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In this article, we introduce a new subclass of analytic functions utilizing the idea of Mittag-Leffler type Poisson distribution
associated with the Janowski functions. Further, we discuss some important geometric properties like necessary and sufficient
condition, convex combination, growth and distortion bounds, Fekete-Szegö inequality, and partial sums for this newly defined
class.

1. Introduction, Definitions, and Motivation

Let A represent the collections of holomorphic (analytic)
functions f defined in the open unit disc:

D = z : z ∈ℂ and zj j < 1f g, ð1Þ

such that the Taylor series expansion of f is given by

f zð Þ = z + 〠
∞

n=2
anz

n z ∈Dð Þ: ð2Þ

By convention, S stands for a subclass of class A com-
prising of univalent functions of the form (2) in the open unit
disc D. Let P represent the class of all functions p that are

holomorphic in D with the condition

R p zð Þð Þ > 0, ð3Þ

and has the series representation

p zð Þ = 1 + 〠
∞

n=1
cnz

n z ∈Dð Þ: ð4Þ

Next, we recall the definition of subordination, for two
functions h1, h2 ∈A , we say h1 is subordinated to h2 and is
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symbolically written as

h1 ≺ h2, ð5Þ

if there exists an analytic function wðzÞ with the properties

w zð Þj j ≤ zj j,w 0ð Þ = 0, ð6Þ

such that

h1 zð Þ = h2 w zð Þð Þ: ð7Þ

Further if h2 ∈ S , then the above condition becomes

h1 ≺ h2 ⇔ h1 0ð Þ = h2 0ð Þ,
h1 Dð Þ ≤ h2 Dð Þ:

ð8Þ

Now, recall the definition of convolution, let f ∈A given
by (2) and hðzÞ given by

h zð Þ = z + 〠
∞

n=2
bnz

n, ð9Þ

then their convolution denoted by ð f ∗ hÞðzÞ is given by

f ∗ hð Þ zð Þ = z + 〠
∞

n=2
anbnz

n z ∈Dð Þ: ð10Þ

The most important and well-known family of analytic
functions is the class of starlike functions denoted by S∗

and is defined as

S∗ = f ∈A : R
zf ′ zð Þ
f zð Þ

 !
> 0 ∀z ∈Dð Þ

( )
: ð11Þ

Next, for −1 ≤ B < A ≤ 1, Janowski [1] generalized the
class S∗ as follows.

Definition 1. A function h with property that hð0Þ = 1 is
placed in the class P ½A, B� if and only if

h zð Þ ≺ 1 + Az
1 + Bz

−1 ≤ B < A ≤ 1ð Þ: ð12Þ

Janowski also proved that for a function p ∈P , a function
hðzÞ belongs to P ½A, B� if the following relation holds

h zð Þ = A + 1ð Þp zð Þ − A − 1ð Þ
B + 1ð Þp zð Þ − B − 1ð Þ : ð13Þ

Also, function f of form (2) belongs to the class S∗½A, B�
if

zf ′ zð Þ
f zð Þ = A + 1ð Þp zð Þ − A − 1ð Þ

B + 1ð Þp zð Þ − B − 1ð Þ −1 ≤ B < A ≤ 1ð Þ: ð14Þ

Kanas et al. (see [2, 3]; see also [4, 5]) were the first to

define the conic domain Ωkðk ≧ 0Þ as follows:

Ωk = u + iv : u > k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u − 1ð Þ2 + v2

q� �
: ð15Þ

Moreover, for fixed k, Ωk represents the conic region
bounded successively by the imaginary axis ðk = 0Þ. For k =
1, it is a parabola, and for 0 < k < 1, it is the right-hand branch
of the hyperbola, and for k > 1, it represents an ellipse.

For these conic regions, the following functions play the
role of extremal functions:

pk zð Þ =

χ1 k, zð Þ, k = 0ð Þ,
χ2 k, zð Þ, k = 1ð Þ,
χ3 k, zð Þ, 0 ≦ k < 1ð Þ,
χ4 k, zð Þ, k > 1ð Þ,

8>>>>><
>>>>>:

ð16Þ

where

χ1 k, zð Þ = 1 + z
1 − z

= 1 + 2z + 2z2+⋯,

χ2 k, zð Þ = 1 + 2
π2 log 1 + ffiffiffi

z
p

1 − ffiffiffi
z

p
� �2

,

χ3 k, zð Þ = 1 + 2
1 − k2

sinh2 2
π

arccos k
� �

arctanh
ffiffiffi
z

p� �� �
,

χ4 k, zð Þ = 1 + 1
k2 − 1

sin π

2K κð Þ
ðu zð Þ/ ffiffiκp

0

dtffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2t2

p
 !

+ 1
k2 − 1

,

u zð Þ = z −
ffiffiffi
κ

p
1 − ffiffiffi

κ
p

z
∀z ∈Dð Þ, ð17Þ

and κ ∈ ð0, 1Þ is chosen such that λ = cosh ðπK ′ðκÞ/ð4KðκÞÞÞ.
Here KðκÞ is Legendre’s complete elliptic integral of first kind
and K ′ðκÞ = Kð ffiffiffiffiffiffiffiffiffiffiffiffi

1 − κ2
p Þ, that is, K ′ðκÞ is the complementary

integral of KðκÞ. Assume that

pk zð Þ = 1 + P1z + P2z
2+⋯ ∀z ∈Dð Þ: ð18Þ

Then, in [6], it has been shown that, for (16), one can
have

P1 =

2N2

1 − k2
, 0 ≦ k < 1ð Þ,

8
π2 , k = 1ð Þ,

π2

4k2 κð Þ2 1 + κð Þ ffiffiffi
κ

p , k > 1ð Þ,

8>>>>>>>><
>>>>>>>>:

ð19Þ

P2 =D kð ÞP1, ð20Þ
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where

D kð Þ =

N2 + 2
3 , 0 ≦ k < 1ð Þ,

2
3 , k = 1ð Þ,

4K κð Þ½ �2 κ2 + 6κ + 1
� �

− π2

24 K κð Þ½ �2 1 + κð Þ ffiffiffi
κ

p , k > 1ð Þ,

8>>>>>>>><
>>>>>>>>:

ð21Þ

with

N = 2
π
arccos k: ð22Þ

Definition 2. A function f of the form (2) is said to be in class
k − ST , if and only if

l
zf ′ zð Þ
f zð Þ ≺ pk zð Þ, k ≥ 0: ð23Þ

Noor and Malik [7] combined the concepts of the
Janowski functions and the conic regions and gave the fol-
lowing definition.

Definition 3. A function h ∈P is said to be in the class k −
P ½A, B� if and only if

h zð Þ ≺ A + 1ð Þpk zð Þ − A − 1ð Þ
B + 1ð Þpk zð Þ − B − 1ð Þ ,−1 ≤ B < A ≤ 1, k ≥ 0: ð24Þ

Geometrically, hðzÞ ∈ k −P ½A, B� takes all values in
domain Δk½A, B�, which is defined as follows

Δk A, B½ � = w : R
B − 1ð Þw − A − 1ð Þ
B + 1ð Þw − A + 1ð Þ

� �
> k

B − 1ð Þw − A − 1ð Þ
B + 1ð Þw − A + 1ð Þ − 1
				

				
� �

,

ð25Þ

the domain Δk½A, B� represents conic-type regions, which
was introduced and studied by Noor andMalik [7] and is fur-
ther generalized by the many authors, see for example [8] and
the references cited therein.

Definition 4 [7]. A function f ∈A is said to be in the class k
− S∗½A, B� if and only if

zf ′ zð Þ
f zð Þ ≺

A + 1ð Þpk zð Þ − A − 1ð Þ
B + 1ð Þpk zð Þ − B − 1ð Þ : ð26Þ

The generalized exponential series:

Eα zð Þ = 〠
∞

k=0

zk

Γ 1 + αkð Þ , α, z ∈ℂ and R αð Þ > 0, ð27Þ

is one special-type function with single parameter α, was
introduced by Mittag-Leffer (see [9]), and is therefore known

as the Mittag-Leffler function. Another function Eα,βðzÞ with
two parameters α and β having similar properties to those of
Mittag-Leffler function is given by

Eα,β zð Þ = 〠
∞

k=0

zk

Γ β + αkð Þ α, β, z ∈ℂð Þ, ð28Þ

and was introduced by Wiman [10, 11] Agrawal [12], and by
the many other (see for example [13–16]). It can be seen that
the series Eα;βðzÞ converges for all finite values of z if

R αð Þ > 0,R βð Þ > 0: ð29Þ

During the last years, the interest in Mittag-Leffler type
functions has considerably increased due to their vast poten-
tial of applications in applied problems such as fluid flow,
electric networks, probability, and statistical distribution the-
ory. For a detailed account of properties, generalizations and
applications of functions (27) and (28), one may refer to [17–
19] and [20].

Geometric properties including starlikeness, convexity,
and close-to-convexity for the Mittag-Leffler function Eα,βð
zÞ were recently investigated by Bansal and Prajapat in
[21]. Differential subordination results associated with gener-
alized Mittag-Leffler function were also obtained in [22].

A variable N is said to be Poisson distributed if it takes
the values 0, 1, 2, 3,⋯ with probabilities e−ψ, ψe−ψ/1!, ψ2e−ψ

/2!, ψ3e−ψ/3!, ⋯ respectively, where ψ is called the parame-
ter. Thus,

Pn N = nð Þ = ψne−ψ

n!
n = 0, 1, 2, 3,⋯ð Þ: ð30Þ

It is easy to see that (30) is a mass probability function
because

P ψ, α, β ; nð Þ zð Þ ≥ 0,

〠
∞

n=0
P ψ, α, β ; nð Þ zð Þ = 1:

ð31Þ

The power series Yðψ, zÞ given by

Y ψ, zð Þ = z + 〠
∞

n=2

ψn−1e−ψ

n − 1ð Þ! z
n ∀z ∈D andψ > 0ð Þ, ð32Þ

which coefficients are probabilities of Poisson distribution is
introduced by Porwal [23]. We can see that by ratio test the
radius of convergence of Yðψ, zÞ is infinity. Porwal [23] also
defined and introduced the following series:

G ψ, zð Þ = 2z − Y ψ, zð Þ = z − 〠
∞

n=2

ψn−1e−ψ

n − 1ð Þ! z
n ∀z ∈D andψ > 0ð Þ:

ð33Þ

The works of Porwal [23] motivate researchers to intro-
duced a new probability distribution if it assumes the positive
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values and its mass function is given by (30) (see for example
[24–26]).

It was Porwal and Dixit [24] who studied and connected
the Poisson distribution and the well-known Mittag-Leffer
function systematically. They called it the Mittag-Leffer type
Poisson distribution and prevailed moments. The Mittag-
Leffer type Poisson distribution is given by (see [24])

Y ψ, α, βð Þ zð Þ = z + 〠
∞

n=2

ψn−1

Γ α n − 1ð Þ + βð ÞEα;β ψð Þ z
n, ð34Þ

where Yðψ, α, βÞðzÞ is a normalized function of class S , since

Y ψ, α, βð Þ 0ð Þ = 0 = Y ′ ψ, α, βð Þ 0ð Þ − 1: ð35Þ

The probability mass function for the Mittag-Leffer type
Poisson distribution series is given by

P ψ, α, β ; nð Þ zð Þ = ψn

Eα;β ψð ÞΓ αn + βð Þ n = 0, 1, 2, 3,⋯ð Þ,

ð36Þ

where Eα;βðψÞ is given by (28). It is worthy to note that the
Mittag-Leffer type Poisson distribution is a generalization
of Poisson distribution. Furtheremore, Bajpai [27] also stud-
ied and obtain some necessary and sufficient conditions for
this distribution series.

Very recently, using theMittag-Leffer type Poisson distri-
bution series, Alessa et al. [28] defined the convolution oper-
ator as

Ω ψ, α, βð Þf zð Þ = Y ψ, α, βð Þ ∗ f zð Þ = z + 〠
∞

n=2
φn
ψ α, βð Þanzn,

ð37Þ

where

φn
ψ α, βð Þ = ψn−1

Γ α n − 1ð Þ + βð ÞEα;β ψð Þ : ð38Þ

Using this convolution operator, they defined and stud-
ied a new subclass of analytic function systematically. They
obtained certain coefficient estimates, neighborhood results,
partial sums, and convexity and compactness properties for
their defined functions class.

In recent years, binomial distribution series, Pascal distri-
bution series, Poisson distribution series, and Mittag-Leffer
type Poisson distribution series play important role in the
geometric function theory of complex analysis. The sufficient
ways were innovated for certain subclasses of starlike and
convex functions involving these special functions (see for
example [26, 29–32]). Motivated by the abovementioned
works and from the work of Alessa et al. [28], in this article,
by mean of certain convolution operator for Mittag-Leffer
type Poisson distribution, we shall define a new subclass of
starlike functions involving both the conic-type regions and

the Janowski functions. We then obtain some interesting
properties for this newly defined function class including
for example necessary and sufficient condition, convex com-
bination, growth and distortion bounds, Fekete-Szegö
inequality, and partial sums. We now define a subclass of
Janowski-type starlike functions involving the conic domains
by mean of certain convolution operator for Mittag-Leffer
type Poisson distribution as follows.

Definition 5. For −1 ≤ B < A ≤ 1, a function f ∈A is in class
k −ΩS∗ðα, β, A, BÞ if

R
B − 1ð Þϑ f ; ψ, α, βð Þ − A − 1ð Þ
B + 1ð Þϑ f ; ψ, α, βð Þ − A + 1ð Þ − 1

� �

≥ k
B − 1ð Þϑ f ; ψ, α, βð Þ − A − 1ð Þ
B + 1ð Þϑ f ; ψ, α, βð Þ − A + 1ð Þ − 1
				

				,
ð39Þ

where

ϑ f ; ψ, α, βð Þ = z Ω ψ, α, βð Þf zð ÞÞð Þ′
Ω ψ, α, βð Þf zð Þ : ð40Þ

For the proofs of our key findings, we need the following
lemma.

Lemma 6 [33]. Let p ∈P have the series expansion of form
(4), then

a3 − ζa22
		 		 ≤ 2 max 1, 2ζ − 1j jf g,whereζ ∈ℂ: ð41Þ

2. Main Results

Theorem 7. Let f ∈ k −ΩS∗ðα, β, A, BÞ and is of the form (2),
then

〠
∞

n=2
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ anj j < B −Aj j:

ð42Þ

The result is sharp for the function given in (51).

Proof. Suppose that inequality (42) holds true, then it is
enough to show that

k
B − 1ð Þϑ f ; ψ, α, βð Þ − A − 1ð Þ
B + 1ð Þϑ f ; ψ, α, βð Þ − A + 1ð Þ − 1
				

				 −R
B − 1ð Þϑ f ; ψ, α, βð Þ − A − 1ð Þ
B + 1ð Þϑ f ; ψ, α, βð Þ − A + 1ð Þ − 1

� �
< 1:

ð43Þ

For this, consider

k
B − 1ð Þϑ f ; ψ, α, βð Þ − A − 1ð Þ
B + 1ð Þϑ f ; ψ, α, βð Þ − A + 1ð Þ − 1
				

				 −R
B − 1ð Þϑ f ; ψ, α, βð Þ − A − 1ð Þ
B + 1ð Þϑ f ; ψ, α, βð Þ − A + 1ð Þ − 1

� �
:

ð44Þ
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As we have set

ϑ f ; ψ, α, βð Þ = z Ω ψ, α, βð Þf zð ÞÞð Þ′
Ω ψ, α, βð Þf zð Þ , ð45Þ

therefore, after some straightforward simplifications, we have

k
B − 1ð Þϑ f ; ψ, α, βð Þ − A − 1ð Þ
B + 1ð Þϑ f ; ψ, α, βð Þ − A + 1ð Þ − 1
				

				 −R
B − 1ð Þϑ f ; ψ, α, βð Þ − A − 1ð Þ
B + 1ð Þϑ f ; ψ, α, βð Þ − A + 1ð Þ − 1

� �
,

≤ k + 1ð Þ B − 1ð Þz Ω ψ, α, βð Þf zð ÞÞð Þ′ − A − 1ð ÞΩ ψ, α, βð Þf zð Þ
B + 1ð Þz Ω ψ, α, βð Þf zð ÞÞð Þ′ − A + 1ð ÞΩ ψ, α, βð Þf zð Þ

− 1
					

					,
= 2 k + 1ð Þ Ω ψ, α, βð Þf zð Þ − z Ω ψ, α, βð Þf zð ÞÞð Þ′

B + 1ð Þz Ω ψ, α, βð Þf zð ÞÞð Þ′ − A + 1ð ÞΩ ψ, α, βð Þf zð Þ

					
					,

= 2 k + 1ð Þ ∑∞
n=2 1 − nð Þφn

ψ α, βð Þanzn
B − Að Þz +∑∞

n=2 n 1 + Bð Þ − 1 + Að Þ½ �φn
ψ α, βð Þanzn

					
					,

≤
2 k + 1ð Þ∑∞

n=2 1 − nj jφn
ψ α, βð Þ anj j

B − Aj j − ∑∞
n=2 n 1 + Bð Þ − 1 + Að Þj jφn

ψ α, βð Þ anj j :

ð46Þ

By using (42), the above inequality is bounded above by
1, and hence, the proof is completed. ☐

Example 8. For the function

f zð Þ = z + 〠
∞

n=2

B −Aj j
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ xnz
n z ∈Dð Þ,

ð47Þ

such that

〠
∞

n=2
xnj j = 1, ð48Þ

we have

〠
∞

n=2
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ anj j

= 〠
∞

n=2
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ

· B − Aj j
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ xnj j

= B − Aj j〠
∞

n=2
xnj j = B − Aj j:

ð49Þ

Hence, f ∈ k −ΩS∗ðα, β, A, BÞ and the result is sharp.

Corollary 9. Let the function f of the form (2) be in the class
k −ΩS∗ðα, β, A, BÞ: Then,

anj j ≤ B − Aj j
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ : ð50Þ

The result is sharp for the function f tðzÞ given by

f t zð Þ = z + B − Aj j
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ z
n:

ð51Þ

Theorem 10. The class k −ΩS∗ðα, β, A, BÞ is closed under
convex combination.

Proof. Let f kðzÞ ∈ k −ΩS∗ðα, β, A, BÞ such that

lf k zð Þ = z + 〠
∞

n=2
an,kz

n, k ∈ 1, 2f g: ð52Þ

It is enough to show that

t f1 zð Þ + 1 − tð Þf2 zð Þ ∈ k −ΩS∗ α, β, A, Bð Þ t ∈ 0, 1½ �ð Þ: ð53Þ

As

lt f1 zð Þ + 1 − tð Þf2 zð Þ = z + 〠
∞

n=2
tan,1 + 1 − tð Þan,2½ �zn: ð54Þ

Now, by Theorem 7, we have

〠
∞

n=2
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �

· φn
ψ α, βð Þ tan,1 + 1 − tð Þan,2

		 		
≤ 〠

∞

n=2
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �

· φn
ψ α, βð Þ t an,1

		 		 + 1 − tð Þ an,2
		 		
 �

≤ t 〠
∞

n=2
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �

· φn
ψ α, βð Þ an,1

		 		 + 1 − tð Þ

· 〠
∞

n=2
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ an,2
		 		

< t B − Aj j + 1 − tð Þ B − Aj j = B − Aj j:
ð55Þ

Hence,

t f1 zð Þ + 1 − tð Þf2 zð Þ ∈ k −ΩS∗ α, β,A, Bð Þ, ð56Þ

which completes the proof. ☐
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Theorem 11. Let f ∈ k −ΩS∗ðα, β, A, BÞ, then for jzj = r

r −
B − Aj j

2 k + 1ð Þ + 2B − A + 1j jφ2
ψ α, βð Þ r

2 ≤ f zð Þj j

≤ r + B − Aj j
2 k + 1ð Þ + 2B − A + 1j jφ2

ψ α, βð Þ r
2:

ð57Þ

The result is sharp for the function given in (51) for n = 2.

Proof. Let f ∈ k −ΩS∗ðα, β,A, BÞ. Using Theorem 7, we can
deduce the following inequity:

f zð Þj j ≤ zj j + 〠
∞

n=2
anj j znj j ≤ zj j + zj j2 〠

∞

n=2
anj j

≤ r + B − Aj j
2 k + 1ð Þ + 2B − A + 1j jφ2

ψ α, βð Þ r
2:

ð58Þ

Similarly,

f zð Þj j ≥ zj j − 〠
∞

n=2
anj j znj j ≥ zj j − zj j2 〠

∞

n=2
anj j

≥ r −
B − Aj j

2 k + 1ð Þ + 2B − A + 1j jφ2
ψ α, βð Þ r

2:

ð59Þ

☐

Theorem 12. Let f ∈ k −ΩS∗ðα, β, A, BÞ, then for jzj = r

f ′ zð Þ		 		 ≤ 1 + 2 B − Aj j
2 k + 1ð Þ + 2B − A + 1j jφ2

ψ α, βð Þ r,

f ′ zð Þ		 		 ≥ 1 −
2 B − Aj j

2 k + 1ð Þ + 2B − A + 1j jφ2
ψ α, βð Þ r:

ð60Þ

The result is sharp for the function given in (51) for n = 2.

Proof. The proof is quite similar to Theorem 11, so left for
reader. ☐

Now, we evaluate a kind of Hankel determinant problem,
which is also known as the Fekete-Szegö functional.

Theorem 13. If f is of the form (2) and belongs to k −ΩS∗ð
α, β, A, BÞ, then

a3 − ξa22
		 		 ≤ P1 A − Bð Þ

4φ3
ψ α, βð Þ max 1,

B − 2P2 + 1ð Þφψ α, βð Þ − 2ξ A − Bð ÞP2
1

2P1φψ α, βð Þ

					
					

( )
,

ð61Þ

where P1 and P2 are defined by (19) and (20), respectively.

Proof. To prove inequality (61), we let

ϑ f ; ψ, α, βð Þ = z Ω ψ, α, βð Þf zð Þð Þ′
Ω ψ, α, βð Þf zð Þ , ð62Þ

then from (26), we have

ϑ f ; ψ, α, βð Þ ≺ A + 1ð Þpk zð Þ − A − 1ð Þ
B + 1ð Þpk zð Þ − B − 1ð Þ =Φ zð Þ sayð Þ: ð63Þ

Thus, if

pk zð Þ = 1 + P1z + P2z
2+⋯, ð64Þ

then by simple computation, we get

Φ zð Þ = 1 + 1
2 P1 A − Bð Þz + 1

4 A − Bð Þ 2P2 − 1 + Bð ÞP2
1

� �
z2+⋯:

ð65Þ

Now, from (63), there exists an analytic function hðzÞ
such that

h zð Þ = 1 +Φ−1 ϑ f ; ψ, α, βð Þð Þ
1 −Φ−1 ϑ f ; ψ, α, βð Þð Þ = 1 + c1z + c2z

2+⋯, ð66Þ

is analytic and

R h zð Þð Þ > 0, ð67Þ

in open unit disc D. Also, we have

ϑ f ; ψ, α, βð Þ =Φ
h zð Þ − 1
h zð Þ + 1

� �
, ð68Þ

where

z ϑ f ; ψ, α, βð Þð Þ′
ϑ f ; ψ, α, βð Þ = 1 + φ2

ψ α, βð Þa2z + 2φ3
ψ α, βð Þa3 − φ4

ψ α, βð Þa22
� 

z2+⋯:

ð69Þ

Φ
h zð Þ − 1
h zð Þ + 1

� �
= 1 + 1

4 A − Bð ÞP1c1z +
1
4 A − Bð Þ

� P1c2 +
P2
2 −

1 + B
4 −

P1
2

� �
c21

� �
z2+⋯:

ð70Þ
After comparing the (69) and (70), we get

a2 =
1

4φ2
ψ α, βð Þ A − Bð ÞP1c1, ð71Þ

a3 =
1

8φ3
ψ α, βð Þ A − Bð Þ P1c2 +

P2
2 −

1 + B
4 −

P1
2

� �
c21

� �
:

ð72Þ
Now, by making use of (71) and (72), in conjunction with
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Lemma, we have

a3 − ξa22
		 		 ≤ P1 A − Bð Þ

4φ3
ψ α, βð Þ max 1,

B − 2P2 + 1ð Þφψ α, βð Þ − 2ξ A − Bð ÞP2
1

2P1φψ α, βð Þ

					
					

( )
,

ð73Þ

which is the required result. ☐

3. Partial Sums

In this section, we will examine the ratio of a function of form
(2) to its sequence of partial sums

f j zð Þ = z + 〠
j

n=2
anz

n, ð74Þ

when the coefficients of f are sufficiently small to satisfy con-
dition (42). We will determine sharp lower bounds for

R
f zð Þ
f j zð Þ

 !
,

R
f j zð Þ
f zð Þ

� �
,

R
f ′ zð Þ
f j′ zð Þ

 !
,

R
f j′ zð Þ
f ′ zð Þ

 !
:

ð75Þ

Theorem 14. If f of form (2) satisfies condition (42), then

R
f zð Þ
f j zð Þ

 !
≥ 1 −

1
ρj+1

∀z ∈Dð Þ, ð76Þ

R
f j zð Þ
f zð Þ

� �
≥

ρj+1
1 + ρj+1

∀z ∈Dð Þ, ð77Þ

where

ρj =
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ
A − Bj j : ð78Þ

The result is sharp for the function given in (51).

Proof. It is easy to verify that

ρn+1 > ρn > 1 for n > 2: ð79Þ

Thus, in order to prove the inequality (76), we set

ρj+1
f zð Þ
f j zð Þ − 1 − 1

ρj+1

 !" #
=
1 +∑j

n=2anz
n−1 + ρj+1∑

∞
n=j+1anz

n−1

1 +∑j
n=2anzn−1

= 1 + h1 zð Þ
1 + h2 zð Þ :

ð80Þ

We now set

1 + h1 zð Þ
1 + h2 zð Þ =

1 +w zð Þ
1 −w zð Þ : ð81Þ

Then, we find after some suitable simplification that

w zð Þ = h1 zð Þ − h2 zð Þ
2 + h1 zð Þ + h2 zð Þ : ð82Þ

Thus, clearly, we find that

w zð Þ = ρj+1∑
∞
n=j+1anz

n−1

2 + 2∑j
n=2anzn−1 + ρj+1∑

∞
n=j+1anz

n−1
: ð83Þ

By applying the trigonometric inequalities with jzj < 1,
we arrived at the following inequality:

w zð Þj j ≤ ρj+1∑
∞
n=j+1 anj j

2 − 2∑j
n=2 anj j − ρj+1∑

∞
n=j+1 anj j

: ð84Þ

We can now see that

w zð Þj j ≤ 1, ð85Þ

if and only if

2ρj+1 〠
∞

n=j+1
anj j ≤ 2 − 2〠

j

n=2
anj j, ð86Þ

which implies that

〠
j

n=2
anj j + ρj+1 〠

∞

n=j+1
anj j ≤ 1: ð87Þ

Finally, to prove the inequality in (76), it suffices to show
that the left-hand side of (87) is bounded above by the follow-
ing sum:

〠
∞

n=2
ρn anj j, ð88Þ
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which is equivalent to

〠
j

n=2
ρn − 1ð Þ anj j + 〠

∞

n=j+1
ρn − ρj+1

� 
anj j ≥ 0: ð89Þ

In virtue of (89), the proof of inequality in (76) is now
completed.

Next, in order to prove the inequality (77), we set

1 + ρj+1

�  f j zð Þ
f zð Þ −

ρj+1
1 + ρj+1

 !

=
1 +∑j

n=2anz
n−1 − ρj+1∑

∞
n=j+1anz

n−1

1 +∑∞
n=2anz

n−1 , = 1 +w zð Þ
1 −w zð Þ ,

ð90Þ

where

w zð Þj j ≤
1 + ρj+1

� 
∑∞

n=j+1 anj j
2 − 2∑ j

n=2 anj j − ρj+1 − 1
� 

∑∞
n=j+1 anj j

≤ 1: ð91Þ

This last inequality in (91) is equivalent to

〠
j

n=2
anj j + ρj+1 〠

∞

n=j+1
anj j ≤ 1: ð92Þ

Finally, we can see that the left-hand side of the inequality
in (92) is bounded above by the following sum:

〠
∞

n=2
ρn anj j, ð93Þ

so we have completed the proof of the assertion (77). ☐

We next turn to ratios involving derivatives.

Theorem 15. If f of the form (2) satisfies condition (42), then

R
f ′ zð Þ
f j′ zð Þ

 !
≥ 1 −

j + 1
ρj+1

∀z ∈Dð Þ,

R
f j′ zð Þ
f ′ zð Þ

 !
≥

ρj+1
ρj+1 + j + 1

∀z ∈Dð Þ,
ð94Þ

where ρj is given by (78). The result is sharp for the func-
tion given in (51).

Proof. The proof of Theorem 15 is similar to that of Theorem
14; we here choose to omit the analogous details. ☐

4. Concluding Remarks and Observations

In our present work, by making use of the idea of Mittag-
Leffler type Poisson distribution, we have defined and studied

certain new subclasses of starlike functions involving the
Janowski functions. Further, we have discussed some impor-
tant geometric properties like necessary and sufficient condi-
tion, convex combination, growth and distortion bounds,
Fekete-Szegö inequality, and partial sums for this newly
defined functions class.
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