||2J Vu(t)J hy(t —s)Vu(s)dsdx
o 0

+ Vv(t)Jt hy(t = s)Vv(s)dsdx + 2(x + 2)
Jo 0

—

F(u, v)dx — J u(|u|k + |v|’) u,|u, [~ dx
Q o

- v(|v|9 + |u|p)vt|vt|s’1dx.
Q

(35)

For estimating the seventh term in the right side of (22) as
follows (see [17]):

%||Vu||2+ %JQ (Jthl(t—s)(Wu(s) (36)

By exploiting Young’s inequality and the assumption that
ff) ds<f s)ds<1-1,, fory, >0,

‘L)Vu(z‘)rh1 (t = s)Vu(s)dsdx

0

< IVl 30| (j;m(t—s)wu(snds)zdx

(e D) ([[me-ima-vaias) o

< 19+ ) ([ mio )2||w||

3(003) oo

< 1+(1+y21)( B 1) ||VUH2
| (L)

2

) (g, 0vu)0)

Similarly with y, >0,

L)Vv(t)Jt hy(t = s)Vv(s)dsdx

0

< 1+(1+Y;)(1_12)2\|Vv||2 (38)
L () -

: h) (0w (6)

By estimating the following terms in (22), we have

[ (o o e
Q

(39)
sg|u|"“|u,|fdx+j v | .
Q

Exploiting Young’s inequality, Holder’s inequality,
Sobolev-Poincare inequality, (A3), and (15) for 3, >0, one
has

[
0

. jlj+1 . jlj+1
< <J |u|k|ut|1“dx> <J |u|’<+f“dx>
0 0

. —j+1/j ]+1Ck+]+1
S J e e+ BE e
j
. p—j+1/j )
< LIH J (|u|k . |v|l)|ut\f“dx
J Q
ﬁ]+1Ck+J+1 k+j-1/2

- [V,
j+1
Uﬂ|u||v|’|uﬂdx (40)
. jlj+1 ‘ jlj+1
< (], ptegia) (] )
(0] (0]
. —j+l/j
<L (o)
ﬁ]+1 i1
2oy (R el
—J+1/J j+1 G2y -1
< J (u| +|v|)|ut|”1dx+—ﬁ » X2
J+1 Q 2(j+1)
ﬁ]+1 2]+2X
(19 + P (),
2(j+1)
where
_ 2(k+2)E(0) _ 2(k+2)E(0)
T T e ) and X, = Lik+1) (41)
By inserting (27) and (28) into (26), we have
k ! j-1
ullul®+ v )u,|ul " dx
J, sl 1)l
2; —j+1/j ]
A R
jt1l Ja
/31+1 Uy ﬁ]“ (42)
(]+1) (” H) j+1

) . ]+2
. (Ci+]+lxgk+] 1)/2+ X1>|Vu||2



Similarly, for 3, > 0, we have

[ o101+ )
Q

2 —s+1/s
< sﬁz J (|‘V|9 + |u|p> |vt|”1dx
Q

s+1
s+1C2p p-1 s+1
w(” ull*) +

2s+2
(o S o

s+1

Thus, inserting (24) and (25) and (29) and (30) into (22),
we obtain

2 2
@' (1)< ﬁ (1755 + 1vlyi2 ) = a1V

—a,||Vy|* +2(x + Z)J F(u,v)dx + || Vu,|?
1+ 1y))(d

-1
v vy, e CEAIAZD) 6, gy
1+ (1/y,))(1-1 (44)
+ ( +( /Yzz))( 2) (hZOVV)(t)
2i —j+1/j )
e Pl o)
2 —s+1/s
e 2B | (Wl
S Q
where
o 1-ep-Ly gl
! 2 j+1
' Ck+j+1X(k+j’1)/2 . Ci]JrZX]l ﬁs-flczp p-1
A 2 2(s+1)
C1-(ep)(-b) B
2 2 s+1
C9+s+1 (B+s-1)/ 2+ CinX; _ ﬁJIHCileZil
2 2(j+1)
(45)
At this moment, choosing y, =1,/1 - 1,,y, =1,/1 - 1,, and
picking 3, and f3, small enough such that
j+1 -1
EJI_JF Ciﬂ'ﬂxgkﬂ;l)n‘l- C2]+2 ] ﬁs+1C2PXIID . l_l,
j+1 2 2(s+1) 4
S i+1 _
2+1 CZ+S+1X(20+S’1)/2+ CiS+2X52 N ﬁ]lJr ilez _ 172
s+1 2 2(j+1) 4
(46)
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Consequently, (31) yields

I
! n+2 n+2 1 2
o' (t)< ,m (173 + vlia) = 9w

_h [VV]|> +2(x + 2)J F(u, v)dx
4 (0]

-1 1-1
Tll (hoVu)(t) + TZZ (hyoV¥)(1) + (| Vi |I®
2i —j+1/j )
9w+ TP | (o)
Jjt1 o
2 —s+1/s
+ %J (191 + 1ul? ) " .
0
(47)
In order to estimate the F' (1), we set
1 t
Fu(0)= [ (0 ) o)) = u(s) s,
0
(48)

Then, by using equations (1), we have

o

(
(u(t) - (s))dsdx+J J hi(t-s)

- (Vult)-Vuls)dsd - | @ (t)j (£
- (Vu(t)~Vu(s))dsdx - ﬁjghﬂ"ut

: J (=) (u(t) — u(s))dsdx

0

. Jﬂfl(u, v)J;hl(t — ) (u(t) - u(s))dsdx

- ([ )iz ([ meo)ivar

(49)

For the first term of (33), by applying (A1), Holder’s
inequality, and Young’s inequality, we deduce
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L(t=$)Vu(s)ds )de

A
+ 5 JQ (J;h (t- s)(Vu(t)—Vu(s))ds) 2dx
L[]
1
+

46

hy(t=s)(|Vu(s)-Vu(t)| + \Vu(t)\)ds} dx
(Johl(s)ds> (hyoVu)(t) <28(1 - 1)?||Vu)?
+ (25 + %) (1=1,)(hyoVu)(t),¥8 > 0.

Then, in order to estimate the following term, we seperate
such that

] (] mte=swucns) ([ = vt -vuca s

From (A1) assumption, Holder’s inequality, and Young’s
inequality, we get

J Vu(l‘)Jth1 (t =) (Vu(t)-Vu(s))dsdx
(0] 0 L (54)
< ||Vul* + 481 (hyoVu)(t).

In order to estimate the forth term, we use Young’s

inequality, Sobolev-Poincare inequality, Holder’s inequality.
and (A1) assumption

<0192 - "4 (Wjowu) 0
t gl e 9 u) - ) s
k 1 i—-1 t 2
UQ(”| +|v| )Iut\f Mtjohl(t—s)(u(t)_U(S))de-x (51) s% [6||ut||z< ht %JQ(J h{(t—s)(u(t)—u(s))ds) dx]
=Il +12’ 1 , hl(o)ci . , i
I < |:6HutH2EZ+1; T4 JQth(t—s)|Vu(t)—Vu(s)| dsdx}
8 a(k+2)EON" 5 h(0)E /),
T T ( P ) 190 = g5+ <h1<>Vu>(t).
L =J |ua| o, | “tJ hy(t=s)(u(t) —u(s))dsdx, -
’ : (52)
I,= JQ|v|l|ut|j*1utth(t = 5)(u(t) — u(s))dsdx.

By Holder’s inequality, Young’s inequality, (15), and
(21), we get

1| < <Jﬂ|u|k|ut|j+1dx>j/j+l <JQ|u|k<Jth1(t—s)

j+1
- (u(t) - u(s))ds) dx)

- q—j+1/j
< J8
j+1

1/j+1

j+1

J
J (1ul* +|v\)|u\f+1dx+ >
0
<J hy(t=s)(
0 0

( 3¢
2(j+1)
u(s))ds> dx)
2k

(5

]8 —j+1/j
R D!

8j+1
|u| + |v\ |u, \f“dx+
0 j+1

(hloVu)(t)>
i+l

. S 21
[, (e Y e (%xél Vv
0 J

LRy -t (hloVu)(t))'

k—
X vu)®

L ey e
2

ja—jﬂlj
j+1

L] <

2

Combining these estimates (34)-(40) and (33) becomes

Fi(t) < [(zm 216>(1 -1)+

- (hyoVu)(t) + (5+25(1 ~1)+

O 2y (1 mzf“]

j+1
)
+1>

8j+1
+1

Jji+1 2[

s v

: (h;oVu> (t) + <8 + )>
- fh«s)ds) V] +

|| (ot o)
Q
g dx - b (Jth (s)ds)|u ||

t ’1+1 0 1 t ;1+2

- J fi(u, v)Jth1 (t = s)(u(t) — u(s))dsdx.
Q 0

2N
c;
|| Va* +

G
(k+2)E
K+ 1

hy(0)
46

1
5Ci(’7+1)

n+1

"
©

§

2j8—j+1/j
i+ 1

(56)

Similarly, let

Fa(t=a A= i) Ba(e= 9000 -

0

v(s))dsdx,

(57)



s+1

(hyoV)(t) + [ 8 +28(1 - 1,)* + ﬁﬁag-l
2 Y sv12 2

51 e 1y (0) 2
. 24 & 2\ *
I+ o vl = 2 (15

) (hQOVv)(t) + <8+ s (2(K+2)E(0)>”

st1 2s+2 S1 2s+1
F;(t)s{(26+216)(1—12)+8 "2(2x) (1~ 1) }

n+1 k+1

ds) ol 22 ] ()
e | folu j —(v(1) - () dsdx
- ([ g
(58)

Since the function k; (i =
>0,

1,2) is positive, then for any t,

t t
J hy(s)ds > J hy(s)ds = h,(0) = by >0Vt >t (59)

0 0

Hence, we conclude from (17), (10), (32), (41), and (42)
that

-
AT 121+ VE(0)\ "
o (“‘ ”)> (93 + [9%,P)

n+1 K+1

el el
- (5 - )ivue - (5 e 1ol

< (hyoVw)(t) + 2e(k + Z)J F(u,v)dx
Q

M hy(0) (<
+ = - +
2 48 ;1+1

2 2
(=) (I3 + vl ) - <h3 —e-5

[ A [ =) - utspasas
Q 0
| e [ rate =500 - vioasae
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where
j+1 2k, k-1 s+1 2p p1
c2=28(1—ll)2+6 fﬁ?ﬁ d
2(j+1) 2(s+ 1)
s+1 20, ,0-1 j+l 21 I-1
C3=26(1_lz)2+6 e +8 /5 >
2(5+ 1) (]+ 1) (61)
i+l 2j+2 i1 2j+1
c4=<25+ L)(l—ll)-ré Cs (2).(1) (1-1) ’
20 jt1
1 6s+lcis+2(2xz)5(1 _ l2)25+1
CS_<28+%)(1_12)+ s+1 ’

By using Lemma 8 and (15) for the last two terms of (43),
we obtain

r'e<-

2 2
et € ) (el + w2
B 8+8+6ci<’1”> 2+ 2EQO)"
n+1 K+1 ?
el
(9 199) - (= e 8+ a0 )

I
vl - (52

. (Zill + ;—)a “1) e thovue)

—e(ct (B + ﬁ2>612>) )2

SIER

C

| o

o
09‘*1\)

)(1 -L)+ c5: (hyoVv)(t)
()] vy
(] (v

. —j+llj
+2e(k+2)| F(u,v)dx+ <2]/_31 (s+1)—M)
o j+1

) 2s —s+1/s
() e+ P (e+1)-M
0 ! s+1

INCRTH
0

+
h
4

* N

=
+
—_

=
S oS &

L

% 8

2
4

NI RN N

(=9
=

+

—_

—

(62)

At this point, we choose € and & which are small enough,
and we have

1

n+1 s>
hyoe—o- et (2(;< + 2)E(0)>’7 o,
n+1 K+1 (63)
D (e (B + B3 >0
el,
2 (@t (Bt p,)0L) >0
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Further, we pick ¢ so small and

—s+1/s

(e+1)-M<0, 722
s+1

. —jt1l]
2][31]+ !
j+1

(e+1)-M<0. (64)

Once § is fixed, we choose M that is sufficently large so
that

M _h0)/ & M hy0) [ &
— = —+1]>0, — - ——+1)=0.
2 46 \n+1 2 46 \n+1

Consequently, for all ¢ > ¢, we reach at

I () < =& E(t) + &((hyoVu) () + (eVv)(1)),  (66)
where there are positive constants &;,i=1, 2.

Now, we are ready to state our stability result.
Theorem 10. Suppose that (4) and (A1)-(A3) hold, and that

(g, u;) € HY(Q) x L?(Q) and (vy,v;) € H)(Q) x L?(Q) sat-
isfy E(0) < E, and

112
(LlVuol® + L[[Vvo[|*) ™ < at,. (67)

Then for each, the energy of (1) satisfies
E(t) <Ke Ml 1> ¢, (68)

where 8(t) == min {8,(t), 8,(t)} and K and k are positive con-
stants.

Proof. Multiplying (46) by 8(t), we get
ST (1) < =& S(t)E(t) + E,8()[(hyoVu)(t) + (hyoVy)(1))].
(69)
Applying (A2) and 6(t) := min {8, (¢),5,(¢)} and since

~[(hjoVu)(t) + (hheVv)(t)] < —2E'(t) by (10), we obtain

S(E)T' (£) < —E,8(D)E(t) - £,5(t) [(h;ow) (t) + (h;ovv) (t)]
<&, 8(t)E(t) = 28,E" (1) Vt > ¢,
(70)

S(1)E(t) <—k8()G(t)VE=ty. (71

And here, G(t) = 8(¢)I'(t) + CE(¢) is equivalent to E(t) due
to (20), and k is a positive constant. A simple integration of
(50) leads to

G(t) < G(t)e O yr > ¢ (72)

This completes the proof.

5. Conclusion

As far as we know, there have not been any global existences
and general decay results in the literature known for quasi-
linear viscoelastic equations with degenerate damping terms.
Our work extends the works for some quasilinear viscoelastic
equations treated in the literature to the quasilinear viscoelas-
tic equation with degenerate damping terms.
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